# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np import torch.nn.functional as F from fairseq.data import BaseWrapperDataset class BucketPadLengthDataset(BaseWrapperDataset): """ Bucket and pad item lengths to the nearest bucket size. This can be used to reduce the number of unique batch shapes, which is important on TPUs since each new batch shape requires a recompilation. Args: dataset (FairseqDatset): dataset to bucket sizes (List[int]): all item sizes num_buckets (int): number of buckets to create pad_idx (int): padding symbol left_pad (bool): if True, pad on the left; otherwise right pad """ def __init__( self, dataset, sizes, num_buckets, pad_idx, left_pad, ): super().__init__(dataset) self.pad_idx = pad_idx self.left_pad = left_pad assert num_buckets > 0 self.buckets = np.unique( np.percentile( sizes, np.linspace(0, 100, num_buckets + 1), interpolation="lower", )[1:] ) def get_bucketed_sizes(orig_sizes, buckets): sizes = np.copy(orig_sizes) assert np.min(sizes) >= 0 start_val = -1 for end_val in buckets: mask = (sizes > start_val) & (sizes <= end_val) sizes[mask] = end_val start_val = end_val return sizes self._bucketed_sizes = get_bucketed_sizes(sizes, self.buckets) def __getitem__(self, index): item = self.dataset[index] bucket_size = self._bucketed_sizes[index] num_pad = bucket_size - item.size(-1) return F.pad( item, (num_pad if self.left_pad else 0, 0 if self.left_pad else num_pad), value=self.pad_idx, ) @property def sizes(self): return self._bucketed_sizes def num_tokens(self, index): return self._bucketed_sizes[index] def size(self, index): return self._bucketed_sizes[index]