Spaces:
Running
Running
__all__ = ['block', 'make_clickable_model', 'make_clickable_user', 'get_submissions'] | |
import os | |
import io | |
import gradio as gr | |
import pandas as pd | |
import json | |
import shutil | |
import tempfile | |
import datetime | |
import zipfile | |
import numpy as np | |
from constants import * | |
from huggingface_hub import Repository | |
HF_TOKEN = os.environ.get("HF_TOKEN") | |
global data_component, filter_component | |
def upload_file(files): | |
file_paths = [file.name for file in files] | |
return file_paths | |
def add_new_eval_i2v( | |
input_file, | |
model_name_textbox: str, | |
revision_name_textbox: str, | |
model_link: str, | |
team_name: str, | |
contact_email: str, | |
access_type: str, | |
model_publish: str, | |
model_resolution: str, | |
model_fps: str, | |
model_frame: str, | |
model_video_length: str, | |
model_checkpoint: str, | |
model_commit_id: str, | |
model_video_format: str | |
): | |
COLNAME2KEY={ | |
"Video-Text Camera Motion":"camera_motion", | |
"Video-Image Subject Consistency": "i2v_subject", | |
"Video-Image Background Consistency": "i2v_background", | |
"Subject Consistency": "subject_consistency", | |
"Background Consistency": "background_consistency", | |
"Motion Smoothness": "motion_smoothness", | |
"Dynamic Degree": "dynamic_degree", | |
"Aesthetic Quality": "aesthetic_quality", | |
"Imaging Quality": "imaging_quality", | |
"Temporal Flickering": "temporal_flickering" | |
} | |
if input_file is None: | |
return "Error! Empty file!" | |
if model_link == '' or model_name_textbox == '' or contact_email == '': | |
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=True) | |
upload_content = input_file | |
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset") | |
submission_repo.git_pull() | |
filename = datetime.datetime.now().strftime("%Y%m%d_%H%M%S") | |
now = datetime.datetime.now() | |
update_time = now.strftime("%Y-%m-%d") # Capture update time | |
with open(f'{SUBMISSION_NAME}/{filename}.zip','wb') as f: | |
f.write(input_file) | |
# shutil.copyfile(CSV_DIR, os.path.join(SUBMISSION_NAME, f"{input_file}")) | |
csv_data = pd.read_csv(I2V_DIR) | |
if revision_name_textbox == '': | |
col = csv_data.shape[0] | |
model_name = model_name_textbox.replace(',',' ') | |
else: | |
model_name = revision_name_textbox.replace(',',' ') | |
model_name_list = csv_data['Model Name (clickable)'] | |
name_list = [name.split(']')[0][1:] for name in model_name_list] | |
if revision_name_textbox not in name_list: | |
col = csv_data.shape[0] | |
else: | |
col = name_list.index(revision_name_textbox) | |
if model_link == '': | |
model_name = model_name # no url | |
else: | |
model_name = '[' + model_name + '](' + model_link + ')' | |
os.makedirs(filename, exist_ok=True) | |
with zipfile.ZipFile(io.BytesIO(input_file), 'r') as zip_ref: | |
zip_ref.extractall(filename) | |
upload_data = {} | |
for file in os.listdir(filename): | |
if file.startswith('.') or file.startswith('__'): | |
print(f"Skip the file: {file}") | |
continue | |
cur_file = os.path.join(filename, file) | |
if os.path.isdir(cur_file): | |
for subfile in os.listdir(cur_file): | |
if subfile.endswith(".json"): | |
with open(os.path.join(cur_file, subfile)) as ff: | |
cur_json = json.load(ff) | |
print(file, type(cur_json)) | |
if isinstance(cur_json, dict): | |
print(cur_json.keys()) | |
for key in cur_json: | |
upload_data[key] = cur_json[key][0] | |
print(f"{key}:{cur_json[key][0]}") | |
elif cur_file.endswith('json'): | |
