|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" Finetuning the library models for sequence classification on GLUE (Bert, XLM, XLNet, RoBERTa).""" |
|
|
|
from __future__ import absolute_import, division, print_function |
|
|
|
import argparse |
|
import glob |
|
import logging |
|
import os |
|
import random |
|
import json |
|
|
|
import numpy as np |
|
import torch |
|
from sklearn.metrics import matthews_corrcoef, f1_score |
|
from sklearn.metrics import cohen_kappa_score, precision_score, recall_score, precision_recall_fscore_support |
|
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler, |
|
TensorDataset) |
|
from torch.utils.data.distributed import DistributedSampler |
|
from torch.nn import CrossEntropyLoss |
|
|
|
try: |
|
from torch.utils.tensorboard import SummaryWriter |
|
except: |
|
from tensorboardX import SummaryWriter |
|
|
|
from tqdm import tqdm, trange |
|
|
|
from transformers import ( |
|
WEIGHTS_NAME, |
|
AdamW, |
|
BertConfig, |
|
BertForTokenClassification, |
|
BertTokenizer, |
|
DistilBertConfig, |
|
DistilBertForTokenClassification, |
|
DistilBertTokenizer, |
|
RobertaConfig, |
|
RobertaForTokenClassification, |
|
RobertaTokenizer, |
|
XLMRobertaConfig, |
|
XLMRobertaForTokenClassification, |
|
XLMRobertaTokenizer |
|
) |
|
|
|
from transformers import AdamW, get_linear_schedule_with_warmup |
|
|
|
from utils_ner import convert_examples_to_features, get_labels, read_examples_from_file |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
ALL_MODELS = sum( |
|
( |
|
tuple(conf.pretrained_config_archive_map.keys()) |
|
for conf in (BertConfig, RobertaConfig, DistilBertConfig, XLMRobertaConfig) |
|
), |
|
(), |
|
) |
|
|
|
|
|
MODEL_CLASSES = { |
|
"bert": (BertConfig, BertForTokenClassification, BertTokenizer), |
|
"roberta": (RobertaConfig, RobertaForTokenClassification, RobertaTokenizer), |
|
"distilbert": (DistilBertConfig, DistilBertForTokenClassification, DistilBertTokenizer), |
|
"xlmroberta": (XLMRobertaConfig, XLMRobertaForTokenClassification, XLMRobertaTokenizer), |
|
} |
|
|
|
TOKENIZER_ARGS = ["do_lower_case", "strip_accents", "keep_accents", "use_fast"] |
|
|
|
def set_seed(args): |
|
random.seed(args.seed) |
|
np.random.seed(args.seed) |
|
torch.manual_seed(args.seed) |
|
if args.n_gpu > 0: |
|
torch.cuda.manual_seed_all(args.seed) |
|
|
|
def get_f1(prec, rec): |
|
return 2*prec*rec/(prec+rec) |
|
|
|
def token_f1(true, pred, labels): |
|
|
|
print(true[:30]) |
|
print(pred[:30]) |
|
print(labels) |
|
total_f1 = 0.0 |
|
class_scores = zip(labels, precision_score(true,pred,labels,average=None), recall_score(true,pred,labels,average=None)) |
|
for label, prec, rec in class_scores: |
|
print('Label: %s' %label) |
|
if label != 'O': |
|
total_f1 += get_f1(prec, rec) |
|
print('\tf1 = %f' %get_f1(prec, rec)) |
|
print('\tprecision = %f' %prec) |
|
print('\trecall = %f' %rec) |
|
return total_f1/3 |
|
|
|
def train(args, train_dataset, model, tokenizer, labels, pad_token_label_id): |
|
""" Train the model """ |
|
if args.local_rank in [-1, 0]: |
|
tb_writer = SummaryWriter() |
|
|
|
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu) |
|
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset) |
|
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size) |
|
|
|
if args.max_steps > 0: |
|
t_total = args.max_steps |
|
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1 |
|
else: |
|
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs |
|
|
|
|
|
|
|
if args.warmup_ratio > 0: |
|
args.warmup_steps = int(t_total*args.warmup_ratio) |
|
|
|
|
|
|
|
no_decay = ["bias", "LayerNorm.weight"] |
|
optimizer_grouped_parameters = [ |
|
{ |
|
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], |
|
"weight_decay": args.weight_decay, |
|
}, |
|
{"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0}, |
|
] |
|
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) |
|
scheduler = get_linear_schedule_with_warmup( |
|
optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total |
|
) |
|
