|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" GLUE processors and helpers """ |
|
|
|
import logging |
|
import os |
|
import csv |
|
import sys |
|
import copy |
|
import json |
|
from scipy.stats import pearsonr, spearmanr |
|
from sklearn.metrics import matthews_corrcoef, f1_score |
|
from sklearn.preprocessing import MultiLabelBinarizer |
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
class InputExample(object): |
|
""" |
|
A single training/test example for simple sequence classification. |
|
|
|
Args: |
|
guid: Unique id for the example. |
|
text_a: string. The untokenized text of the first sequence. For single |
|
sequence tasks, only this sequence must be specified. |
|
text_b: (Optional) string. The untokenized text of the second sequence. |
|
Only must be specified for sequence pair tasks. |
|
label: (Optional) string. The label of the example. This should be |
|
specified for train and dev examples, but not for test examples. |
|
""" |
|
def __init__(self, guid, text_a, text_b=None, label=None): |
|
self.guid = guid |
|
self.text_a = text_a |
|
self.text_b = text_b |
|
self.label = label |
|
|
|
def __repr__(self): |
|
return str(self.to_json_string()) |
|
|
|
def to_dict(self): |
|
"""Serializes this instance to a Python dictionary.""" |
|
output = copy.deepcopy(self.__dict__) |
|
return output |
|
|
|
def to_json_string(self): |
|
"""Serializes this instance to a JSON string.""" |
|
return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n" |
|
|
|
|
|
class InputFeatures(object): |
|
""" |
|
A single set of features of data. |
|
|
|
Args: |
|
input_ids: Indices of input sequence tokens in the vocabulary. |
|
attention_mask: Mask to avoid performing attention on padding token indices. |
|
Mask values selected in ``[0, 1]``: |
|
Usually ``1`` for tokens that are NOT MASKED, ``0`` for MASKED (padded) tokens. |
|
token_type_ids: Segment token indices to indicate first and second portions of the inputs. |
|
label: Label corresponding to the input |
|
""" |
|
|
|
def __init__(self, input_ids, attention_mask=None, token_type_ids=None, label=None): |
|
self.input_ids = input_ids |
|
self.attention_mask = attention_mask |
|
self.token_type_ids = token_type_ids |
|
self.label = label |
|
|
|
def __repr__(self): |
|
return str(self.to_json_string()) |
|
|
|
def to_dict(self): |
|
"""Serializes this instance to a Python dictionary.""" |
|
output = copy.deepcopy(self.__dict__) |
|
return output |
|
|
|
def to_json_string(self): |
|
"""Serializes this instance to a JSON string.""" |
|
return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n" |
|
|
|
|
|
class DataProcessor(object): |
|
"""Base class for data converters for sequence classification data sets.""" |
|
|
|
def get_train_examples(self, data_dir): |
|
"""Gets a collection of `InputExample`s for the train set.""" |
|
raise NotImplementedError() |
|
|
|
def get_dev_examples(self, data_dir): |
|
"""Gets a collection of `InputExample`s for the dev set.""" |
|
raise NotImplementedError() |
|
|
|
def get_labels(self): |
|
"""Gets the list of labels for this data set.""" |
|
raise NotImplementedError() |
|
|
|
@classmethod |
|
def _read_tsv(cls, input_file, quotechar=None): |
|
"""Reads a tab separated value file.""" |
|
with open(input_file, "r", encoding="utf-8-sig") as f: |
|
reader = csv.reader(f, delimiter="\t", quotechar=quotechar) |
|
lines = [] |