with open(cur_file) as ff: | |
cur_json = json.load(ff) | |
print(file, type(cur_json)) | |
if isinstance(cur_json, dict): | |
print(cur_json.keys()) | |
for key in cur_json: | |
upload_data[key] = cur_json[key][0] | |
print(f"{key}:{cur_json[key][0]}") | |
# add new data | |
new_data = [model_name] | |
print('upload_data:', upload_data) | |
I2V_HEAD= ["Video-Text Camera Motion", | |
"Video-Image Subject Consistency", | |
"Video-Image Background Consistency", | |
"Subject Consistency", | |
"Background Consistency", | |
"Temporal Flickering", | |
"Motion Smoothness", | |
"Dynamic Degree", | |
"Aesthetic Quality", | |
"Imaging Quality" ] | |
for key in I2V_HEAD : | |
sub_key = COLNAME2KEY[key] | |
if sub_key in upload_data: | |
new_data.append(upload_data[sub_key]) | |
else: | |
new_data.append(0) | |
if team_name =='' or 'vbench' in team_name.lower(): | |
new_data.append("User Upload") | |
else: | |
new_data.append(team_name) | |
new_data.append(contact_email.replace(',',' and ')) # Add contact email [private] | |
new_data.append(update_time) # Add the update time | |
new_data.append(team_name) | |
new_data.append(access_type) | |
csv_data.loc[col] = new_data | |
csv_data = csv_data.to_csv(I2V_DIR , index=False) | |
with open(INFO_DIR,'a') as f: | |
f.write(f"{model_name}\t{update_time}\t{model_publish}\t{model_resolution}\t{model_fps}\t{model_frame}\t{model_video_length}\t{model_checkpoint}\t{model_commit_id}\t{model_video_format}\n") | |
submission_repo.push_to_hub() | |
print("success update", model_name) | |
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False) | |
def get_normalized_df(df): | |
# final_score = df.drop('name', axis=1).sum(axis=1) | |
# df.insert(1, 'Overall Score', final_score) | |
normalize_df = df.copy().fillna(0.0) | |
for column in normalize_df.columns[1:-5]: | |
min_val = NORMALIZE_DIC[column]['Min'] | |
max_val = NORMALIZE_DIC[column]['Max'] | |
normalize_df[column] = (normalize_df[column] - min_val) / (max_val - min_val) | |
return normalize_df | |
def get_normalized_i2v_df(df): | |
normalize_df = df.copy().fillna(0.0) | |
for column in normalize_df.columns[1:-5]: | |
min_val = NORMALIZE_DIC_I2V[column]['Min'] | |
max_val = NORMALIZE_DIC_I2V[column]['Max'] | |
normalize_df[column] = (normalize_df[column] - min_val) / (max_val - min_val) | |
return normalize_df | |
def calculate_selected_score(df, selected_columns): | |
# selected_score = df[selected_columns].sum(axis=1) | |
selected_QUALITY = [i for i in selected_columns if i in QUALITY_LIST] | |
selected_SEMANTIC = [i for i in selected_columns if i in SEMANTIC_LIST] | |
selected_quality_score = df[selected_QUALITY].sum(axis=1)/sum([DIM_WEIGHT[i] for i in selected_QUALITY]) | |
selected_semantic_score = df[selected_SEMANTIC].sum(axis=1)/sum([DIM_WEIGHT[i] for i in selected_SEMANTIC ]) | |
if selected_quality_score.isna().any().any() and selected_semantic_score.isna().any().any(): | |
selected_score = (selected_quality_score * QUALITY_WEIGHT + selected_semantic_score * SEMANTIC_WEIGHT) / (QUALITY_WEIGHT + SEMANTIC_WEIGHT) | |
return selected_score.fillna(0.0) | |
if selected_quality_score.isna().any().any(): | |
return selected_semantic_score | |
if selected_semantic_score.isna().any().any(): | |
return selected_quality_score | |
# print(selected_semantic_score,selected_quality_score ) | |
selected_score = (selected_quality_score * QUALITY_WEIGHT + selected_semantic_score * SEMANTIC_WEIGHT) / (QUALITY_WEIGHT + SEMANTIC_WEIGHT) | |