|
|
|
|
|
|
if os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt")) and os.path.isfile( |
|
os.path.join(args.model_name_or_path, "scheduler.pt") |
|
): |
|
|
|
optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt"))) |
|
scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt"))) |
|
|
|
if args.fp16: |
|
try: |
|
from apex import amp |
|
except ImportError: |
|
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") |
|
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) |
|
|
|
|
|
if args.n_gpu > 1: |
|
model = torch.nn.DataParallel(model) |
|
|
|
|
|
if args.local_rank != -1: |
|
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], |
|
output_device=args.local_rank, |
|
find_unused_parameters=True) |
|
|
|
|
|
logger.info("***** Running training *****") |
|
logger.info(" Num examples = %d", len(train_dataset)) |
|
logger.info(" Num Epochs = %d", args.num_train_epochs) |
|
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size) |
|
logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d", |
|
args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1)) |
|
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) |
|
logger.info(" Total optimization steps = %d", t_total) |
|
|
|
metric_for_best = args.metric_for_choose_best_checkpoint |
|
best_performance = None |
|
best_epoch = None |
|
global_step = 0 |
|
tr_loss, logging_loss = 0.0, 0.0 |
|
model.zero_grad() |
|
train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]) |
|
set_seed(args) |
|
for _ in train_iterator: |
|
if args.disable_tqdm: |
|
epoch_iterator = train_dataloader |
|
else: |
|
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0]) |
|
for step, batch in enumerate(epoch_iterator): |
|
model.train() |
|
batch = tuple(t.to(args.device) for t in batch) |
|
inputs = {'input_ids': batch[0], |
|
'attention_mask': batch[1], |
|
'labels': batch[3]} |
|
if args.model_type != 'distilbert': |
|
inputs['token_type_ids'] = batch[2] if args.model_type in ['bert', 'xlnet', 'unilm', 'adapterbert'] else None |
|
outputs = model(**inputs) |
|
loss = outputs[0] |
|
|
|
if args.n_gpu > 1: |
|
loss = loss.mean() |
|
if args.gradient_accumulation_steps > 1: |
|
loss = loss / args.gradient_accumulation_steps |
|
|
|
if args.fp16: |
|
with amp.scale_loss(loss, optimizer) as scaled_loss: |
|
scaled_loss.backward() |
|
else: |
|
loss.backward() |
|
|
|
tr_loss += loss.item() |
|
if (step + 1) % args.gradient_accumulation_steps == 0: |
|
if args.max_grad_norm > 0: |
|
if args.fp16: |
|
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm) |
|
else: |
|
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) |
|
|
|
optimizer.step() |
|
scheduler.step() |
|
model.zero_grad() |
|
global_step += 1 |
|
epoch_iterator.set_description('Iter (loss=%5.3f) lr=%9.7f' % (loss.item(), scheduler.get_lr()[0])) |
|
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0: |
|
logs = {} |
|
loss_scalar = (tr_loss - logging_loss) / args.logging_steps |
|
learning_rate_scalar = scheduler.get_lr()[0] |
|
logs['learning_rate'] = learning_rate_scalar |
|
logs['loss'] = loss_scalar |
|
logging_loss = tr_loss |
|
|
|
for key, value in logs.items(): |
|
tb_writer.add_scalar(key, value, global_step) |
|
logger.info(json.dumps({**logs, **{'step': global_step}})) |
|
|
|
if args.max_steps > 0 and global_step > args.max_steps: |
|
if not args.disable_tqdm: |
|
epoch_iterator.close() |
|
break |
|
|
|
if args.local_rank in [-1, 0]: |
|
logs = {} |
|
if args.local_rank == -1 and args.evaluate_during_training: |
|
results = evaluate(args, model, tokenizer, prefix='epoch-{}'.format(_ + 1)) |
|
for key, value in results.items(): |
|
eval_key = 'eval_{}'.format(key) |
|
logs[eval_key] = value |
|
if metric_for_best is None: |
|
metric_for_best = key |
|
if best_epoch is None or best_performance[metric_for_best] < results[metric_for_best]: |
|
best_epoch = 'epoch-{}'.format(_ + 1) |
|
best_performance = results |
|
|
|
loss_scalar = (tr_loss - logging_loss) / args.logging_steps |
|