|
for line in reader: |
|
if sys.version_info[0] == 2: |
|
line = list(unicode(cell, 'utf-8') for cell in line) |
|
lines.append(line) |
|
return lines |
|
|
|
@classmethod |
|
def _read_json(cls, input_file): |
|
with open(input_file, "r", encoding="utf-8-sig") as f: |
|
lines = json.loads(f.read()) |
|
return lines |
|
|
|
@classmethod |
|
def _read_jsonl(cls, input_file): |
|
with open(input_file, "r", encoding="utf-8-sig") as f: |
|
lines = f.readlines() |
|
return lines |
|
|
|
def glue_convert_examples_to_features(examples, tokenizer, |
|
max_length=512, |
|
task=None, |
|
label_list=None, |
|
output_mode=None, |
|
pad_on_left=False, |
|
pad_token=0, |
|
pad_token_segment_id=0, |
|
mask_padding_with_zero=True): |
|
""" |
|
Loads a data file into a list of ``InputFeatures`` |
|
|
|
Args: |
|
examples: List of ``InputExamples`` or ``tf.data.Dataset`` containing the examples. |
|
tokenizer: Instance of a tokenizer that will tokenize the examples |
|
max_length: Maximum example length |
|
task: GLUE task |
|
label_list: List of labels. Can be obtained from the processor using the ``processor.get_labels()`` method |
|
output_mode: String indicating the output mode. Either ``regression`` or ``classification`` |
|
pad_on_left: If set to ``True``, the examples will be padded on the left rather than on the right (default) |
|
pad_token: Padding token |
|
pad_token_segment_id: The segment ID for the padding token (It is usually 0, but can vary such as for XLNet where it is 4) |
|
mask_padding_with_zero: If set to ``True``, the attention mask will be filled by ``1`` for actual values |
|
and by ``0`` for padded values. If set to ``False``, inverts it (``1`` for padded values, ``0`` for |
|
actual values) |
|
|
|
Returns: |
|
If the ``examples`` input is a ``tf.data.Dataset``, will return a ``tf.data.Dataset`` |
|
containing the task-specific features. If the input is a list of ``InputExamples``, will return |
|
a list of task-specific ``InputFeatures`` which can be fed to the model. |
|
|
|
""" |
|
is_tf_dataset = False |
|
|
|
if task is not None: |
|
processor = glue_processors[task]() |
|
if label_list is None: |
|
label_list = processor.get_labels() |
|
logger.info("Using label list %s for task %s" % (label_list, task)) |
|
if output_mode is None: |
|
output_mode = glue_output_modes[task] |
|
logger.info("Using output mode %s for task %s" % (output_mode, task)) |
|
|
|
label_map = {label: i for i, label in enumerate(label_list)} |
|
|
|
features = [] |
|
for (ex_index, example) in enumerate(examples): |
|
if ex_index % 10000 == 0: |
|
logger.info("Writing example %d" % (ex_index)) |
|
if is_tf_dataset: |
|
example = processor.get_example_from_tensor_dict(example) |
|
example = processor.tfds_map(example) |
|
|
|
inputs = tokenizer.encode_plus( |
|
example.text_a, |
|
example.text_b, |
|
add_special_tokens=True, |
|
max_length=max_length, |
|
) |
|
input_ids = inputs["input_ids"] |
|
if "token_type_ids" in inputs: |
|
token_type_ids = inputs["token_type_ids"] |
|
else: |
|
token_type_ids = [] |
|
|
|
|
|
|
|
attention_mask = [1 if mask_padding_with_zero else 0] * len(input_ids) |
|
|
|
|
|
padding_length = max_length - len(input_ids) |
|
if pad_on_left: |
|
input_ids = ([pad_token] * padding_length) + input_ids |
|
attention_mask = ([0 if mask_padding_with_zero else 1] * padding_length) + attention_mask |
|