return selected_score.fillna(0.0) | |
def calculate_selected_score_i2v(df, selected_columns): | |
# selected_score = df[selected_columns].sum(axis=1) | |
selected_QUALITY = [i for i in selected_columns if i in I2V_QUALITY_LIST] | |
selected_I2V = [i for i in selected_columns if i in I2V_LIST] | |
selected_quality_score = df[selected_QUALITY].sum(axis=1)/sum([DIM_WEIGHT_I2V[i] for i in selected_QUALITY]) | |
selected_i2v_score = df[selected_I2V].sum(axis=1)/sum([DIM_WEIGHT_I2V[i] for i in selected_I2V ]) | |
if selected_quality_score.isna().any().any() and selected_i2v_score.isna().any().any(): | |
selected_score = (selected_quality_score * I2V_QUALITY_WEIGHT + selected_i2v_score * I2V_WEIGHT) / (I2V_QUALITY_WEIGHT + I2V_WEIGHT) | |
return selected_score.fillna(0.0) | |
if selected_quality_score.isna().any().any(): | |
return selected_i2v_score | |
if selected_i2v_score.isna().any().any(): | |
return selected_quality_score | |
# print(selected_i2v_score,selected_quality_score ) | |
selected_score = (selected_quality_score * I2V_QUALITY_WEIGHT + selected_i2v_score * I2V_WEIGHT) / (I2V_QUALITY_WEIGHT + I2V_WEIGHT) | |
return selected_score.fillna(0.0) | |
def get_final_score(df, selected_columns): | |
normalize_df = get_normalized_df(df) | |
#final_score = normalize_df.drop('name', axis=1).sum(axis=1) | |
try: | |
for name in normalize_df.drop('Model Name (clickable)', axis=1).drop("Sampled by", axis=1).drop('Mail', axis=1).drop('Date',axis=1).drop("Evaluated by", axis=1).drop("Accessibility", axis=1): | |
normalize_df[name] = normalize_df[name]*DIM_WEIGHT[name] | |
except: | |
for name in normalize_df.drop('Model Name (clickable)', axis=1).drop("Sampled by", axis=1).drop('Mail', axis=1).drop('Date',axis=1): | |
normalize_df[name] = normalize_df[name]*DIM_WEIGHT[name] | |
quality_score = normalize_df[QUALITY_LIST].sum(axis=1)/sum([DIM_WEIGHT[i] for i in QUALITY_LIST]) | |
semantic_score = normalize_df[SEMANTIC_LIST].sum(axis=1)/sum([DIM_WEIGHT[i] for i in SEMANTIC_LIST ]) | |
final_score = (quality_score * QUALITY_WEIGHT + semantic_score * SEMANTIC_WEIGHT) / (QUALITY_WEIGHT + SEMANTIC_WEIGHT) | |
if 'Total Score' in df: | |
df['Total Score'] = final_score | |
else: | |
df.insert(1, 'Total Score', final_score) | |
if 'Semantic Score' in df: | |
df['Semantic Score'] = semantic_score | |
else: | |
df.insert(2, 'Semantic Score', semantic_score) | |
if 'Quality Score' in df: | |
df['Quality Score'] = quality_score | |
else: | |
df.insert(3, 'Quality Score', quality_score) | |
selected_score = calculate_selected_score(normalize_df, selected_columns) | |
if 'Selected Score' in df: | |
df['Selected Score'] = selected_score | |
else: | |
df.insert(1, 'Selected Score', selected_score) | |
return df | |
def get_final_score_i2v(df, selected_columns): | |
normalize_df = get_normalized_i2v_df(df) | |
try: | |
for name in normalize_df.drop('Model Name (clickable)', axis=1).drop("Sampled by", axis=1).drop('Mail', axis=1).drop('Date',axis=1).drop("Evaluated by", axis=1).drop("Accessibility", axis=1): | |
normalize_df[name] = normalize_df[name]*DIM_WEIGHT_I2V[name] | |
except: | |
for name in normalize_df.drop('Model Name (clickable)', axis=1).drop("Sampled by", axis=1).drop('Mail', axis=1).drop('Date',axis=1): | |
normalize_df[name] = normalize_df[name]*DIM_WEIGHT_I2V[name] | |
quality_score = normalize_df[I2V_QUALITY_LIST].sum(axis=1)/sum([DIM_WEIGHT_I2V[i] for i in I2V_QUALITY_LIST]) | |
i2v_score = normalize_df[I2V_LIST].sum(axis=1)/sum([DIM_WEIGHT_I2V[i] for i in I2V_LIST ]) | |