learning_rate_scalar = scheduler.get_lr()[0] |
|
logs['learning_rate'] = learning_rate_scalar |
|
logs['loss'] = loss_scalar |
|
logging_loss = tr_loss |
|
|
|
for key, value in logs.items(): |
|
tb_writer.add_scalar(key, value, global_step) |
|
print(json.dumps({**logs, **{'step': global_step}})) |
|
|
|
|
|
output_dir = os.path.join(args.output_dir, 'epoch-{}'.format(_ + 1)) |
|
if not os.path.exists(output_dir): |
|
os.makedirs(output_dir) |
|
model_to_save = model.module if hasattr(model, 'module') else model |
|
model_to_save.save_pretrained(output_dir) |
|
torch.save(args, os.path.join(output_dir, 'training_args.bin')) |
|
logger.info("Saving model checkpoint to %s", output_dir) |
|
|
|
if args.max_steps > 0 and global_step > args.max_steps: |
|
train_iterator.close() |
|
break |
|
|
|
if args.local_rank in [-1, 0]: |
|
tb_writer.close() |
|
|
|
if best_epoch is not None: |
|
logger.info(" ***************** Best checkpoint: {}, choosed by {} *****************".format( |
|
best_epoch, metric_for_best)) |
|
logger.info("Best performance = %s" % json.dumps(best_performance)) |
|
save_best_result(best_epoch, best_performance, args.output_dir) |
|
|
|
return global_step, tr_loss / global_step |
|
|
|
|
|
def save_best_result(best_epoch, best_performance, output_dir): |
|
best_performance["checkpoint"] = best_epoch |
|
with open(os.path.join(output_dir, "best_performance.json"), mode="w") as writer: |
|
writer.write(json.dumps(best_performance, indent=2)) |
|
|
|
|
|
def evaluate(args, model, tokenizer, labels, pad_token_label_id, mode, prefix=""): |
|
eval_dataset = load_and_cache_examples(args, tokenizer, labels, pad_token_label_id, mode=mode) |
|
|
|
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) |
|
|
|
eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset) |
|
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size) |
|
|
|
|
|
if args.n_gpu > 1: |
|
model = torch.nn.DataParallel(model) |
|
|
|
|
|
logger.info("***** Running evaluation %s *****", prefix) |
|
logger.info(" Num examples = %d", len(eval_dataset)) |
|
logger.info(" Batch size = %d", args.eval_batch_size) |
|
eval_loss = 0.0 |
|
nb_eval_steps = 0 |
|
preds = None |
|
out_label_ids = None |
|
model.eval() |
|
for batch in tqdm(eval_dataloader, desc="Evaluating"): |
|
batch = tuple(t.to(args.device) for t in batch) |
|
|
|
with torch.no_grad(): |
|
inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} |
|
if args.model_type != "distilbert": |
|
inputs["token_type_ids"] = ( |
|
batch[2] if args.model_type in ["bert", "xlnet", "adapterbert"] else None |
|
) |
|
outputs = model(**inputs) |
|
tmp_eval_loss, logits = outputs[:2] |
|
|
|
if args.n_gpu > 1: |
|
tmp_eval_loss = tmp_eval_loss.mean() |
|
|
|
eval_loss += tmp_eval_loss.item() |
|
nb_eval_steps += 1 |
|
if preds is None: |
|
preds = logits.detach().cpu().numpy() |
|
out_label_ids = inputs["labels"].detach().cpu().numpy() |
|
else: |
|
preds = np.append(preds, logits.detach().cpu().numpy(), axis=0) |
|
out_label_ids = np.append(out_label_ids, inputs["labels"].detach().cpu().numpy(), axis=0) |
|
|
|
eval_loss = eval_loss / nb_eval_steps |
|
preds = np.argmax(preds, axis=2) |
|
|
|
label_map = {i: label for i, label in enumerate(labels)} |
|
|
|
out_label_list = [[] for _ in range(out_label_ids.shape[0])] |
|
preds_list = [[] for _ in range(out_label_ids.shape[0])] |
|
|
|
for i in range(out_label_ids.shape[0]): |
|
for j in range(out_label_ids.shape[1]): |
|
if out_label_ids[i, j] != pad_token_label_id: |
|
out_label_list[i].append(label_map[out_label_ids[i][j]]) |
|
preds_list[i].append(label_map[preds[i][j]]) |
|
out_labels = [i for item in out_label_list for i in item] |
|
preds_labels = [i for item in preds_list for i in item] |
|
results = { |
|
"loss": eval_loss, |
|
"f1": token_f1(true = out_labels,pred = preds_labels, labels = labels), |
|
} |
|
|
|
logger.info("***** Eval results %s *****", prefix) |
|
for key in sorted(results.keys()): |
|
logger.info(" %s = %s", key, str(results[key])) |
|
|
|