if len(token_type_ids) == 0: |
|
padding_length = max_length |
|
token_type_ids = ([pad_token_segment_id] * padding_length) + token_type_ids |
|
else: |
|
input_ids = input_ids + ([pad_token] * padding_length) |
|
attention_mask = attention_mask + ([0 if mask_padding_with_zero else 1] * padding_length) |
|
if len(token_type_ids) == 0: |
|
padding_length = max_length |
|
token_type_ids = token_type_ids + ([pad_token_segment_id] * padding_length) |
|
|
|
assert len(input_ids) == max_length, "Error with input length {} vs {}".format(len(input_ids), max_length) |
|
assert len(attention_mask) == max_length, "Error with input length {} vs {}".format(len(attention_mask), max_length) |
|
assert len(token_type_ids) == max_length, "Error with input length {} vs {}".format(len(token_type_ids), max_length) |
|
|
|
if output_mode == "classification": |
|
label = label_map[example.label] |
|
elif output_mode == "regression": |
|
label = float(example.label) |
|
else: |
|
raise KeyError(output_mode) |
|
|
|
if ex_index < 5: |
|
logger.info("*** Example ***") |
|
logger.info("guid: %s" % (example.guid)) |
|
logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) |
|
logger.info("input_tokens: %s" % " ".join(tokenizer.convert_ids_to_tokens(input_ids))) |
|
logger.info("attention_mask: %s" % " ".join([str(x) for x in attention_mask])) |
|
logger.info("token_type_ids: %s" % " ".join([str(x) for x in token_type_ids])) |
|
logger.info("label: %s (id = %d)" % (example.label, label)) |
|
|
|
features.append( |
|
InputFeatures(input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
label=label)) |
|
|
|
return features |
|
|
|
|
|
class MrpcProcessor(DataProcessor): |
|
"""Processor for the MRPC data set (GLUE version).""" |
|
|
|
def get_example_from_tensor_dict(self, tensor_dict): |
|
"""See base class.""" |
|
return InputExample(tensor_dict['idx'].numpy(), |
|
tensor_dict['sentence1'].numpy().decode('utf-8'), |
|
tensor_dict['sentence2'].numpy().decode('utf-8'), |
|
str(tensor_dict['label'].numpy())) |
|
|
|
def get_train_examples(self, data_dir): |
|
"""See base class.""" |
|
logger.info("LOOKING AT {}".format(os.path.join(data_dir, "train.tsv"))) |
|
return self._create_examples( |
|
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") |
|
|
|
def get_dev_examples(self, data_dir): |
|
"""See base class.""" |
|
return self._create_examples( |
|
self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") |
|
|
|
def get_labels(self): |
|
"""See base class.""" |
|
return ["0", "1"] |
|
|
|
def _create_examples(self, lines, set_type): |
|
"""Creates examples for the training and dev sets.""" |
|
examples = [] |
|
for (i, line) in enumerate(lines): |
|
if i == 0: |
|
continue |
|
guid = "%s-%s" % (set_type, i) |
|
text_a = line[3] |
|
text_b = line[4] |
|
label = line[0] |
|
examples.append( |
|
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) |
|
return examples |
|
|
|
|
|
class MnliProcessor(DataProcessor): |
|
"""Processor for the MultiNLI data set (GLUE version).""" |
|
|
|
def get_example_from_tensor_dict(self, tensor_dict): |
|
"""See base class.""" |
|
return InputExample(tensor_dict['idx'].numpy(), |
|
tensor_dict['premise'].numpy().decode('utf-8'), |
|
tensor_dict['hypothesis'].numpy().decode('utf-8'), |
|
str(tensor_dict['label'].numpy())) |
|
|
|
def get_train_examples(self, data_dir): |
|
"""See base class.""" |
|
return self._create_examples( |
