import os import json import torch import torchvision.transforms as transforms import os.path import numpy as np import cv2 from torch.utils.data import Dataset import random from .__base_dataset__ import BaseDataset class VKITTIDataset(BaseDataset): def __init__(self, cfg, phase, **kwargs): super(VKITTIDataset, self).__init__( cfg=cfg, phase=phase, **kwargs) self.metric_scale = cfg.metric_scale def process_depth(self, depth, rgb): depth[depth>(150 * self.metric_scale)] = 0 depth /= self.metric_scale return depth def load_sem_label(self, sem_path, depth=None, sky_id=142) -> np.array: """ Category r g b Terrain 210 0 200 Sky 90 200 255 Tree 0 199 0 Vegetation 90 240 0 Building 140 140 140 Road 100 60 100 GuardRail 250 100 255 TrafficSign 255 255 0 TrafficLight 200 200 0 Pole 255 130 0 Misc 80 80 80 Truck 160 60 60 Car 255 127 80 Van 0 139 139 """ H, W = depth.shape sem_label = np.ones((H, W), dtype=np.int) * -1 sem = cv2.imread(sem_path)[:, :, ::-1] if sem is None: return sem_label sky_color = [90, 200, 255] sky_mask = (sem == sky_color).all(axis=2) sem_label[sky_mask] = 142 # set sky region to 142 return sem_label if __name__ == '__main__': from mmcv.utils import Config cfg = Config.fromfile('mono/configs/Apolloscape_DDAD/convnext_base.cascade.1m.sgd.mae.py') dataset_i = ApolloscapeDataset(cfg['Apolloscape'], 'train', **cfg.data_basic) print(dataset_i)