output_file = os.path.join(args.output_dir, "eval_out.txt") |
|
with open(output_file, "w+", encoding="utf-8") as f: |
|
for line in tqdm(preds_list): |
|
line = " ".join(line) + "\n" |
|
f.write(line) |
|
|
|
return results, preds_list |
|
|
|
def test(args, model, tokenizer, labels, pad_token_label_id, mode, prefix=""): |
|
test_dataset = load_and_cache_examples(args, tokenizer, labels, pad_token_label_id, mode="test") |
|
|
|
args.test_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) |
|
|
|
test_sampler = SequentialSampler(test_dataset) if args.local_rank == -1 else DistributedSampler(test_dataset) |
|
|
|
test_dataloader = DataLoader(test_dataset, sampler=test_sampler, batch_size=args.test_batch_size) |
|
|
|
if args.n_gpu > 1: |
|
model = torch.nn.DataParallel(model) |
|
|
|
logger.info("***** Running Prediction %s *****", prefix) |
|
logger.info(" Num examples = %d", len(test_dataset)) |
|
logger.info(" Batch size = %d", args.test_batch_size) |
|
eval_loss = 0.0 |
|
nb_eval_steps = 0 |
|
preds = None |
|
out_label_ids = None |
|
model.eval() |
|
for batch in tqdm(test_dataloader, desc="Prediction"): |
|
batch = tuple(t.to(args.device) for t in batch) |
|
|
|
with torch.no_grad(): |
|
inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} |
|
if args.model_type != "distilbert": |
|
inputs["token_type_ids"] = ( |
|
batch[2] if args.model_type in ["bert", "xlnet", "adapterbert"] else None |
|
) |
|
outputs = model(**inputs) |
|
tmp_eval_loss, logits = outputs[:2] |
|
|
|
if args.n_gpu > 1: |
|
tmp_eval_loss = tmp_eval_loss.mean() |
|
|
|
eval_loss += tmp_eval_loss.item() |
|
nb_eval_steps += 1 |
|
if preds is None: |
|
preds = logits.detach().cpu().numpy() |
|
out_label_ids = inputs["labels"].detach().cpu().numpy() |
|
else: |
|
preds = np.append(preds, logits.detach().cpu().numpy(), axis=0) |
|
out_label_ids = np.append(out_label_ids, inputs["labels"].detach().cpu().numpy(), axis=0) |
|
|
|
eval_loss = eval_loss / nb_eval_steps |
|
preds = np.argmax(preds, axis=2) |
|
|
|
label_map = {i: label for i, label in enumerate(labels)} |
|
|
|
out_label_list = [[] for _ in range(out_label_ids.shape[0])] |
|
preds_list = [[] for _ in range(out_label_ids.shape[0])] |
|
|
|
for i in range(out_label_ids.shape[0]): |
|
for j in range(out_label_ids.shape[1]): |
|
if out_label_ids[i, j] != pad_token_label_id: |
|
out_label_list[i].append(label_map[out_label_ids[i][j]]) |
|
preds_list[i].append(label_map[preds[i][j]]) |
|
|
|
out_file = os.path.join(args.output_dir, "predict.txt") |
|
|
|
out_labels = [i for item in out_label_list for i in item] |
|
preds_labels = [i for item in preds_list for i in item] |
|
results = { |
|
"loss": eval_loss, |
|
"f1": token_f1(true = out_labels,pred = preds_labels, labels = labels), |
|
} |
|
print(out_label_list[0]) |
|
print(preds_list[0]) |
|
logger.info("write results into {}".format(out_file)) |
|
output_eval_file = os.path.join(args.output_dir, "predict_results.txt") |
|
with open(output_eval_file, "w") as writer: |
|
logger.info("***** Predict results {} *****".format(prefix)) |
|
writer.write(json.dumps(results, indent=2)) |
|
logger.info("Result = %s" % json.dumps(results, indent=2)) |
|
with open(out_file, "w+", encoding="utf-8") as f: |
|
for line in preds_list: |
|
line = " ".join(line) + "\n" |
|
f.write(line) |
|
|
|
for key in sorted(results.keys()): |
|
logger.info(" %s = %s", key, str(results[key])) |
|
|
|
return results, preds_list |
|
|
|
def load_and_cache_examples(args, tokenizer, labels, pad_token_label_id, mode): |
|
if args.local_rank not in [-1, 0] and not evaluate: |
|
torch.distributed.barrier() |
|
|
|
|
|
cached_features_file = os.path.join( |
|
args.data_dir, |
|
"cached_{}_{}_{}".format( |
|
mode, list(filter(None, args.model_name_or_path.split("/"))).pop(), str(args.max_seq_length) |
|
), |
|
) |
|
if os.path.exists(cached_features_file) and not args.overwrite_cache: |
|
logger.info("Loading features from cached file %s", cached_features_file) |
|
features = torch.load(cached_features_file) |