final_score = (quality_score * I2V_QUALITY_WEIGHT + i2v_score * I2V_WEIGHT) / (I2V_QUALITY_WEIGHT + I2V_WEIGHT) | |
if 'Total Score' in df: | |
df['Total Score'] = final_score | |
else: | |
df.insert(1, 'Total Score', final_score) | |
if 'I2V Score' in df: | |
df['I2V Score'] = i2v_score | |
else: | |
df.insert(2, 'I2V Score', i2v_score) | |
if 'Quality Score' in df: | |
df['Quality Score'] = quality_score | |
else: | |
df.insert(3, 'Quality Score', quality_score) | |
selected_score = calculate_selected_score_i2v(normalize_df, selected_columns) | |
if 'Selected Score' in df: | |
df['Selected Score'] = selected_score | |
else: | |
df.insert(1, 'Selected Score', selected_score) | |
# df.loc[df[9:].isnull().any(axis=1), ['Total Score', 'I2V Score']] = 'N.A.' | |
mask = df.iloc[:, 5:-5].isnull().any(axis=1) | |
df.loc[mask, ['Total Score', 'I2V Score','Selected Score' ]] = np.nan | |
# df.fillna('N.A.', inplace=True) | |
return df | |
def get_final_score_quality(df, selected_columns): | |
normalize_df = get_normalized_df(df) | |
for name in normalize_df.drop('Model Name (clickable)', axis=1): | |
normalize_df[name] = normalize_df[name]*DIM_WEIGHT[name] | |
quality_score = normalize_df[QUALITY_TAB].sum(axis=1) / sum([DIM_WEIGHT[i] for i in QUALITY_TAB]) | |
if 'Quality Score' in df: | |
df['Quality Score'] = quality_score | |
else: | |
df.insert(1, 'Quality Score', quality_score) | |
# selected_score = normalize_df[selected_columns].sum(axis=1) / len(selected_columns) | |
selected_score = normalize_df[selected_columns].sum(axis=1)/sum([DIM_WEIGHT[i] for i in selected_columns]) | |
if 'Selected Score' in df: | |
df['Selected Score'] = selected_score | |
else: | |
df.insert(1, 'Selected Score', selected_score) | |
return df | |
def get_baseline_df(): | |
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset") | |
submission_repo.git_pull() | |
df = pd.read_csv(CSV_DIR) | |
df = get_final_score(df, checkbox_group.value) | |
df = df.sort_values(by="Selected Score", ascending=False) | |
present_columns = MODEL_INFO + checkbox_group.value | |
# print(present_columns) | |
df = df[present_columns] | |
# Add this line to display the results evaluated by VBench by default | |
df = df[df['Evaluated by'] == 'VBench Team'] | |
df = convert_scores_to_percentage(df) | |
return df | |
def get_all_df(selected_columns, dir=CSV_DIR): | |
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset") | |
submission_repo.git_pull() | |
df = pd.read_csv(dir) | |
df = get_final_score(df, selected_columns) | |
df = df.sort_values(by="Selected Score", ascending=False) | |
return df | |
def get_all_df_quality(selected_columns, dir=QUALITY_DIR): | |
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset") | |
submission_repo.git_pull() | |
df = pd.read_csv(dir) | |
df = get_final_score_quality(df, selected_columns) | |
df = df.sort_values(by="Selected Score", ascending=False) | |
return df | |
def get_all_df_i2v(selected_columns, dir=I2V_DIR): | |
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset") | |
submission_repo.git_pull() | |
df = pd.read_csv(dir) | |
df = get_final_score_i2v(df, selected_columns) | |
df = df.sort_values(by="Selected Score", ascending=False) | |
return df | |
def get_all_df_long(selected_columns, dir=LONG_DIR): | |
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset") | |
submission_repo.git_pull() | |
df = pd.read_csv(dir) | |
df = get_final_score(df, selected_columns) | |
df = df.sort_values(by="Selected Score", ascending=False) | |
