File size: 10,763 Bytes
6fc683c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
/**
 * Copyright 2017-present, Facebook, Inc.
 * All rights reserved.
 *
 * This source code is licensed under the license found in the
 * LICENSE file in the root directory of this source tree.
 */

#include <ATen/ATen.h>
#include <ATen/cuda/CUDAContext.h> // @manual=//caffe2/aten:ATen-cu
#include <cuda_runtime.h>
#include <algorithm> // std::min/max
#include <cub/cub.cuh>

#include "alignment_train_cuda.h"
#include "utils.h"

namespace {

// The thread block length in threads along the X dimension
constexpr int BLOCK_DIM_X = 128;
// The thread block length in threads along the Y dimension
constexpr int BLOCK_DIM_Y = 8;
// The thread block length in threads for scan operation
constexpr int SCAN_BLOCK = 512;

#define gpuErrchk(ans) \
  { gpuAssert((ans), __FILE__, __LINE__); }

inline void
gpuAssert(cudaError_t code, const char* file, int line, bool abort = true) {
  if (code != cudaSuccess) {
    fprintf(
        stderr,
        "\nGPUassert: %s %s %d\n",
        cudaGetErrorString(code),
        file,
        line);
    if (abort)
      exit(code);
  }
}

template <typename T>
struct Prod {
  /// prod operator, returns <tt>a * b</tt>
  __host__ __device__ __forceinline__ T
  operator()(const T& a, const T& b) const {
    return a * b;
  }
};

template <typename T>
struct BlockPrefixProdCallbackOp {
  // Running prefix
  T running_total;

  // Constructor
  __device__ BlockPrefixProdCallbackOp(T running_total)
      : running_total(running_total) {}

  // Callback operator to be entered by the first warp of threads in the block.
  // Thread-0 is responsible for returning a value for seeding the block-wide
  // scan.
  __device__ T operator()(const T block_aggregate) {
    T old_prefix = running_total;
    running_total *= block_aggregate;
    return old_prefix;
  }
};

template <typename T>
struct BlockPrefixSumCallbackOp {
  // Running prefix
  T running_total;

  // Constructor
  __device__ BlockPrefixSumCallbackOp(T running_total)
      : running_total(running_total) {}

  // Callback operator to be entered by the first warp of threads in the block.
  // Thread-0 is responsible for returning a value for seeding the block-wide
  // scan.
  __device__ T operator()(const T block_aggregate) {
    T old_prefix = running_total;
    running_total += block_aggregate;
    return old_prefix;
  }
};

template <typename T>
__global__ void oneMinusPKernel(
    const T* __restrict__ p_choose,
    T* __restrict__ cumprod_1mp,
    uint32_t bsz,
    uint32_t tgt_len,
    uint32_t src_len) {
  for (uint32_t b = blockIdx.x; b < bsz; b += gridDim.x) {
    for (uint32_t tgt = threadIdx.y; tgt < tgt_len; tgt += blockDim.y) {
      for (uint32_t src = threadIdx.x; src < src_len; src += blockDim.x) {
        uint32_t idx = b * tgt_len * src_len + tgt * src_len + src;
        cumprod_1mp[idx] = 1 - p_choose[idx];
      }
    }
  }
}

template <typename T, int TPB>
__global__ void innermostScanKernel(
    T* __restrict__ cumprod_1mp,
    uint32_t bsz,
    uint32_t tgt_len,
    uint32_t src_len) {
  for (uint32_t b = blockIdx.y; b < bsz; b += gridDim.y) {
    for (uint32_t tgt = blockIdx.x; tgt < tgt_len; tgt += gridDim.x) {
      // Specialize BlockScan for a 1D block of TPB threads on type T
      typedef cub::BlockScan<T, TPB> BlockScan;
      // Allocate shared memory for BlockScan
      __shared__ typename BlockScan::TempStorage temp_storage;
      // Initialize running total
      BlockPrefixProdCallbackOp<T> prefix_op(1);

      const uint32_t tid = threadIdx.x;
      for (uint32_t block_src = 0; block_src < src_len;
           block_src += blockDim.x) {
        uint32_t src = block_src + tid;
        uint32_t idx = b * tgt_len * src_len + tgt * src_len + src;
        T thread_data = (src < src_len) ? cumprod_1mp[idx] : (T)0;

        // Collectively compute the block-wide inclusive prefix sum
        BlockScan(temp_storage)
            .ExclusiveScan(thread_data, thread_data, Prod<T>(), prefix_op);
        __syncthreads();

