File size: 9,428 Bytes
6fc683c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import os

import torch
from PIL import Image
from accelerate import Accelerator
from omegaconf import OmegaConf
from torch.nn.utils.rnn import pad_sequence
from torchmetrics.multimodal.clip_score import CLIPScore as CLIP_TScore
from tqdm import tqdm

from app_model import AppModel
from app_utils import randomize_seed_fn
from eval.clip_score import CLIPIScore as CLIP_IScore
from eval.clip_score import CLIPTScore as CLIP_TScore
from eval.dino_score import DINOScore as DINO_Score
from eval.dreambench_prompts import *
from fairseq import options
from fairseq.dataclass.utils import convert_namespace_to_omegaconf


class Image_Dataset(torch.utils.data.Dataset):
    def __init__(self, args, files):
        self.args = args
        self.files = files

    def __len__(self):
        return len(self.files)

    def __getitem__(self, index):
        image_path = self.files[index]
        object_name, object_id, image_id, prompt = image_path.split('/')[-1].split('.')[0].split('+')
        image = Image.open(image_path).convert('RGB')
        real_image = Image.open(os.path.join(self.args.data_dir, object_name, object_id + '.jpg')).convert('RGB')

        return image, real_image, prompt


def image_collate_fn(batch):
    image = [x[0] for x in batch]
    real_image = [x[1] for x in batch]
    prompt = [x[2] for x in batch]
    return image, real_image, prompt


class DreamBench_Dataset(torch.utils.data.Dataset):
    def __init__(self, args, preprocess_fn):
        self.args = args
        self.preprocess_fn = preprocess_fn
        # Traverse all images in the dataset
        self.image_paths = []
        for root, dirs, files in os.walk(args.data_dir):
            for file in files:
                if file.endswith(".jpg"):
                    self.image_paths.append(os.path.join(root, file))

    def __len__(self):
        return len(self.image_paths) * 25

    def __getitem__(self, index):
        image_path = self.image_paths[index // 25]
        real_image = Image.open(image_path).convert('RGB')
        object_id = image_path.split('/')[-1].split('.')[0]
        object_name = image_path.split('/')[-2]
        if object_name in OBJECT:
            object_class = OBJECT[object_name]
            prompt = OBJECT_PROMPTS[index % 25]
            input_prompt = KOSMOSG_OBJECT_PROMPTS[index % 25]
        else:
            object_class = LIVE_OBJECT[object_name]
            prompt = LIVE_OBJECT_PROMPTS[index % 25]
            input_prompt = KOSMOSG_LIVE_OBJECT_PROMPTS[index % 25]

        prompt = prompt.format(object_class)
        input_prompt = input_prompt.format('<i>' if self.args.drop_object else (object_class + ' <i>'))

        src_tokens, gpt_img_src_tokens, img_gpt_input_mask, negative_tokens = \
            self.preprocess_fn(input_prompt,
                               "" if self.args.negative_prompt else "",
                               real_image, single_batch=False)

        return src_tokens, gpt_img_src_tokens, img_gpt_input_mask, negative_tokens, object_name, object_id, \
            real_image, prompt


def dreambench_collate_fn(batch):
    src_tokens = [x[0] for x in batch]
    gpt_img_src_tokens = torch.cat([x[1] for x in batch])
    img_gpt_input_mask = [x[2] for x in batch]
    negative_tokens = batch[0][3].unsqueeze(0)
    src_tokens = pad_sequence(src_tokens, batch_first=True, padding_value=1)
    img_gpt_input_mask = pad_sequence(img_gpt_input_mask, batch_first=True, padding_value=0)
    object_name = [x[4] for x in batch]
    object_id = [x[5] for x in batch]
    real_image = [x[6] for x in batch]
    prompt = [x[7] for x in batch]
    return src_tokens, gpt_img_src_tokens, img_gpt_input_mask, negative_tokens, object_name, object_id, real_image, prompt


def main(cfg):
    cfg.model.pretrained_ckpt_path = "/path/to/checkpoint_final.pt"
    args = OmegaConf.create()
    args.data_dir = "/path/to/dreambench/dreambooth/dataset"
    args.batch_size = 5
    args.num_workers = 4
    args.scheduler = "dpms"  # ['ddim', 'pndm', 'dpms']
    args.num_inference_steps = 100
    args.guidance_scale = 7.5
    args.num_images_per_prompt = 4
    args.seed = 0
    args.negative_prompt = False
    args.drop_object = True
    args.output_dir = "/path/to/output-dir/" + cfg.model.pretrained_ckpt_path.split('/')[-2] + '_' \
                      + cfg.model.pretrained_ckpt_path.split('/')[-1].split('.')[0].split('_')[-1] + '_' \
                      + args.scheduler + '_' + str(args.num_inference_steps) + '_' + str(args.guidance_scale) \
                      + '_' + str(args.negative_prompt) + '_' + str(args.drop_object)