return df | |
def convert_scores_to_percentage(df): | |
# Operate on every column in the DataFrame (except the'name 'column) | |
if "Sampled by" in df.columns: | |
skip_col =3 | |
else: | |
skip_col =1 | |
print(df) | |
for column in df.columns[skip_col:]: # 假设第一列是'name' | |
# if df[column].isdigit(): | |
# print(df[column]) | |
# is_numeric = pd.to_numeric(df[column], errors='coerce').notna().all() | |
valid_numeric_count = pd.to_numeric(df[column], errors='coerce').notna().sum() | |
if valid_numeric_count > 0: | |
df[column] = round(df[column] * 100,2) | |
df[column] = df[column].apply(lambda x: f"{x:05.2f}%" if pd.notna(pd.to_numeric(x, errors='coerce')) else x) | |
# df[column] = df[column].apply(lambda x: f"{x:05.2f}") + '%' | |
return df | |
def choose_all_quailty(): | |
return gr.update(value=QUALITY_LIST) | |
def choose_all_semantic(): | |
return gr.update(value=SEMANTIC_LIST) | |
def disable_all(): | |
return gr.update(value=[]) | |
def enable_all(): | |
return gr.update(value=TASK_INFO) | |
# select function | |
def on_filter_model_size_method_change(selected_columns, vbench_team_sample, vbench_team_eval=False): | |
updated_data = get_all_df(selected_columns, CSV_DIR) | |
if vbench_team_sample: | |
updated_data = updated_data[updated_data["Sampled by"] == 'VBench Team'] | |
if vbench_team_eval: | |
updated_data = updated_data[updated_data['Evaluated by'] == 'VBench Team'] | |
#print(updated_data) | |
# columns: | |
selected_columns = [item for item in TASK_INFO if item in selected_columns] | |
present_columns = MODEL_INFO + selected_columns | |
updated_data = updated_data[present_columns] | |
updated_data = updated_data.sort_values(by="Selected Score", ascending=False) | |
updated_data = convert_scores_to_percentage(updated_data) | |
updated_headers = present_columns | |
print(COLUMN_NAMES,updated_headers,DATA_TITILE_TYPE ) | |
update_datatype = [DATA_TITILE_TYPE[COLUMN_NAMES.index(x)] for x in updated_headers] | |
# print(updated_data,present_columns,update_datatype) | |
filter_component = gr.components.Dataframe( | |
value=updated_data, | |
headers=updated_headers, | |
type="pandas", | |
datatype=update_datatype, | |
interactive=False, | |
visible=True, | |
) | |
return filter_component#.value | |
def on_filter_model_size_method_change_quality(selected_columns): | |
updated_data = get_all_df_quality(selected_columns, QUALITY_DIR) | |
#print(updated_data) | |
# columns: | |
selected_columns = [item for item in QUALITY_TAB if item in selected_columns] | |
present_columns = MODEL_INFO_TAB_QUALITY + selected_columns | |
updated_data = updated_data[present_columns] | |
updated_data = updated_data.sort_values(by="Selected Score", ascending=False) | |
updated_data = convert_scores_to_percentage(updated_data) | |
updated_headers = present_columns | |
update_datatype = [DATA_TITILE_TYPE[COLUMN_NAMES.index(x)] for x in updated_headers] | |
# print(updated_data,present_columns,update_datatype) | |
filter_component = gr.components.Dataframe( | |
value=updated_data, | |
headers=updated_headers, | |
type="pandas", | |
datatype=update_datatype, | |
interactive=False, | |
visible=True, | |
) | |
return filter_component#.value | |
def on_filter_model_size_method_change_i2v(selected_columns,vbench_team_sample, vbench_team_eval=False): | |
updated_data = get_all_df_i2v(selected_columns, I2V_DIR) | |
if vbench_team_sample: | |
updated_data = updated_data[updated_data["Sampled by"] == 'VBench Team'] | |