|
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") |
|
|
|
def get_dev_examples(self, data_dir): |
|
"""See base class.""" |
|
return self._create_examples( |
|
self._read_tsv(os.path.join(data_dir, "dev_matched.tsv")), |
|
"dev_matched") |
|
|
|
def get_test_examples(self, data_dir): |
|
"""See base class.""" |
|
return self._create_examples( |
|
self._read_tsv(os.path.join(data_dir, "test_matched.tsv")), |
|
"test_matched") |
|
|
|
def get_labels(self): |
|
"""See base class.""" |
|
return ["contradiction", "entailment", "neutral"] |
|
|
|
def _create_examples(self, lines, set_type): |
|
"""Creates examples for the training and dev sets.""" |
|
examples = [] |
|
for (i, line) in enumerate(lines): |
|
if i == 0: |
|
continue |
|
guid = "%s-%s" % (set_type, line[0]) |
|
text_a = line[8] |
|
text_b = line[9] |
|
label = line[-1] |
|
examples.append( |
|
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) |
|
return examples |
|
|
|
|
|
class MnliMismatchedProcessor(MnliProcessor): |
|
"""Processor for the MultiNLI Mismatched data set (GLUE version).""" |
|
|
|
def get_dev_examples(self, data_dir): |
|
"""See base class.""" |
|
return self._create_examples( |
|
self._read_tsv(os.path.join(data_dir, "dev_mismatched.tsv")), |
|
"dev_mismatched") |
|
def get_test_examples(self, data_dir): |
|
"""See base class.""" |
|
return self._create_examples( |
|
self._read_tsv(os.path.join(data_dir, "test_mismatched.tsv")), |
|
"test_mismatched") |
|
|
|
|
|
class ColaProcessor(DataProcessor): |
|
"""Processor for the CoLA data set (GLUE version).""" |
|
|
|
def get_example_from_tensor_dict(self, tensor_dict): |
|
"""See base class.""" |
|
return InputExample(tensor_dict['idx'].numpy(), |
|
tensor_dict['sentence'].numpy().decode('utf-8'), |
|
None, |
|
str(tensor_dict['label'].numpy())) |
|
|
|
def get_train_examples(self, data_dir): |
|
"""See base class.""" |
|
return self._create_examples( |
|
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") |
|
|
|
def get_dev_examples(self, data_dir): |
|
"""See base class.""" |
|
return self._create_examples( |
|
self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") |
|
|
|
def get_labels(self): |
|
"""See base class.""" |
|
return ["0", "1"] |
|
|
|
def _create_examples(self, lines, set_type): |
|
"""Creates examples for the training and dev sets.""" |
|
examples = [] |
|
for (i, line) in enumerate(lines): |
|
guid = "%s-%s" % (set_type, i) |
|
text_a = line[3] |
|
label = line[1] |
|
examples.append( |
|
InputExample(guid=guid, text_a=text_a, text_b=None, label=label)) |
|
return examples |
|
|
|
|
|
class Sst2Processor(DataProcessor): |
|
"""Processor for the SST-2 data set (GLUE version).""" |
|
|
|
def get_example_from_tensor_dict(self, tensor_dict): |
|
"""See base class.""" |
|
return InputExample(tensor_dict['idx'].numpy(), |
|
tensor_dict['sentence'].numpy().decode('utf-8'), |
|
None, |
|
str(tensor_dict['label'].numpy())) |
|
|
|
def get_train_examples(self, data_dir): |
|
"""See base class.""" |
|
return self._create_examples( |
|
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") |
|
|
|
def get_dev_examples(self, data_dir): |
|
"""See base class.""" |
|
return self._create_examples( |
|
self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") |
|
|
|
def get_labels(self): |
|
"""See base class.""" |
|
return ["0", "1"] |
|
|
|
def _create_examples(self, lines, set_type): |