|
else: |
|
logger.info("Creating features from dataset file at %s", args.data_dir) |
|
examples = read_examples_from_file(args.data_dir, mode) |
|
features = convert_examples_to_features( |
|
examples, |
|
labels, |
|
args.max_seq_length, |
|
tokenizer, |
|
cls_token_at_end=bool(args.model_type in ["xlnet"]), |
|
|
|
cls_token=tokenizer.cls_token, |
|
cls_token_segment_id=2 if args.model_type in ["xlnet"] else 0, |
|
sep_token=tokenizer.sep_token, |
|
sep_token_extra=bool(args.model_type in ["roberta"]), |
|
|
|
pad_on_left=bool(args.model_type in ["xlnet"]), |
|
|
|
pad_token=tokenizer.convert_tokens_to_ids([tokenizer.pad_token])[0], |
|
pad_token_segment_id=4 if args.model_type in ["xlnet"] else 0, |
|
pad_token_label_id=pad_token_label_id, |
|
mode=mode, |
|
) |
|
if args.local_rank in [-1, 0]: |
|
logger.info("Saving features into cached file %s", cached_features_file) |
|
torch.save(features, cached_features_file) |
|
|
|
if args.local_rank == 0 and not evaluate: |
|
torch.distributed.barrier() |
|
|
|
|
|
all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long) |
|
all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long) |
|
all_segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long) |
|
all_label_ids = torch.tensor([f.label_ids for f in features], dtype=torch.long) |
|
|
|
dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids) |
|
return dataset |
|
|
|
|
|
def main(): |
|
parser = argparse.ArgumentParser() |
|
|
|
|
|
parser.add_argument("--data_dir", default=None, type=str, required=True, |
|
help="The input data dir. Should contain the .tsv files (or other data files) for the task.") |
|
parser.add_argument("--model_type", default="unilm", type=str, |
|
help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys())) |
|
parser.add_argument("--model_name_or_path", default=None, type=str, required=True, |
|
help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS)) |
|
parser.add_argument("--output_dir", default=None, type=str, required=True, |
|
help="The output directory where the model predictions and checkpoints will be written.") |
|
parser.add_argument('--disable_tqdm', action='store_true', |
|
help='Disable the tqdm bar. ') |
|
|
|
|
|
parser.add_argument("--labels", default="", type=str, |
|
help="Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.") |
|
parser.add_argument("--config_name", default="", type=str, |
|
help="Pretrained config name or path if not the same as model_name") |
|
parser.add_argument("--tokenizer_name", default="", type=str, |
|
help="Pretrained tokenizer name or path if not the same as model_name") |
|
parser.add_argument("--cache_dir", default="", type=str, |
|
help="Where do you want to store the pre-trained models downloaded from s3") |
|
parser.add_argument("--max_seq_length", default=128, type=int, |
|
help="The maximum total input sequence length after tokenization. Sequences longer " |
|
"than this will be truncated, sequences shorter will be padded.") |
|
parser.add_argument("--do_train", action='store_true', |
|
help="Whether to run training.") |
|
parser.add_argument("--do_eval", action='store_true', |
|
help="Whether to run eval on the dev set.") |
|
parser.add_argument("--do_predict", action="store_true", help="Whether to run predictions on the test set.") |
|
parser.add_argument("--evaluate_during_training", action='store_true', |
|
help="Rul evaluation during training at each logging step.") |
|
parser.add_argument("--do_lower_case", action='store_true', |
|
help="Set this flag if you are using an uncased model.") |
|
parser.add_argument( |
|
"--keep_accents", action="store_const", const=True, help="Set this flag if model is trained with accents." |
|
) |
|
parser.add_argument( |
|
"--strip_accents", action="store_const", const=True, help="Set this flag if model is trained without accents." |
|
) |
|
parser.add_argument("--use_fast", action="store_const", const=True, help="Set this flag to use fast tokenization.") |
|
parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, |