# if vbench_team_eval: | |
# updated_data = updated_data[updated_data['Eval'] == 'VBench Team'] | |
selected_columns = [item for item in I2V_TAB if item in selected_columns] | |
present_columns = MODEL_INFO_TAB_I2V + selected_columns | |
updated_data = updated_data[present_columns] | |
updated_data = updated_data.sort_values(by="Selected Score", ascending=False) | |
updated_data = convert_scores_to_percentage(updated_data) | |
updated_headers = present_columns | |
update_datatype = [DATA_TITILE_TYPE[COLUMN_NAMES_I2V.index(x)] for x in updated_headers] | |
# print(updated_data,present_columns,update_datatype) | |
filter_component = gr.components.Dataframe( | |
value=updated_data, | |
headers=updated_headers, | |
type="pandas", | |
datatype=update_datatype, | |
interactive=False, | |
visible=True, | |
) | |
return filter_component#.value | |
def on_filter_model_size_method_change_long(selected_columns, vbench_team_sample, vbench_team_eval=False): | |
updated_data = get_all_df_long(selected_columns, LONG_DIR) | |
if vbench_team_sample: | |
updated_data = updated_data[updated_data["Sampled by"] == 'VBench Team'] | |
if vbench_team_eval: | |
updated_data = updated_data[updated_data['Evaluated by'] == 'VBench Team'] | |
selected_columns = [item for item in TASK_INFO if item in selected_columns] | |
present_columns = MODEL_INFO + selected_columns | |
updated_data = updated_data[present_columns] | |
updated_data = updated_data.sort_values(by="Selected Score", ascending=False) | |
updated_data = convert_scores_to_percentage(updated_data) | |
updated_headers = present_columns | |
update_datatype = [DATA_TITILE_TYPE[COLUMN_NAMES.index(x)] for x in updated_headers] | |
filter_component = gr.components.Dataframe( | |
value=updated_data, | |
headers=updated_headers, | |
type="pandas", | |
datatype=update_datatype, | |
interactive=False, | |
visible=True, | |
) | |
return filter_component#.value | |
block = gr.Blocks() | |
with block: | |
gr.Markdown( | |
LEADERBORAD_INTRODUCTION | |
) | |
with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
# Table 0 | |
df_raw = pd.read_csv( | |
"https://huggingface.co/spaces/V-STaR-Bench/V-STaR-LeaderBoard/resolve/main/leaderboard.csv", | |
header=[0, 1] # 告诉 pandas 前两行为表头 | |
).map(lambda x: f"{x:.2f}" if isinstance(x, (int, float)) else x) | |
df_domain = pd.read_csv( | |
"https://huggingface.co/spaces/V-STaR-Bench/V-STaR-LeaderBoard/resolve/main/results.csv", | |
header=[0, 1] # 告诉 pandas 前两行为表头 | |
).map(lambda x: f"{x:.2f}" if isinstance(x, (int, float)) else x) | |
df_chain_1 = pd.read_csv( | |
"https://huggingface.co/spaces/V-STaR-Bench/V-STaR-LeaderBoard/resolve/main/leaderboard_chain1.csv", | |
# header=[0, 1] # 告诉 pandas 前两行为表头 | |
).map(lambda x: f"{x:.2f}" if isinstance(x, (int, float)) else x) | |
df_chain_2 = pd.read_csv( | |
"https://huggingface.co/spaces/V-STaR-Bench/V-STaR-LeaderBoard/resolve/main/leaderboard_chain2.csv", | |
# header=[0, 1] # 告诉 pandas 前两行为表头 | |
).map(lambda x: f"{x:.2f}" if isinstance(x, (int, float)) else x) | |
# 2) 将 MultiIndex 列名转换为单层列名,例如 "Animals-mAM" | |
new_columns = [] | |
for col_tuple in df_raw.columns: | |
# col_tuple 是形如 ("Animals", "mAM") 或 ("Model", nan) 的二元元组 | |
domain = str(col_tuple[0]).strip() if pd.notnull(col_tuple[0]) else "" | |
metric = str(col_tuple[1]).strip() if pd.notnull(col_tuple[1]) else "" | |
if domain and metric: | |
new_columns.append(f"{domain}-{metric}") | |
else: | |
# 如果某一层为空,就只使用非空的那层 | |
new_columns.append(domain or metric) | |
