import os import json import torch import torchvision.transforms as transforms import os.path import numpy as np import cv2 from PIL import Image from torch.utils.data import Dataset import random from .__base_dataset__ import BaseDataset class ReplicaDataset(BaseDataset): def __init__(self, cfg, phase, **kwargs): super(ReplicaDataset, self).__init__( cfg=cfg, phase=phase, **kwargs) self.metric_scale = cfg.metric_scale #self.cap_range = self.depth_range # in meter def load_norm_label(self, norm_path, H, W): with open(norm_path, 'rb') as f: normal = Image.open(f) normal = np.array(normal.convert(normal.mode), dtype=np.uint8) invalid_mask = np.all(normal == 128, axis=2) normal = normal.astype(np.float64) / 255.0 * 2 - 1 normal[invalid_mask, :] = 0 return normal def process_depth(self, depth: np.array, rgb: np.array) -> np.array: depth[depth>60000] = 0 depth = depth / self.metric_scale return depth