|
"""Creates examples for the training and dev sets.""" |
|
examples = [] |
|
for (i, line) in enumerate(lines): |
|
if i == 0: |
|
continue |
|
guid = "%s-%s" % (set_type, i) |
|
text_a = line[0] |
|
label = line[1] |
|
examples.append( |
|
InputExample(guid=guid, text_a=text_a, text_b=None, label=label)) |
|
return examples |
|
|
|
|
|
class StsbProcessor(DataProcessor): |
|
"""Processor for the STS-B data set (GLUE version).""" |
|
|
|
def get_example_from_tensor_dict(self, tensor_dict): |
|
"""See base class.""" |
|
return InputExample(tensor_dict['idx'].numpy(), |
|
tensor_dict['sentence1'].numpy().decode('utf-8'), |
|
tensor_dict['sentence2'].numpy().decode('utf-8'), |
|
str(tensor_dict['label'].numpy())) |
|
|
|
def get_train_examples(self, data_dir): |
|
"""See base class.""" |
|
return self._create_examples( |
|
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") |
|
|
|
def get_dev_examples(self, data_dir): |
|
"""See base class.""" |
|
return self._create_examples( |
|
self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") |
|
|
|
def get_test_examples(self, data_dir): |
|
"""See base class.""" |
|
return self._create_examples( |
|
self._read_tsv(os.path.join(data_dir, "test.tsv")), "test") |
|
|
|
def get_labels(self): |
|
"""See base class.""" |
|
return [None] |
|
|
|
def _create_examples(self, lines, set_type): |
|
"""Creates examples for the training and dev sets.""" |
|
examples = [] |
|
for (i, line) in enumerate(lines): |
|
if i == 0: |
|
continue |
|
guid = "%s-%s" % (set_type, line[0]) |
|
text_a = line[1] |
|
text_b = line[2] |
|
label = line[-1] |
|
examples.append( |
|
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) |
|
return examples |
|
|
|
|
|
class QqpProcessor(DataProcessor): |
|
"""Processor for the QQP data set (GLUE version).""" |
|
|
|
def get_example_from_tensor_dict(self, tensor_dict): |
|
"""See base class.""" |
|
return InputExample(tensor_dict['idx'].numpy(), |
|
tensor_dict['question1'].numpy().decode('utf-8'), |
|
tensor_dict['question2'].numpy().decode('utf-8'), |
|
str(tensor_dict['label'].numpy())) |
|
|
|
def get_train_examples(self, data_dir): |
|
"""See base class.""" |
|
return self._create_examples( |
|
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") |
|
|
|
def get_dev_examples(self, data_dir): |
|
"""See base class.""" |
|
return self._create_examples( |
|
self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") |
|
|
|
def get_labels(self): |
|
"""See base class.""" |
|
return ["0", "1"] |
|
|
|
def _create_examples(self, lines, set_type): |
|
"""Creates examples for the training and dev sets.""" |
|
examples = [] |
|
for (i, line) in enumerate(lines): |
|
if i == 0: |
|
continue |
|
guid = "%s-%s" % (set_type, line[0]) |
|
try: |
|
text_a = line[3] |
|
text_b = line[4] |
|
label = line[5] |
|
except IndexError: |
|
continue |
|
examples.append( |
|
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) |
|
return examples |
|
|
|
|
|
class QnliProcessor(DataProcessor): |
|
"""Processor for the QNLI data set (GLUE version).""" |
|
|
|
def get_example_from_tensor_dict(self, tensor_dict): |
|
"""See base class.""" |
|
return InputExample(tensor_dict['idx'].numpy(), |
|
tensor_dict['question'].numpy().decode('utf-8'), |
|
tensor_dict['sentence'].numpy().decode('utf-8'), |
|
str(tensor_dict['label'].numpy())) |
|
|
|