df_raw.columns = new_columns | |
# 如果第一列是 "Model-" 这种情况,可以进行一下修正 | |
if df_raw.columns[0].endswith("-"): | |
df_raw.rename(columns={df_raw.columns[0]: "Model"}, inplace=True) | |
# 3) 用前面处理过的列来构建 checkbox 选项 | |
# 假设第一列 "Model" 不需要放到 checkbox 里 | |
all_columns = df_raw.columns.tolist()[1:] | |
choices_from_csv = [col.strip() for col in all_columns if col.strip()] | |
with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
with gr.TabItem("📊 V-STaR"): | |
with gr.Row(): | |
with gr.Accordion("Citation", open=False): | |
citation_button = gr.Textbox( | |
value=CITATION_BUTTON_TEXT, | |
label=CITATION_BUTTON_LABEL, | |
lines=14, | |
) | |
gr.Markdown(TABLE_INTRODUCTION) | |
# 复选框 | |
# checkbox_group = gr.CheckboxGroup( | |
# choices=choices_from_csv, | |
# value=choices_from_csv, # 默认全选 | |
# label="Evaluation Dimension", | |
# interactive=True, | |
# ) | |
# with gr.Row(): | |
# checkbox_group | |
# 显示 DataFrame | |
data_component = gr.Dataframe( | |
value=df_raw, | |
type="pandas", | |
interactive=False, | |
visible=True, | |
) | |
with gr.TabItem("📊 Chain 1"): | |
with gr.Row(): | |
with gr.Accordion("Citation", open=False): | |
citation_button = gr.Textbox( | |
value=CITATION_BUTTON_TEXT, | |
label=CITATION_BUTTON_LABEL, | |
lines=14, | |
) | |
gr.Markdown(TABLE_INTRODUCTION) | |
# 复选框 | |
# checkbox_group = gr.CheckboxGroup( | |
# choices=choices_from_csv, | |
# value=choices_from_csv, # 默认全选 | |
# label="Evaluation Dimension", | |
# interactive=True, | |
# ) | |
# with gr.Row(): | |
# checkbox_group | |
# 显示 DataFrame | |
data_component = gr.Dataframe( | |
value=df_chain_1, | |
type="pandas", | |
interactive=False, | |
visible=True, | |
) | |
with gr.TabItem("📊 Chain 2"): | |
with gr.Row(): | |
with gr.Accordion("Citation", open=False): | |
citation_button = gr.Textbox( | |
value=CITATION_BUTTON_TEXT, | |
label=CITATION_BUTTON_LABEL, | |
lines=14, | |
) | |
gr.Markdown(TABLE_INTRODUCTION) | |
# 复选框 | |
# checkbox_group = gr.CheckboxGroup( | |
# choices=choices_from_csv, | |
# value=choices_from_csv, # 默认全选 | |
# label="Evaluation Dimension", | |
# interactive=True, | |
# ) | |
# with gr.Row(): | |
# checkbox_group | |
# 显示 DataFrame | |
data_component = gr.Dataframe( | |
value=df_chain_2, | |
type="pandas", | |
interactive=False, | |
visible=True, | |
) | |
with gr.TabItem("📊 Domain"): | |
with gr.Row(): | |
with gr.Accordion("Citation", open=False): | |
citation_button = gr.Textbox( | |
value=CITATION_BUTTON_TEXT, | |
label=CITATION_BUTTON_LABEL, | |
lines=14, | |
) | |
gr.Markdown(TABLE_INTRODUCTION) | |
# 复选框 | |
# checkbox_group = gr.CheckboxGroup( | |
# choices=choices_from_csv, | |
# value=choices_from_csv, # 默认全选 | |
# label="Evaluation Dimension", | |
# interactive=True, | |
# ) | |
# with gr.Row(): | |
# checkbox_group | |
# 显示 DataFrame | |
data_component = gr.Dataframe( | |
value=df_domain, | |
type="pandas", | |
interactive=False, | |
visible=True, | |
) | |
# table info | |
with gr.TabItem("📝 Submission", elem_id="mvbench-tab-table", id=3): | |
gr.Markdown(LEADERBORAD_INFO, elem_classes="markdown-text") | |
# with gr.TabItem("🚀 Submit here! ", elem_id="mvbench-i2v-tab-table", id=5): | |
# gr.Markdown(LEADERBORAD_INTRODUCTION, elem_classes="markdown-text") | |
with gr.Row(): | |
gr.Markdown(SUBMIT_INTRODUCTION, elem_classes="markdown-text") | |
