Tshering12 commited on
Commit
a233a7d
·
verified ·
1 Parent(s): bab754a

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +23 -0
app.py ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import pipeline
3
+ from PIL import Image
4
+
5
+ # Load the pipeline for age classification
6
+ pipe = pipeline("image-classification", model="prithivMLmods/Age-Classification-SigLIP2")
7
+
8
+ # Define the prediction function
9
+ def predict(input_img):
10
+ # Get the predictions
11
+ predictions = pipe(input_img)
12
+ # Format the predictions into a human-readable string
13
+ result_str = "\n".join([f"{p['label']}: {p['score']:.4f}" for p in predictions])
14
+ return result_str
15
+
16
+ # Create a Gradio interface
17
+ iface = gr.Interface(fn=predict,
18
+ inputs=gr.Image(type="pil"), # Define input type as an image
19
+ outputs=gr.Textbox(label="Class Confidence Scores", interactive=False), # Output as plain text
20
+ ) # Set live=True to update results as soon as the image is uploaded
21
+
22
+ # Launch the Gradio app
23
+ iface.launch()