def get_train_examples(self, data_dir): |
|
"""See base class.""" |
|
return self._create_examples( |
|
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") |
|
|
|
def get_dev_examples(self, data_dir): |
|
"""See base class.""" |
|
return self._create_examples( |
|
self._read_tsv(os.path.join(data_dir, "dev.tsv")), |
|
"dev_matched") |
|
|
|
def get_labels(self): |
|
"""See base class.""" |
|
return ["entailment", "not_entailment"] |
|
|
|
def _create_examples(self, lines, set_type): |
|
"""Creates examples for the training and dev sets.""" |
|
examples = [] |
|
for (i, line) in enumerate(lines): |
|
if i == 0: |
|
continue |
|
guid = "%s-%s" % (set_type, line[0]) |
|
text_a = line[1] |
|
text_b = line[2] |
|
label = line[-1] |
|
examples.append( |
|
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) |
|
return examples |
|
|
|
|
|
class RteProcessor(DataProcessor): |
|
"""Processor for the RTE data set (GLUE version).""" |
|
|
|
def get_example_from_tensor_dict(self, tensor_dict): |
|
"""See base class.""" |
|
return InputExample(tensor_dict['idx'].numpy(), |
|
tensor_dict['sentence1'].numpy().decode('utf-8'), |
|
tensor_dict['sentence2'].numpy().decode('utf-8'), |
|
str(tensor_dict['label'].numpy())) |
|
|
|
def get_train_examples(self, data_dir): |
|
"""See base class.""" |
|
return self._create_examples( |
|
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") |
|
|
|
def get_dev_examples(self, data_dir): |
|
"""See base class.""" |
|
return self._create_examples( |
|
self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") |
|
|
|
def get_labels(self): |
|
"""See base class.""" |
|
return ["entailment", "not_entailment"] |
|
|
|
def _create_examples(self, lines, set_type): |
|
"""Creates examples for the training and dev sets.""" |
|
examples = [] |
|
for (i, line) in enumerate(lines): |
|
if i == 0: |
|
continue |
|
guid = "%s-%s" % (set_type, line[0]) |
|
text_a = line[1] |
|
text_b = line[2] |
|
label = line[-1] |
|
examples.append( |
|
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) |
|
return examples |
|
|
|
|
|
class WnliProcessor(DataProcessor): |
|
"""Processor for the WNLI data set (GLUE version).""" |
|
|
|
def get_example_from_tensor_dict(self, tensor_dict): |
|
"""See base class.""" |
|
return InputExample(tensor_dict['idx'].numpy(), |
|
tensor_dict['sentence1'].numpy().decode('utf-8'), |
|
tensor_dict['sentence2'].numpy().decode('utf-8'), |
|
str(tensor_dict['label'].numpy())) |
|
|
|
def get_train_examples(self, data_dir): |
|
"""See base class.""" |
|
return self._create_examples( |
|
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") |
|
|
|
def get_dev_examples(self, data_dir): |
|
"""See base class.""" |
|
return self._create_examples( |
|
self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") |
|
|
|
def get_labels(self): |
|
"""See base class.""" |
|
return ["0", "1"] |
|
|
|
def _create_examples(self, lines, set_type): |
|
"""Creates examples for the training and dev sets.""" |
|
examples = [] |
|
for (i, line) in enumerate(lines): |
|
if i == 0: |
|
continue |
|
guid = "%s-%s" % (set_type, line[0]) |
|
text_a = line[1] |
|
text_b = line[2] |
|
label = line[-1] |
|
examples.append( |
|
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) |
|
return examples |
|
|
|
|
|
class ChemProcessor(DataProcessor): |
|
def get_train_examples(self, data_dir): |
|
"""See base class.""" |
|
