import torch from torch import nn, Tensor import math class PositionalEmbedding(nn.Module): def __init__(self, seq_len: int = 32, d_model: int = 96): super().__init__() self.pos_emb = nn.Embedding(seq_len + 1, d_model) def forward(self, inputs): positions = ( torch.arange(inputs.size(0), device=inputs.device) .expand(inputs.size(1), inputs.size(0)) .contiguous() + 1 ) outputs = inputs + self.pos_emb(positions).permute(1, 0, 2) return outputs class PositionalEncoding(nn.Module): def __init__(self, d_model: int, dropout: float = 0.1, max_len: int = 5000): super().__init__() self.dropout = nn.Dropout(p=dropout) position = torch.arange(max_len).unsqueeze(1) div_term = torch.exp( torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model) ) pe = torch.zeros(max_len, 1, d_model) pe[:, 0, 0::2] = torch.sin(position * div_term) pe[:, 0, 1::2] = torch.cos(position * div_term) self.register_buffer("pe", pe) def forward(self, x: Tensor) -> Tensor: """ Args: x: Tensor, shape [seq_len, batch_size, embedding_dim] """ x = x + self.pe[: x.size(0)] return self.dropout(x)