ThunderVVV's picture
add thirdparty
b7eedf7
import os
import os.path as osp
import time
import sys
CODE_SPACE=os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
sys.path.append(CODE_SPACE)
#os.chdir(CODE_SPACE)
import argparse
import copy
import mmcv
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
try:
from mmcv.utils import Config, DictAction
except:
from mmengine import Config, DictAction
import socket
import subprocess
from datetime import timedelta
import random
import numpy as np
import logging
from mono.datasets.distributed_sampler import log_canonical_transfer_info
from mono.utils.comm import init_env, collect_env
from mono.utils.logger import setup_logger
from mono.utils.db import load_data_info, reset_ckpt_path
from mono.utils.do_train import do_train
def parse_args():
parser = argparse.ArgumentParser(description='Train a segmentor')
parser.add_argument('config', help='train config file path')
parser.add_argument('--work-dir', help='the dir to save logs and models')
parser.add_argument('--tensorboard-dir', help='the dir to save tensorboard logs')
parser.add_argument(
'--load-from', help='the checkpoint file to load weights from')
parser.add_argument(
'--resume-from', help='the checkpoint file to resume from')
parser.add_argument(
'--no-validate',
action='store_true',
help='whether not to evaluate the checkpoint during training')
parser.add_argument(
'--gpu-ids',
type=int,
nargs='+',
help='ids of gpus to use '
'(only applicable to non-distributed training)')
parser.add_argument('--seed', type=int, default=88, help='random seed')
parser.add_argument(
'--deterministic',
action='store_true',
help='whether to set deterministic options for CUDNN backend.')
parser.add_argument(
'--use-tensorboard',
action='store_true',
help='whether to set deterministic options for CUDNN backend.')
parser.add_argument(
'--options', nargs='+', action=DictAction, help='custom options')
parser.add_argument('--node_rank', type=int, default=0)
parser.add_argument('--nnodes',
type=int,
default=1,
help='number of nodes')
parser.add_argument(
'--launcher', choices=['None', 'pytorch', 'slurm', 'mpi', 'ror'], default='slurm',
help='job launcher')
parser.add_argument('--local_rank',
type=int,
default=0,
help='rank')
parser.add_argument('--experiment_name', default='debug', help='the experiment name for mlflow')
args = parser.parse_args()
return args
def set_random_seed(seed, deterministic=False):
"""Set random seed.
Args:
@seed (int): Seed to be used.
@deterministic (bool): Whether to set the deterministic option for
CUDNN backend, i.e., set `torch.backends.cudnn.deterministic`
to True and `torch.backends.cudnn.benchmark` to False.
Default: False.
"""
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
#if deterministic:
# torch.backends.cudnn.deterministic = True
# torch.backends.cudnn.benchmark = False
def main(args):
os.chdir(CODE_SPACE)
cfg = Config.fromfile(args.config)
cfg.dist_params.nnodes = args.nnodes
cfg.dist_params.node_rank = args.node_rank
cfg.deterministic = args.deterministic
if args.options is not None:
cfg.merge_from_dict(args.options)
# set cudnn_benchmark
#if cfg.get('cudnn_benchmark', False) and args.launcher != 'ror':