return self._create_examples( |
|
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") |
|
|
|
def get_dev_examples(self, data_dir): |
|
"""See base class.""" |
|
return self._create_examples( |
|
self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") |
|
|
|
def get_test_examples(self, data_dir): |
|
"""See base class.""" |
|
return self._create_examples( |
|
self._read_tsv(os.path.join(data_dir, "test.tsv")), "test") |
|
|
|
def get_labels(self): |
|
"""See base class.""" |
|
return ["false","CPR:3", "CPR:4", "CPR:5", "CPR:6", "CPR:9"] |
|
|
|
def _create_examples(self, lines, set_type): |
|
"""Creates examples for the training and dev sets.""" |
|
examples = [] |
|
for (i, line) in enumerate(lines): |
|
guid = "%s-%s" % (set_type, line[0]) |
|
text_a = line[1] |
|
label = line[-1] |
|
examples.append( |
|
InputExample(guid=guid, text_a=text_a, label=label)) |
|
return examples |
|
|
|
class ARCProcessor(DataProcessor): |
|
def get_train_examples(self, data_dir): |
|
"""See base class.""" |
|
return self._create_examples( |
|
self._read_jsonl(os.path.join(data_dir, "train.jsonl")), "train") |
|
|
|
def get_dev_examples(self, data_dir): |
|
"""See base class.""" |
|
return self._create_examples( |
|
self._read_jsonl(os.path.join(data_dir, "dev.jsonl")), "dev") |
|
|
|
def get_test_examples(self, data_dir): |
|
"""See base class.""" |
|
return self._create_examples( |
|
self._read_jsonl(os.path.join(data_dir, "test.jsonl")), "test") |
|
|
|
def get_labels(self): |
|
"""See base class.""" |
|
return ["CompareOrContrast", "Background", "Uses", "Motivation", "Extends", "Future"] |
|
|
|
def _create_examples(self, lines, set_type): |
|
"""Creates examples for the training and dev sets.""" |
|
examples = [] |
|
for (i, line) in enumerate(lines): |
|
line = json.loads(line) |
|
guid = "%s-%s" % (set_type, i) |
|
text_a = line["text"] |
|
label = line["label"] |
|
examples.append( |
|
InputExample(guid=guid, text_a=text_a, label=label)) |
|
return examples |
|
|
|
class SCIProcessor(DataProcessor): |
|
def get_train_examples(self, data_dir): |
|
"""See base class.""" |
|
return self._create_examples( |
|
self._read_jsonl(os.path.join(data_dir, "train.jsonl")), "train") |
|
|
|
def get_dev_examples(self, data_dir): |
|
"""See base class.""" |
|
return self._create_examples( |
|
self._read_jsonl(os.path.join(data_dir, "dev.jsonl")), "dev") |
|
|
|
def get_test_examples(self, data_dir): |
|
"""See base class.""" |
|
return self._create_examples( |
|
self._read_jsonl(os.path.join(data_dir, "test.jsonl")), "test") |
|
|
|
def get_labels(self): |
|
"""See base class.""" |
|
return ["COMPARE","CONJUNCTION","FEATURE-OF","HYPONYM-OF","USED-FOR","EVALUATE-FOR","PART-OF"] |
|
|
|
def _create_examples(self, lines, set_type): |
|
"""Creates examples for the training and dev sets.""" |
|
examples = [] |
|
for (i, line) in enumerate(lines): |
|
line = json.loads(line) |
|
guid = "%s-%s" % (set_type, i) |
|
text_a = line["text"] |
|
label = line["label"] |
|
examples.append( |
|
InputExample(guid=guid, text_a=text_a, label=label)) |
|
return examples |
|
|
|
glue_tasks_num_labels = { |
|
"cola": 2, |
|
"mnli": 3, |
|
"mrpc": 2, |
|
"sst-2": 2, |
|
"sts-b": 1, |
|
"qqp": 2, |
|
"qnli": 2, |
|
"rte": 2, |
|
"wnli": 2, |
|
"chemprot": 6, |
|
"arc": 6, |
|
"sci": 7, |
|
} |
|
|
|
glue_processors = { |
|
"cola": ColaProcessor, |
|
"mnli": MnliProcessor, |