|
help="Batch size per GPU/CPU for training.") |
|
parser.add_argument("--per_gpu_eval_batch_size", default=8, type=int, |
|
help="Batch size per GPU/CPU for evaluation.") |
|
parser.add_argument('--gradient_accumulation_steps', type=int, default=1, |
|
help="Number of updates steps to accumulate before performing a backward/update pass.") |
|
parser.add_argument("--learning_rate", default=5e-5, type=float, |
|
help="The initial learning rate for Adam.") |
|
parser.add_argument("--weight_decay", default=0.0, type=float, |
|
help="Weight decay if we apply some.") |
|
parser.add_argument("--adam_epsilon", default=1e-8, type=float, |
|
help="Epsilon for Adam optimizer.") |
|
parser.add_argument("--max_grad_norm", default=1.0, type=float, |
|
help="Max gradient norm.") |
|
parser.add_argument("--num_train_epochs", default=3.0, type=float, |
|
help="Total number of training epochs to perform.") |
|
parser.add_argument("--max_steps", default=-1, type=int, |
|
help="If > 0: set total number of training steps to perform. Override num_train_epochs.") |
|
parser.add_argument("--warmup_ratio", default=0.1, type=float, |
|
help="Linear warmup over warmup_ratio.") |
|
|
|
parser.add_argument('--logging_steps', type=int, default=50, |
|
help="Log every X updates steps.") |
|
parser.add_argument("--save_steps", type=int, default=500, help="Save checkpoint every X updates steps.") |
|
parser.add_argument("--eval_all_checkpoints", action='store_true', |
|
help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number") |
|
parser.add_argument("--no_cuda", action='store_true', |
|
help="Avoid using CUDA when available") |
|
parser.add_argument('--overwrite_output_dir', action='store_true', |
|
help="Overwrite the content of the output directory") |
|
parser.add_argument('--overwrite_cache', action='store_true', |
|
help="Overwrite the cached training and evaluation sets") |
|
parser.add_argument('--seed', type=int, default=42, |
|
help="random seed for initialization") |
|
parser.add_argument('--metric_for_choose_best_checkpoint', type=str, default=None, |
|
help="Set the metric to choose the best checkpoint") |
|
|
|
parser.add_argument('--fp16', action='store_true', |
|
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit") |
|
parser.add_argument('--fp16_opt_level', type=str, default='O1', |
|
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." |
|
"See details at https://nvidia.github.io/apex/amp.html") |
|
parser.add_argument("--local_rank", type=int, default=-1, |
|
help="For distributed training: local_rank") |
|
parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.") |
|
parser.add_argument('--server_port', type=str, default='', help="For distant debugging.") |
|
args = parser.parse_args() |
|
|
|
if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir: |
|
raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir)) |
|
|
|
|
|
if args.server_ip and args.server_port: |
|
|
|
import ptvsd |
|
print("Waiting for debugger attach") |
|
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) |
|
ptvsd.wait_for_attach() |
|
|
|
|
|
if args.local_rank == -1 or args.no_cuda: |
|
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") |
|
args.n_gpu = torch.cuda.device_count() |
|
else: |
|
torch.cuda.set_device(args.local_rank) |
|
device = torch.device("cuda", args.local_rank) |
|
torch.distributed.init_process_group(backend='nccl') |
|
args.n_gpu = 1 |
|
args.device = device |
|
|
|
|
|
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s', |
|
datefmt = '%m/%d/%Y %H:%M:%S', |
|
level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN) |
|
logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", |
|
args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16) |
|
|
|
|
|
set_seed(args) |
|
|
|
|
|
labels = get_labels(args.labels) |
|
num_labels = len(labels) |
|
|
|
pad_token_label_id = CrossEntropyLoss().ignore_index |
|
|
|
|
|
if args.local_rank not in [-1, 0]: |
|
torch.distributed.barrier() |
|
|
|
