Spaces:
Runtime error
Runtime error
add demo
Browse files- app.py +101 -0
- requirements.txt +5 -0
app.py
ADDED
|
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 3 |
+
import torch
|
| 4 |
+
from datetime import datetime
|
| 5 |
+
|
| 6 |
+
model_id = "BSC-LT/salamandra-2b-instruct"
|
| 7 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 8 |
+
|
| 9 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 10 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 11 |
+
model_id,
|
| 12 |
+
device_map="auto",
|
| 13 |
+
torch_dtype=torch.bfloat16,
|
| 14 |
+
)
|
| 15 |
+
|
| 16 |
+
description = """
|
| 17 |
+
Salamandra-2b-instruct is a Transformer-based decoder-only language model that has been pre-trained on 7.8 trillion tokens of highly curated data.
|
| 18 |
+
The pre-training corpus contains text in 35 European languages and code. This instruction-tuned variant can be used as a general-purpose assistant.
|
| 19 |
+
"""
|
| 20 |
+
|
| 21 |
+
join_us = """
|
| 22 |
+
## Join us:
|
| 23 |
+
🌟TeamTonic🌟 is always making cool demos! Join our active builder's 🛠️community 👻
|
| 24 |
+
[](https://discord.gg/qdfnvSPcqP)
|
| 25 |
+
On 🤗Huggingface: [MultiTransformer](https://huggingface.co/MultiTransformer)
|
| 26 |
+
On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to🌟 [Build Tonic](https://git.tonic-ai.com/contribute)
|
| 27 |
+
🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗
|
| 28 |
+
"""
|
| 29 |
+
|
| 30 |
+
def generate_text(prompt, temperature, max_new_tokens, top_p, repetition_penalty):
|
| 31 |
+
date_string = datetime.today().strftime('%Y-%m-%d')
|
| 32 |
+
message = [{"role": "user", "content": prompt}]
|
| 33 |
+
|
| 34 |
+
chat_prompt = tokenizer.apply_chat_template(
|
| 35 |
+
message,
|
| 36 |
+
tokenize=False,
|
| 37 |
+
add_generation_prompt=True,
|
| 38 |
+
date_string=date_string
|
| 39 |
+
)
|
| 40 |
+
|
| 41 |
+
inputs = tokenizer.encode(chat_prompt, add_special_tokens=False, return_tensors="pt")
|
| 42 |
+
|
| 43 |
+
outputs = model.generate(
|
| 44 |
+
input_ids=inputs.to(model.device),
|
| 45 |
+
max_new_tokens=max_new_tokens,
|
| 46 |
+
temperature=temperature,
|
| 47 |
+
top_p=top_p,
|
| 48 |
+
repetition_penalty=repetition_penalty,
|
| 49 |
+
do_sample=True
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 53 |
+
return generated_text.split("assistant\n")[-1].strip()
|
| 54 |
+
|
| 55 |
+
def update_output(prompt, temperature, max_new_tokens, top_p, repetition_penalty):
|
| 56 |
+
return generate_text(prompt, temperature, max_new_tokens, top_p, repetition_penalty)
|
| 57 |
+
|
| 58 |
+
with gr.Blocks() as demo:
|
| 59 |
+
gr.Markdown("# 🙋🏻♂️ Welcome to Tonic's 📲🦎Salamandra-2b-instruct Demo")
|
| 60 |
+
|
| 61 |
+
with gr.Row():
|
| 62 |
+
with gr.Column(scale=1):
|
| 63 |
+
gr.Markdown(description)
|
| 64 |
+
with gr.Column(scale=1):
|
| 65 |
+
gr.Markdown(join_us)
|
| 66 |
+
|
| 67 |
+
with gr.Row():
|
| 68 |
+
with gr.Column(scale=1):
|
| 69 |
+
prompt = gr.Textbox(lines=5, label="🙋♂️ Input Prompt")
|
| 70 |
+
generate_button = gr.Button("Try 📲🦎Salamandra-2b-instruct")
|
| 71 |
+
|
| 72 |
+
with gr.Accordion("🧪 Parameters", open=False):
|
| 73 |
+
temperature = gr.Slider(0.0, 1.0, value=0.7, label="🌡️ Temperature")
|
| 74 |
+
max_new_tokens = gr.Slider(1, 1000, value=200, step=1, label="🔢 Max New Tokens")
|
| 75 |
+
top_p = gr.Slider(0.0, 1.0, value=0.95, label="⚛️ Top P")
|
| 76 |
+
repetition_penalty = gr.Slider(1.0, 2.0, value=1.2, label="🔁 Repetition Penalty")
|
| 77 |
+
|
| 78 |
+
with gr.Column(scale=1):
|
| 79 |
+
output = gr.Textbox(lines=10, label="📲🦎Salamandra")
|
| 80 |
+
|
| 81 |
+
generate_button.click(
|
| 82 |
+
update_output,
|
| 83 |
+
inputs=[prompt, temperature, max_new_tokens, top_p, repetition_penalty],
|
| 84 |
+
outputs=output
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
gr.Examples(
|
| 88 |
+
examples=[
|
| 89 |
+
["What are the main advantages of living in a big city like Barcelona?"],
|
| 90 |
+
["Explain the process of photosynthesis in simple terms."],
|
| 91 |
+
["What are some effective strategies for learning a new language?"],
|
| 92 |
+
["Describe the potential impacts of artificial intelligence on the job market in the next decade."],
|
| 93 |
+
["What are the key differences between renewable and non-renewable energy sources?"]
|
| 94 |
+
],
|
| 95 |
+
inputs=prompt,
|
| 96 |
+
outputs=prompt,
|
| 97 |
+
label="Example Prompts"
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
if __name__ == "__main__":
|
| 101 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
transformers
|
| 2 |
+
torch
|
| 3 |
+
accelerate
|
| 4 |
+
sentencepiece
|
| 5 |
+
protobuf
|