# with gr.Row(): | |
# gr.Markdown("# ✉️✨ Submit your i2v model evaluation json file here!", elem_classes="markdown-text") | |
# with gr.Row(): | |
# gr.Markdown("Here is a required field", elem_classes="markdown-text") | |
# with gr.Row(): | |
# with gr.Column(): | |
# model_name_textbox_i2v = gr.Textbox( | |
# label="Model name", placeholder="Required field" | |
# ) | |
# revision_name_textbox_i2v = gr.Textbox( | |
# label="Revision Model Name(Optional)", placeholder="If you need to update the previous results, please fill in this line" | |
# ) | |
# access_type_i2v = gr.Dropdown(["Open Source", "Ready to Open Source", "API", "Close"], label="Please select the way user can access your model. You can update the content by revision_name, or contact the VBench Team.") | |
# with gr.Column(): | |
# model_link_i2v = gr.Textbox( | |
# label="Project Page/Paper Link/Github/HuggingFace Repo", placeholder="Required field. If filling in the wrong information, your results may be removed." | |
# ) | |
# team_name_i2v = gr.Textbox( | |
# label="Your Team Name(If left blank, it will be user upload)", placeholder="User Upload" | |
# ) | |
# contact_email_i2v = gr.Textbox( | |
# label="E-Mail(Will not be displayed)", placeholder="Required field" | |
# ) | |
# with gr.Row(): | |
# gr.Markdown("The following is optional and will be synced to [GitHub] (https://github.com/Vchitect/VBench/tree/master/sampled_videos#what-are-the-details-of-the-video-generation-models)", elem_classes="markdown-text") | |
# with gr.Row(): | |
# release_time_i2v = gr.Textbox(label="Time of Publish", placeholder="1970-01-01") | |
# model_resolution_i2v = gr.Textbox(label="resolution", )#placeholder="Width x Height") | |
# model_fps_i2v = gr.Textbox(label="model fps", placeholder="FPS(int)") | |
# model_frame_i2v = gr.Textbox(label="model frame count", placeholder="INT") | |
# model_video_length_i2v = gr.Textbox(label="model video length", placeholder="float(2.0)") | |
# model_checkpoint_i2v = gr.Textbox(label="model checkpoint", placeholder="optional") | |
# model_commit_id_i2v = gr.Textbox(label="github commit id", placeholder='main') | |
# model_video_format_i2v = gr.Textbox(label="pipeline format", placeholder='mp4') | |
# with gr.Column(): | |
# input_file_i2v = gr.components.File(label = "Click to Upload a ZIP File", file_count="single", type='binary') | |
# submit_button_i2v = gr.Button("Submit Eval") | |
# submit_succ_button_i2v = gr.Markdown("Submit Success! Please press refresh and retfurn to LeaderBoard!", visible=False) | |
# fail_textbox_i2v = gr.Markdown('<span style="color:red;">Please ensure that the `Model Name`, `Project Page`, and `Email` are filled in correctly.</span>', elem_classes="markdown-text",visible=False) | |
# submission_result_i2v = gr.Markdown() | |
# submit_button_i2v.click( | |
# add_new_eval_i2v, | |
# inputs = [ | |
# input_file_i2v, | |
# model_name_textbox_i2v, | |
# revision_name_textbox_i2v, | |
# model_link_i2v, | |
# team_name_i2v, | |
# contact_email_i2v, | |
# release_time_i2v, | |
# access_type_i2v, | |
# model_resolution_i2v, | |
# model_fps_i2v, | |
# model_frame_i2v, | |
# model_video_length_i2v, | |
# model_checkpoint_i2v, | |
# model_commit_id_i2v, | |
# model_video_format_i2v | |
# ], | |
# outputs=[submit_button_i2v, submit_succ_button_i2v, fail_textbox_i2v] | |
# ) | |
# def refresh_data(): | |
# value1 = get_baseline_df() | |
# return value1 | |
# with gr.Row(): | |
# data_run = gr.Button("Refresh") | |
# # data_run.click(on_filter_model_size_method_change, inputs=[checkbox_group], outputs=data_component) | |
# data_run.click(on_filter_model_size_method_change, outputs=data_component) | |
block.launch() |