|
"mnli-mm": MnliMismatchedProcessor, |
|
"mrpc": MrpcProcessor, |
|
"sst-2": Sst2Processor, |
|
"sts-b": StsbProcessor, |
|
"qqp": QqpProcessor, |
|
"qnli": QnliProcessor, |
|
"rte": RteProcessor, |
|
"wnli": WnliProcessor, |
|
"chemprot": ChemProcessor, |
|
"arc": ARCProcessor, |
|
"sci": SCIProcessor, |
|
} |
|
|
|
glue_output_modes = { |
|
"cola": "classification", |
|
"mnli": "classification", |
|
"mnli-mm": "classification", |
|
"mrpc": "classification", |
|
"sst-2": "classification", |
|
"sts-b": "regression", |
|
"qqp": "classification", |
|
"qnli": "classification", |
|
"rte": "classification", |
|
"wnli": "classification", |
|
"chemprot": "classification", |
|
"arc": "classification", |
|
"sci": "classification", |
|
} |
|
|
|
def simple_accuracy(preds, labels): |
|
return (preds == labels).mean() |
|
|
|
|
|
def acc_and_f1(preds, labels): |
|
acc = simple_accuracy(preds, labels) |
|
f1 = f1_score(y_true=labels, y_pred=preds) |
|
return { |
|
"acc": acc, |
|
"f1": f1, |
|
"acc_and_f1": (acc + f1) / 2, |
|
} |
|
|
|
def acc_and_macro_f1(preds, labels): |
|
acc = simple_accuracy(preds, labels) |
|
f1 = f1_score(y_true=labels, y_pred=preds,average="macro") |
|
return { |
|
"f1": f1, |
|
"acc": acc, |
|
"acc_and_f1": (acc + f1) / 2, |
|
} |
|
|
|
def acc_and_micro_f1(preds, labels, label_list): |
|
acc = simple_accuracy(preds, labels) |
|
print(label_list) |
|
label_list = [str(i+1) for i in range(len(label_list))] |
|
print(label_list) |
|
mlb = MultiLabelBinarizer(classes = label_list) |
|
labels = labels.tolist() |
|
labels = [str(i) for i in labels] |
|
print(labels[:20]) |
|
labels = mlb.fit_transform(labels) |
|
preds = preds.tolist() |
|
preds = [str(i) for i in preds] |
|
print(preds[:20]) |
|
preds = mlb.fit_transform(preds) |
|
f1 = f1_score(y_true=labels, y_pred=preds,average="micro") |
|
return { |
|
"f1": f1, |
|
"acc": acc, |
|
"f1_macro": f1_score(y_true=labels, y_pred=preds,average="macro"), |
|
"acc_and_f1": (acc + f1) / 2, |
|
} |
|
|
|
def pearson_and_spearman(preds, labels): |
|
pearson_corr = pearsonr(preds, labels)[0] |
|
spearman_corr = spearmanr(preds, labels)[0] |
|
return { |
|
"pearson": pearson_corr, |
|
"spearmanr": spearman_corr, |
|
"corr": (pearson_corr + spearman_corr) / 2, |
|
} |
|
|
|
|
|
def glue_compute_metrics(task_name, preds, labels, label_list): |
|
assert len(preds) == len(labels) |
|
if task_name == "cola": |
|
return {"mcc": matthews_corrcoef(labels, preds)} |
|
elif task_name == "sst-2": |
|
return {"acc": simple_accuracy(preds, labels)} |
|
elif task_name == "mrpc": |
|
return acc_and_f1(preds, labels) |
|
elif task_name == "sts-b": |
|
return pearson_and_spearman(preds, labels) |
|
elif task_name == "qqp": |
|
return acc_and_f1(preds, labels) |
|
elif task_name == "mnli": |
|
return {"acc": simple_accuracy(preds, labels)} |
|
elif task_name == "mnli-mm": |
|
return {"acc": simple_accuracy(preds, labels)} |
|
elif task_name == "qnli": |
|
return {"acc": simple_accuracy(preds, labels)} |
|
elif task_name == "rte": |
|
return {"acc": simple_accuracy(preds, labels)} |
|
elif task_name == "wnli": |
|
return {"acc": simple_accuracy(preds, labels)} |
|
elif task_name == "chemprot": |
|
return acc_and_micro_f1(preds, labels, label_list) |
|
elif task_name == "arc" or task_name == "sci": |
|
return acc_and_macro_f1(preds, labels) |
|
else: |
|
raise KeyError(task_name) |
|
|