# torch.backends.cudnn.benchmark = True
# The flag below controls whether to allow TF32 on matmul. This flag defaults to False
# in PyTorch 1.12 and later.
# torch.backends.cuda.matmul.allow_tf32 = False
# The flag below controls whether to allow TF32 on cuDNN. This flag defaults to True.
# torch.backends.cudnn.allow_tf32 = False
# work_dir is determined in this priority: CLI > segment in file > filename
if args.work_dir is not None:
# update configs according to CLI args if args.work_dir is not None
cfg.work_dir = args.work_dir
elif cfg.get('work_dir', None) is None:
# use config filename + timestamp as default work_dir if cfg.work_dir is None
cfg.work_dir = osp.join('./work_dirs',
osp.splitext(osp.basename(args.config))[0],
args.timestamp)
# tensorboard_dir is determined in this priority: CLI > segment in file > filename
if args.tensorboard_dir is not None:
cfg.tensorboard_dir = args.tensorboard_dir
elif cfg.get('tensorboard_dir', None) is None:
# use cfg.work_dir + 'tensorboard' as default tensorboard_dir if cfg.tensorboard_dir is None
cfg.tensorboard_dir = osp.join(cfg.work_dir, 'tensorboard')
# ckpt path
if args.load_from is not None:
cfg.load_from = args.load_from
# resume training
if args.resume_from is not None:
cfg.resume_from = args.resume_from
# create work_dir and tensorboard_dir
os.makedirs(osp.abspath(cfg.work_dir), exist_ok=True)
os.makedirs(os.path.abspath(cfg.tensorboard_dir), exist_ok=True)
# init the logger before other steps
cfg.log_file = osp.join(cfg.work_dir, f'{args.timestamp}.log')
logger = setup_logger(cfg.log_file)
# init the meta dict to record some important information such as
# environment info and seed, which will be logged
meta = dict()
# log env info
env_info_dict = collect_env()
env_info = '\n'.join([f'{k}: {v}' for k, v in env_info_dict.items()])
dash_line = '-' * 60 + '\n'
logger.info('Environment info:\n' + dash_line + env_info + '\n' +
dash_line)
meta['env_info'] = env_info
# log some basic info
# logger.info(f'Config:\n{cfg.pretty_text}')
# mute online evaluation
if args.no_validate:
cfg.evaluation.online_eval = False
cfg.seed = args.seed
meta['seed'] = args.seed
meta['exp_name'] = osp.basename(args.config)
# load data info
data_info = {}
load_data_info('data_server_info', data_info=data_info)
cfg.db_info = data_info
# update check point info
reset_ckpt_path(cfg.model, data_info)
# log data transfer to canonical space info``
# log_canonical_transfer_info(cfg)
# init distributed env first, since logger depends on the dist info.
if args.launcher == 'None':
cfg.distributed = False
else:
cfg.distributed = True
init_env(args.launcher, cfg)
logger.info(f'Distributed training: {cfg.distributed}')
logger.info(cfg.dist_params)
# dump config
cfg.dump(osp.join(cfg.work_dir, osp.basename(args.config)))
cfg.experiment_name = args.experiment_name
if not cfg.distributed:
main_worker(0, cfg)
else:
# distributed training
if args.launcher == 'slurm':
mp.spawn(main_worker, nprocs=cfg.dist_params.num_gpus_per_node, args=(cfg, args.launcher))
elif args.launcher == 'pytorch':
main_worker(args.local_rank, cfg, args.launcher)
def main_worker(local_rank: int, cfg: dict, launcher: str='slurm'):
logger = setup_logger(cfg.log_file)
if cfg.distributed:
if launcher == 'slurm':
torch.set_num_threads(8) # without it, the spawn method is much slower than the launch method
cfg.dist_params.global_rank = cfg.dist_params.node_rank * cfg.dist_params.num_gpus_per_node + local_rank
cfg.dist_params.local_rank = local_rank
os.environ['RANK']=str(cfg.dist_params.global_rank)
else:
torch.set_num_threads(1)
torch.cuda.set_device(local_rank)
default_timeout = timedelta(minutes=10)
dist.init_process_group(
backend=cfg.dist_params.backend,
init_method=cfg.dist_params.dist_url,
world_size=cfg.dist_params.world_size,
rank=cfg.dist_params.global_rank,)
#timeout=default_timeout,)
dist.barrier()
# if cfg.distributed:
# cfg.dist_params.global_rank = cfg.dist_params.node_rank * cfg.dist_params.num_gpus_per_node + local_rank
# cfg.dist_params.local_rank = local_rank
# os.environ['RANK']=str(cfg.dist_params.global_rank)
# if launcher == 'ror':
# init_torch_process_group(use_hvd=False)
# else:
# #torch.set_num_threads(4) # without it, the spawn method maybe much slower than the launch method
# torch.cuda.set_device(local_rank)
# default_timeout = timedelta(minutes=30)
# dist.init_process_group(
# backend=cfg.dist_params.backend,
# init_method=cfg.dist_params.dist_url,
# world_size=cfg.dist_params.world_size,
# rank=cfg.dist_params.global_rank,)
# #timeout=default_timeout,)
# set random seeds
if cfg.seed is not None:
logger.info(f'Set random seed to {cfg.seed}, deterministic: 'f'{cfg.deterministic}')
set_random_seed(cfg.seed, deterministic=cfg.deterministic)
# with torch.autograd.set_detect_anomaly(True):
do_train(local_rank, cfg)
if __name__=='__main__':
# load args
args = parse_args()
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
args.timestamp = timestamp
print(args.work_dir, args.tensorboard_dir)
main(args)