    accelerator = Accelerator()
    if accelerator.is_main_process and not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    dino_score = DINO_Score(model_name_or_path='dino_vits16')
    clip_i_score = CLIP_IScore(model_name_or_path='openai/clip-vit-base-patch32')
    clip_t_score = CLIP_TScore(model_name_or_path='openai/clip-vit-base-patch32')

    dino_score = accelerator.prepare_model(dino_score, evaluation_mode=True)
    clip_i_score = accelerator.prepare_model(clip_i_score, evaluation_mode=True)
    clip_t_score = accelerator.prepare_model(clip_t_score, evaluation_mode=True)

    # stat existing images in output_dir
    image_paths = list()
    for root, dirs, files in os.walk(args.output_dir):
        for file in files:
            if file.endswith(".png"):
                image_paths.append(os.path.join(root, file))
    if len(image_paths) >= 3000:
        accelerator.print("Already generated enough images")
        dataset = Image_Dataset(args, image_paths)
        dataloader = torch.utils.data.DataLoader(dataset, batch_size=16, num_workers=args.num_workers,
                                                 shuffle=False, pin_memory=True, drop_last=False,
                                                 persistent_workers=True, collate_fn=image_collate_fn)
        dataloader = accelerator.prepare(dataloader)
        accelerator.print("Number of Images: ", len(dataset))

        for batch in tqdm(dataloader):
            images, real_images, prompts = batch
            dino_score.update(images, real_images)
            clip_i_score.update(images, real_images)
            clip_t_score.update(images, prompts)
        accelerator.print("Computing Scores...")
        accelerator.print("DINO Score: ", dino_score.compute())
        accelerator.print("CLIP Image Score: ", clip_i_score.compute())
        accelerator.print("CLIP Text Score: ", clip_t_score.compute())
        return
    else:
        # clear all existing images
        if accelerator.is_main_process:
            for root, dirs, files in os.walk(args.output_dir):
                for file in files:
                    if file.endswith(".png"):
                        os.remove(os.path.join(root, file))

    model = AppModel(cfg)
    model.set_ckpt_scheduler_fn(cfg.model.pretrained_ckpt_path, args.scheduler)

    dataset = DreamBench_Dataset(args, model.kosmosg_preprocess)
    dataloader = torch.utils.data.DataLoader(dataset, batch_size=args.batch_size,
                                             num_workers=args.num_workers, shuffle=False, pin_memory=True,
                                             drop_last=False, persistent_workers=True,
                                             collate_fn=dreambench_collate_fn)
    accelerator.print("Number of Images: ", len(dataset))

    model, dataloader = accelerator.prepare(model, dataloader)

    kwargs = {
        'num_inference_steps': args.num_inference_steps,
        'text_guidance_scale': args.guidance_scale,
        'num_images_per_prompt': args.num_images_per_prompt,
        'lora_scale': 0.0,
    }

    for batch_id, batch in tqdm(enumerate(dataloader), total=len(dataloader)):
        src_tokens, gpt_img_src_tokens, img_gpt_input_mask, negative_tokens, object_name, object_id, real_image, prompt = batch

        # generate images
        randomize_seed_fn(args.seed, False)
        images = model.model.sample(src_tokens, gpt_img_src_tokens, img_gpt_input_mask, negative_tokens, **kwargs)

        # save image
        for image_id, image in enumerate(images):
            pos = batch_id * accelerator.num_processes * args.batch_size * args.num_images_per_prompt + \
                  image_id * accelerator.num_processes + accelerator.process_index
            name = '+'.join([
                object_name[image_id % args.batch_size],
                object_id[image_id % args.batch_size],
                str(pos),
                prompt[image_id % args.batch_size]
            ])
            images[image_id].save(os.path.join(args.output_dir, "{}.png".format(name)))

        real_image = real_image * args.num_images_per_prompt
        dino_score.update(images, real_image)
        clip_i_score.update(images, real_image)
        clip_t_score.update(images, prompt * args.num_images_per_prompt)

    accelerator.print("Number of Samples: ", (dino_score.n_samples * accelerator.num_processes).item())
    accelerator.print("DINO Score: ", (dino_score.compute()).item())
    accelerator.print("CLIP Image Score: ", (clip_i_score.compute()).item())
    accelerator.print("CLIP Text Score: ", (clip_t_score.compute()).item())


if __name__ == "__main__":
    parser = options.get_training_parser()
    cfg = options.parse_args_and_arch(parser, modify_parser=None)
    cfg = convert_namespace_to_omegaconf(cfg)
    main(cfg)