Tzktz's picture
Upload 7664 files
6fc683c verified
import json
import os
import random
import numpy as np
import torch
from PIL import Image
from accelerate import Accelerator
from omegaconf import OmegaConf
from torch.nn.utils.rnn import pad_sequence
from torchmetrics.image.fid import FrechetInceptionDistance
from torchvision.transforms import functional as F
from tqdm import tqdm
from app_model import AppModel
from app_utils import randomize_seed_fn
from fairseq import options
from fairseq.dataclass.utils import convert_namespace_to_omegaconf
class COCO_Dataset_Image(torch.utils.data.Dataset):
def __init__(self, files):
self.files = files
def __len__(self):
return len(self.files)
def __getitem__(self, index):
filename = self.files[index]
real_image = np.array(Image.open(filename).convert('RGB'))
real_image = torch.tensor(real_image)
real_image = real_image.permute(2, 0, 1) / 255.0
real_image = F.resize(real_image, 256)
real_image = F.center_crop(real_image, (256, 256))
return real_image
class COCO_Dataset_Caption(torch.utils.data.Dataset):
def __init__(self, args, preprocess_fn):
self.args = args
self.preprocess_fn = preprocess_fn
# get text prompts
with open(os.path.join(args.data_dir, 'annotations', 'captions_val2014.json'), 'r') as f:
self.coco = json.load(f)
self.files = self.coco['annotations']
# random sampled 30K images from COCO
random.seed(args.seed)
self.files = random.sample(self.files, 30000)
def __len__(self):
return len(self.files)
def __getitem__(self, index):
prompt = self.files[index]['caption']
src_tokens, _, img_gpt_input_mask, negative_tokens = \
self.preprocess_fn(prompt,
"" if self.args.negative_prompt else "",
None, single_batch=False)
return src_tokens, img_gpt_input_mask, negative_tokens
def collate_fn(batch):
src_tokens = [x[0] for x in batch]
img_gpt_input_mask = [x[1] for x in batch]
negative_tokens = batch[0][2].unsqueeze(0)
src_tokens = pad_sequence(src_tokens, batch_first=True, padding_value=1)
img_gpt_input_mask = pad_sequence(img_gpt_input_mask, batch_first=True, padding_value=0)
return src_tokens, img_gpt_input_mask, negative_tokens
def main(cfg):
cfg.model.pretrained_ckpt_path = "/path/to/checkpoint_final.pt"
args = OmegaConf.create()
args.data_dir = "/path/to/coco"
args.batch_size = 16
args.num_workers = 4
args.scheduler = "ddim" # ['ddim', 'pndm', 'dpms']
args.num_inference_steps = 250
args.guidance_scale = 3.0
args.num_images_per_prompt = 1
args.seed = 0
args.negative_prompt = False
args.override = False
args.output_dir = "/path/to/output-dir/" + cfg.model.pretrained_ckpt_path.split('/')[-2] + '_' + \
cfg.model.pretrained_ckpt_path.split('/')[-1].split('.')[0].split('_')[-1] + '_' + args.scheduler \
+ '_' + str(args.num_inference_steps) + '_' + str(args.negative_prompt)
accelerator = Accelerator()
if accelerator.is_main_process and not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
fid = FrechetInceptionDistance(normalize=True)
fid = accelerator.prepare_model(fid, evaluation_mode=True)
with open(os.path.join(args.data_dir, 'annotations', 'captions_val2014.json'), 'r') as f:
files = json.load(f)['images']
files = [os.path.join(args.data_dir, 'val2014', file['file_name']) for file in files]
image_dataset = COCO_Dataset_Image(files)
image_dataloader = torch.utils.data.DataLoader(image_dataset, batch_size=16, num_workers=args.num_workers,
shuffle=False, pin_memory=True, drop_last=False,
persistent_workers=True)
image_dataloader = accelerator.prepare(image_dataloader)
accelerator.print("Number of real images: ", len(image_dataset))
for batch in tqdm(image_dataloader):
fid.update(batch, real=True)
# stat existing images in output_dir
image_paths = list()
for root, dirs, files in os.walk(args.output_dir):
for file in files:
if file.endswith(".png"):
image_paths.append(os.path.join(root, file))
if len(image_paths) >= 30000 and not args.override:
accelerator.print("Already generated enough images")
image_dataset = COCO_Dataset_Image(image_paths)
image_dataloader = torch.utils.data.DataLoader(image_dataset, batch_size=128, num_workers=args.num_workers,
shuffle=False, pin_memory=True, drop_last=False,
persistent_workers=True)
image_dataloader = accelerator.prepare(image_dataloader)
accelerator.print("Number of fake images: ", len(image_dataset))
for batch in tqdm(image_dataloader):
fid.update(batch, real=False)
accelerator.print("FID: ", fid.compute())
return
else:
# clear all existing images
if accelerator.is_main_process:
for root, dirs, files in os.walk(args.output_dir):
for file in files:
if file.endswith(".png"):
os.remove(os.path.join(root, file))
model = AppModel(cfg)
model.set_ckpt_scheduler_fn(cfg.model.pretrained_ckpt_path, args.scheduler)
caption_dataset = COCO_Dataset_Caption(args, model.kosmosg_preprocess)
caption_dataloader = torch.utils.data.DataLoader(caption_dataset, batch_size=args.batch_size,
num_workers=args.num_workers, shuffle=False, pin_memory=True,
drop_last=False, persistent_workers=True, collate_fn=collate_fn)
accelerator.print("Number of prompts: ", len(caption_dataset))
model, caption_dataloader = accelerator.prepare(model, caption_dataloader)
kwargs = {
'num_inference_steps': args.num_inference_steps,
'text_guidance_scale': args.guidance_scale,
'num_images_per_prompt': args.num_images_per_prompt,
'lora_scale': 0.0,
'output_type': 'numpy'
}
for batch_id, batch in tqdm(enumerate(caption_dataloader), total=len(caption_dataloader)):
src_tokens, img_gpt_input_mask, negative_tokens = batch
# generate images
randomize_seed_fn(args.seed, False)
images = model.model.sample(src_tokens, None, img_gpt_input_mask, negative_tokens, **kwargs)
# save image
for image_id, image in enumerate(images):
pos = batch_id * accelerator.num_processes * args.batch_size * args.num_images_per_prompt + \
image_id * accelerator.num_processes + accelerator.process_index
model.model.vae.numpy_to_pil(image)[0].save(os.path.join(args.output_dir, "{:05d}.png".format(pos)))
images = np.stack(images, axis=0)
images = torch.tensor(images).to(accelerator.device)
images = images.permute(0, 3, 1, 2)
fid.update(images, real=False)
accelerator.print("Number of Real Images: ", (fid.real_features_num_samples * accelerator.num_processes).item())
accelerator.print("Number of Fake Images: ", (fid.real_features_num_samples * accelerator.num_processes).item())
accelerator.print("FID: ", fid.compute())
if __name__ == "__main__":
parser = options.get_training_parser()
cfg = options.parse_args_and_arch(parser, modify_parser=None)
cfg = convert_namespace_to_omegaconf(cfg)
main(cfg)