Spaces:
Runtime error
Runtime error
File size: 1,297 Bytes
2afafb4 feee91b b9aeae5 2afafb4 feee91b 2afafb4 feee91b 2afafb4 feee91b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftConfig, PeftModel
import torch
from transformers import BitsAndBytesConfig
# models
base_model_name = "mistralai/Mistral-7B-Instruct-v0.2"
adapter_model_name = "TymofiiNas/results"
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=False,
)
model = AutoModelForCausalLM.from_pretrained(
base_model_name, quantization_config=bnb_config, device_map={"": 0}
)
model = PeftModel.from_pretrained(model, adapter_model_name)
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
def generate_response(text):
text = "<s> [INST]" + text + "[/INST]"
encoded_input = tokenizer(text, return_tensors="pt", add_special_tokens=False)
model_inputs = encoded_input.to("cuda")
generated_ids = model.generate(
**model_inputs,
max_new_tokens=400,
do_sample=True,
pad_token_id=tokenizer.eos_token_id,
)
decoded_output = tokenizer.batch_decode(generated_ids)
return decoded_output[0][len(text) :]
demo = gr.Interface(
fn=generate_response,
inputs="text",
outputs="text",
)
gr.TabbedInterface([demo]).queue().launch()
|