        // write the scanned value to output
        if (src < src_len) {
          cumprod_1mp[idx] = thread_data;
        }
      }
    }
  }
}

template <typename T>
__global__ void clampKernel(
    const T* __restrict__ cumprod_1mp,
    T* __restrict__ cumprod_1mp_clamp,
    uint32_t bsz,
    uint32_t tgt_len,
    uint32_t src_len,
    T min_val,
    T max_val) {
  for (uint32_t b = blockIdx.x; b < bsz; b += gridDim.x) {
    for (uint32_t tgt = threadIdx.y; tgt < tgt_len; tgt += blockDim.y) {
      for (uint32_t src = threadIdx.x; src < src_len; src += blockDim.x) {
        uint32_t idx = b * tgt_len * src_len + tgt * src_len + src;
        if (cumprod_1mp[idx] < min_val) {
          cumprod_1mp_clamp[idx] = min_val;
        } else if (cumprod_1mp[idx] > max_val) {
          cumprod_1mp_clamp[idx] = max_val;
        } else {
          cumprod_1mp_clamp[idx] = cumprod_1mp[idx];
        }
      }
    }
  }
}

template <typename T>
__global__ void initAlphaCUDAKernel(
    T* alpha,
    uint32_t bsz,
    uint32_t tgt_len,
    uint32_t src_len) {
  // alpha[:, 0, 0] = 1.0
  for (uint32_t b = blockIdx.x; b < bsz; b += gridDim.x) {
    alpha[b * tgt_len * src_len] = (T)1.0;
  }
}

template <typename T, int TPB>
__global__ void alignmentTrainCUDAKernel(
    const T* __restrict__ p_choose,
    const T* __restrict__ cumprod_1mp,
    const T* __restrict__ cumprod_1mp_clamp,
    T* __restrict__ alpha,
    uint32_t bsz,
    uint32_t tgt_len,
    uint32_t src_len,
    uint32_t tgt) {
  for (uint32_t b = blockIdx.x; b < bsz; b += gridDim.x) {
    // Specialize BlockScan for a 1D block of TPB threads on type T
    typedef cub::BlockScan<T, TPB> BlockScan;

    // Allocate shared memory for BlockScan
    __shared__ typename BlockScan::TempStorage temp_storage;
    // Initialize running total
    BlockPrefixSumCallbackOp<T> prefix_op(0);

    uint32_t b_offset = b * tgt_len * src_len;
    const uint32_t tid = threadIdx.x;
    for (uint32_t block_src = 0; block_src < src_len; block_src += blockDim.x) {
      uint32_t src = block_src + tid;
      // Obtain a segment of consecutive items that are blocked across threads
      uint32_t inout_idx, alpha_idx;
      if (tgt == 0) {
        // both alpha and other input index is [b][0][src]
        alpha_idx = b_offset + src;
      } else {
        // alpha index is [b][tgt-1][src]
        alpha_idx = b_offset + (tgt - 1) * src_len + src;
      }
      inout_idx = b_offset + tgt * src_len + src;
      T thread_data = (T)0;
      if (src < src_len) {
        thread_data = alpha[alpha_idx] / cumprod_1mp_clamp[inout_idx];
      }

      // Collectively compute the block-wide inclusive prefix sum
      BlockScan(temp_storage).InclusiveSum(thread_data, thread_data, prefix_op);
      __syncthreads();

      if (src < src_len) {
        T out = thread_data * p_choose[inout_idx] * cumprod_1mp[inout_idx];
        // Clamps all elements into the range [ 0, 1.0 ]
        alpha[inout_idx] = std::min<T>(std::max<T>(out, 0), (T)1.0);
      }
    }
  }
}

template <typename T>
void exclusiveCumprod(
    const T* p_choose,
    T* cumprod_1mp,
    uint32_t bsz,
    uint32_t tgt_len,
    uint32_t src_len,
    uint32_t max_grid_x,
    uint32_t max_grid_y,
    cudaStream_t& stream) {
  // cumprod_1mp = 1 - p_choose
  dim3 grid(std::min<T>(max_grid_x, bsz), 1, 1);
  dim3 block(BLOCK_DIM_X, BLOCK_DIM_Y, 1);
  oneMinusPKernel<T><<<grid, block, 0, stream>>>(
      p_choose, cumprod_1mp, bsz, tgt_len, src_len);
  gpuErrchk(cudaGetLastError());