args.model_type = args.model_type.lower() |
|
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type] |
|
config = config_class.from_pretrained( |
|
args.config_name if args.config_name else args.model_name_or_path, |
|
num_labels=num_labels, |
|
id2label={str(i): label for i, label in enumerate(labels)}, |
|
label2id={label: i for i, label in enumerate(labels)}, |
|
cache_dir=args.cache_dir if args.cache_dir else None, |
|
) |
|
tokenizer_args = {k: v for k, v in vars(args).items() if v is not None and k in TOKENIZER_ARGS} |
|
logger.info("Tokenizer arguments: %s", tokenizer_args) |
|
tokenizer_name = args.tokenizer_name if args.tokenizer_name else args.model_name_or_path |
|
tokenizer = tokenizer_class.from_pretrained( |
|
args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, |
|
cache_dir=args.cache_dir if args.cache_dir else None, |
|
**tokenizer_args, |
|
) |
|
if not hasattr(config, 'need_pooler') or config.need_pooler is not True: |
|
setattr(config, 'need_pooler', True) |
|
model = model_class.from_pretrained( |
|
args.model_name_or_path, config=config, |
|
cache_dir=args.cache_dir if args.cache_dir else None) |
|
|
|
if args.local_rank == 0: |
|
torch.distributed.barrier() |
|
|
|
model.to(args.device) |
|
|
|
logger.info("Training/evaluation parameters %s", args) |
|
|
|
|
|
|
|
if args.do_train: |
|
train_dataset = load_and_cache_examples(args, tokenizer, labels, pad_token_label_id, mode="train") |
|
global_step, tr_loss = train(args, train_dataset, model, tokenizer, labels, pad_token_label_id) |
|
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss) |
|
|
|
tokenizer.save_pretrained(args.output_dir) |
|
|
|
|
|
if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0): |
|
|
|
if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]: |
|
os.makedirs(args.output_dir) |
|
|
|
logger.info("Saving model checkpoint to %s", args.output_dir) |
|
|
|
|
|
model_to_save = ( |
|
model.module if hasattr(model, "module") else model |
|
) |
|
model_to_save.save_pretrained(args.output_dir) |
|
tokenizer.save_pretrained(args.output_dir) |
|
|
|
|
|
torch.save(args, os.path.join(args.output_dir, "training_args.bin")) |
|
|
|
|
|
|
|
|
|
|
|
if args.do_eval and args.local_rank in [-1, 0]: |
|
tokenizer = tokenizer_class.from_pretrained(args.output_dir, **tokenizer_args) |
|
|
|
checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True))) |
|
logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN) |
|
logger.info("Evaluate the following checkpoints: %s", checkpoints) |
|
|
|
metric_for_best = args.metric_for_choose_best_checkpoint |
|
best_performance = None |
|
best_epoch = None |
|
|
|
for checkpoint in checkpoints: |
|
prefix = checkpoint.split('/')[-1] if checkpoint.find('checkpoint') != -1 else "" |
|
checkpoint_config = config_class.from_pretrained(checkpoint) |
|
model = model_class.from_pretrained(checkpoint, config=checkpoint_config) |
|
model.to(args.device) |
|
result, _ = evaluate(args, model, tokenizer, labels, pad_token_label_id, mode="dev", prefix=global_step) |
|
|
|
if metric_for_best is None: |
|
metric_for_best = list(result.keys())[-1] |
|
if best_epoch is None: |
|
best_epoch = checkpoint |
|
best_performance = result |
|
else: |
|
if best_performance[metric_for_best] < result[metric_for_best]: |
|
best_performance = result |
|
best_epoch = checkpoint |
|
|
|
if best_epoch is not None: |
|
logger.info(" ***************** Best checkpoint: {}, choosed by {} *****************".format( |
|
best_epoch, metric_for_best)) |
|
logger.info("Best performance = %s" % json.dumps(best_performance)) |
|
|
|
save_best_result(best_epoch, best_performance, args.output_dir) |
|
checkpoint = best_epoch |
|
checkpoint_config = config_class.from_pretrained(checkpoint) |
|
model = model_class.from_pretrained(checkpoint, config=checkpoint_config) |
|
model.to(args.device) |
|
result, _ = test(args, model, tokenizer, labels, pad_token_label_id, mode="test", prefix=global_step) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|