Spaces:
Running
Running
Commit
·
512cb02
1
Parent(s):
5e49ae7
add readme
Browse files
README.md
ADDED
|
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Finetune Voxtral for ASR with Transformers 🤗
|
| 2 |
+
|
| 3 |
+
This repository fine-tunes the [Voxtral](https://huggingface.co/Deep-unlearning/Voxtral) speech model on conversational speech datasets using the Hugging Face `transformers` and `datasets` libraries.
|
| 4 |
+
|
| 5 |
+
## Installation
|
| 6 |
+
|
| 7 |
+
### Step 1: Clone the repository
|
| 8 |
+
|
| 9 |
+
```bash
|
| 10 |
+
git clone https://github.com/Deep-unlearning/Finetune-Voxtral-ASR.git
|
| 11 |
+
cd Finetune-Voxtral-ASR
|
| 12 |
+
```
|
| 13 |
+
|
| 14 |
+
### Step 2: Set up environment
|
| 15 |
+
|
| 16 |
+
Choose your preferred package manager:
|
| 17 |
+
|
| 18 |
+
<details>
|
| 19 |
+
<summary>📦 Using UV (recommended)</summary>
|
| 20 |
+
|
| 21 |
+
[Install `uv`](https://docs.astral.sh/uv/getting-started/installation/)
|
| 22 |
+
|
| 23 |
+
```bash
|
| 24 |
+
uv venv .venv --python 3.10 && source .venv/bin/activate
|
| 25 |
+
uv pip install -r requirements.txt
|
| 26 |
+
```
|
| 27 |
+
|
| 28 |
+
</details>
|
| 29 |
+
|
| 30 |
+
<details>
|
| 31 |
+
<summary>🐍 Using pip</summary>
|
| 32 |
+
|
| 33 |
+
```bash
|
| 34 |
+
python -m venv .venv --python 3.10 && source .venv/bin/activate
|
| 35 |
+
pip install --upgrade pip
|
| 36 |
+
pip install -r requirements.txt
|
| 37 |
+
```
|
| 38 |
+
|
| 39 |
+
</details>
|
| 40 |
+
|
| 41 |
+
## Dataset Preparation
|
| 42 |
+
|
| 43 |
+
Perfect — here’s a **drop-in replacement** for your README’s “Dataset Preparation” that matches your script (uses **`hf-audio/esb-datasets-test-only-sorted`** with the **`voxpopuli`** config, 16 kHz casting, and a small train/eval slice), and explains the Voxtral/LLaMA-style prompt+label masking your collator implements.
|
| 44 |
+
|
| 45 |
+
---
|
| 46 |
+
|
| 47 |
+
## Dataset Preparation
|
| 48 |
+
|
| 49 |
+
For ASR fine-tuning, inputs look like:
|
| 50 |
+
|
| 51 |
+
* **Inputs**: `[AUDIO] … [AUDIO] <transcribe> <reference transcription>`
|
| 52 |
+
* **Labels**: same sequence, but the prefix `[AUDIO] … [AUDIO] <transcribe>` is **masked with `-100`** so loss is computed **only** on the transcription tokens.
|
| 53 |
+
|
| 54 |
+
The `VoxtralDataCollator` already builds this sequence (prompt expansion via the processor and label masking).
|
| 55 |
+
The dataset only needs two fields:
|
| 56 |
+
|
| 57 |
+
```python
|
| 58 |
+
{
|
| 59 |
+
"audio": {"array": <float32 numpy array>, "sampling_rate": 16000, ...},
|
| 60 |
+
"text": "<reference transcription>"
|
| 61 |
+
}
|
| 62 |
+
```
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
If you want to swap to a different dataset, ensure after loading you still have:
|
| 66 |
+
|
| 67 |
+
* an **`audio`** column (cast to `Audio(sampling_rate=16000)`), and
|
| 68 |
+
* a **`text`** column (the reference transcription).
|
| 69 |
+
|
| 70 |
+
If your dataset uses different column names, map them to `audio` and `text` before returning.
|
| 71 |
+
|
| 72 |
+
## Training
|
| 73 |
+
|
| 74 |
+
Run the training script:
|
| 75 |
+
|
| 76 |
+
```bash
|
| 77 |
+
uv run train.py
|
| 78 |
+
```
|
| 79 |
+
|
| 80 |
+
Logs and checkpoints will be saved under the `outputs/` directory by default.
|
| 81 |
+
|
| 82 |
+
## Training with LoRA
|
| 83 |
+
|
| 84 |
+
You can also run the training script with LoRA:
|
| 85 |
+
|
| 86 |
+
```bash
|
| 87 |
+
uv run train_lora.py
|
| 88 |
+
```
|
| 89 |
+
|
| 90 |
+
**Happy fine-tuning Voxtral!** 🚀
|