  // scan on the innermost dimension of cumprod_1mp
  // cumprod_1mp = cumprod(cumprod_1mp)
  dim3 grid_scan(
      std::min<T>(max_grid_x, tgt_len), std::min<T>(max_grid_y, bsz), 1);
  innermostScanKernel<T, SCAN_BLOCK><<<grid_scan, SCAN_BLOCK, 0, stream>>>(
      cumprod_1mp, bsz, tgt_len, src_len);
  gpuErrchk(cudaGetLastError());
}

template <typename T>
void alignmentTrainCUDAImpl(
    const T* p_choose,
    T* alpha,
    uint32_t bsz,
    uint32_t tgt_len,
    uint32_t src_len,
    float eps) {
  // p_choose: bsz , tgt_len, src_len
  // cumprod_1mp: bsz , tgt_len, src_len
  // cumprod_1mp_clamp : bsz, tgt_len, src_len
  // alpha: bsz, tgt_len, src_len
  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
  uint32_t max_grid_x = at::cuda::getCurrentDeviceProperties()->maxGridSize[0];
  uint32_t max_grid_y = at::cuda::getCurrentDeviceProperties()->maxGridSize[1];

  // Implementing exclusive cumprod.
  // cumprod_1mp = cumprod(1 - p_choose)
  // There is cumprod in pytorch, however there is no exclusive mode.
  // cumprod(x) = [x1, x1x2, x2x3x4, ..., prod_{i=1}^n x_i]
  // exclusive means
  // cumprod(x) = [1, x1, x1x2, x1x2x3, ..., prod_{i=1}^{n-1} x_i]
  uint32_t elements = bsz * tgt_len * src_len;
  T* cumprod_1mp;
  gpuErrchk(cudaMalloc(&cumprod_1mp, elements * sizeof(T)));
  exclusiveCumprod<T>(
      p_choose,
      cumprod_1mp,
      bsz,
      tgt_len,
      src_len,
      max_grid_x,
      max_grid_y,
      stream);

  // clamp cumprod_1mp to the range [eps, 1.0]
  T* cumprod_1mp_clamp;
  gpuErrchk(cudaMalloc(&cumprod_1mp_clamp, elements * sizeof(T)));
  dim3 grid_clamp(std::min<T>(max_grid_x, bsz), 1, 1);
  dim3 block_clamp(BLOCK_DIM_X, BLOCK_DIM_Y, 1);
  clampKernel<T><<<grid_clamp, block_clamp, 0, stream>>>(
      cumprod_1mp, cumprod_1mp_clamp, bsz, tgt_len, src_len, (T)eps, (T)1.0);
  gpuErrchk(cudaGetLastError());

  // ai = p_i * cumprod(1 − pi) * cumsum(a_i / cumprod(1 − pi))
  dim3 grid_init(std::min<int>(max_grid_x, bsz), 1, 1);
  initAlphaCUDAKernel<T>
      <<<grid_init, 1, 0, stream>>>(alpha, bsz, tgt_len, src_len);
  gpuErrchk(cudaGetLastError());

  const int grid = std::min(bsz, max_grid_x);

  for (uint32_t i = 0; i < tgt_len; i++) {
    alignmentTrainCUDAKernel<T, SCAN_BLOCK><<<grid, SCAN_BLOCK, 0, stream>>>(
        p_choose,
        cumprod_1mp,
        cumprod_1mp_clamp,
        alpha,
        bsz,
        tgt_len,
        src_len,
        i);
    gpuErrchk(cudaGetLastError());
  }

  gpuErrchk(cudaFree(cumprod_1mp));
  gpuErrchk(cudaFree(cumprod_1mp_clamp));
}

} // namespace

void alignmentTrainCUDAWrapper(
    const torch::Tensor& p_choose,
    torch::Tensor& alpha,
    float eps) {
  // p_choose dimension: bsz, tgt_len, src_len
  uint32_t bsz = p_choose.size(0);
  uint32_t tgt_len = p_choose.size(1);
  uint32_t src_len = p_choose.size(2);

  cudaSetDevice(p_choose.get_device());

  AT_DISPATCH_FLOATING_TYPES_AND2(
      torch::ScalarType::Half,
      torch::ScalarType::BFloat16,
      p_choose.scalar_type(),
      "alignmentTrainCUDAImpl",
      [&]() {
        alignmentTrainCUDAImpl<scalar_t>(
            p_choose.data_ptr<scalar_t>(),
            alpha.data_ptr<scalar_t>(),
            bsz,
            tgt_len,
            src_len,
            eps);
      });
}