V-STaR's picture
Update app.py
b41e3b2 verified
__all__ = ['block', 'make_clickable_model', 'make_clickable_user', 'get_submissions']
import os
import io
import gradio as gr
import pandas as pd
import json
import shutil
import tempfile
import datetime
import zipfile
import numpy as np
from constants import *
from huggingface_hub import Repository
HF_TOKEN = os.environ.get("HF_TOKEN")
global data_component, filter_component
def upload_file(files):
file_paths = [file.name for file in files]
return file_paths
def add_new_eval_i2v(
input_file,
model_name_textbox: str,
revision_name_textbox: str,
model_link: str,
team_name: str,
contact_email: str,
access_type: str,
model_publish: str,
model_resolution: str,
model_fps: str,
model_frame: str,
model_video_length: str,
model_checkpoint: str,
model_commit_id: str,
model_video_format: str
):
COLNAME2KEY={
"Video-Text Camera Motion":"camera_motion",
"Video-Image Subject Consistency": "i2v_subject",
"Video-Image Background Consistency": "i2v_background",
"Subject Consistency": "subject_consistency",
"Background Consistency": "background_consistency",
"Motion Smoothness": "motion_smoothness",
"Dynamic Degree": "dynamic_degree",
"Aesthetic Quality": "aesthetic_quality",
"Imaging Quality": "imaging_quality",
"Temporal Flickering": "temporal_flickering"
}
if input_file is None:
return "Error! Empty file!"
if model_link == '' or model_name_textbox == '' or contact_email == '':
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=True)
upload_content = input_file
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
submission_repo.git_pull()
filename = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
now = datetime.datetime.now()
update_time = now.strftime("%Y-%m-%d") # Capture update time
with open(f'{SUBMISSION_NAME}/{filename}.zip','wb') as f:
f.write(input_file)
# shutil.copyfile(CSV_DIR, os.path.join(SUBMISSION_NAME, f"{input_file}"))
csv_data = pd.read_csv(I2V_DIR)
if revision_name_textbox == '':
col = csv_data.shape[0]
model_name = model_name_textbox.replace(',',' ')
else:
model_name = revision_name_textbox.replace(',',' ')
model_name_list = csv_data['Model Name (clickable)']
name_list = [name.split(']')[0][1:] for name in model_name_list]
if revision_name_textbox not in name_list:
col = csv_data.shape[0]
else:
col = name_list.index(revision_name_textbox)
if model_link == '':
model_name = model_name # no url
else:
model_name = '[' + model_name + '](' + model_link + ')'
os.makedirs(filename, exist_ok=True)
with zipfile.ZipFile(io.BytesIO(input_file), 'r') as zip_ref:
zip_ref.extractall(filename)
upload_data = {}
for file in os.listdir(filename):
if file.startswith('.') or file.startswith('__'):
print(f"Skip the file: {file}")
continue
cur_file = os.path.join(filename, file)
if os.path.isdir(cur_file):
for subfile in os.listdir(cur_file):
if subfile.endswith(".json"):
with open(os.path.join(cur_file, subfile)) as ff:
cur_json = json.load(ff)
print(file, type(cur_json))
if isinstance(cur_json, dict):
print(cur_json.keys())
for key in cur_json:
upload_data[key] = cur_json[key][0]
print(f"{key}:{cur_json[key][0]}")
elif cur_file.endswith('json'):
with open(cur_file) as ff:
cur_json = json.load(ff)
print(file, type(cur_json))
if isinstance(cur_json, dict):
print(cur_json.keys())
for key in cur_json:
upload_data[key] = cur_json[key][0]
print(f"{key}:{cur_json[key][0]}")
# add new data
new_data = [model_name]
print('upload_data:', upload_data)
I2V_HEAD= ["Video-Text Camera Motion",
"Video-Image Subject Consistency",
"Video-Image Background Consistency",
"Subject Consistency",
"Background Consistency",
"Temporal Flickering",
"Motion Smoothness",
"Dynamic Degree",
"Aesthetic Quality",
"Imaging Quality" ]
for key in I2V_HEAD :
sub_key = COLNAME2KEY[key]
if sub_key in upload_data:
new_data.append(upload_data[sub_key])
else:
new_data.append(0)
if team_name =='' or 'vbench' in team_name.lower():
new_data.append("User Upload")
else:
new_data.append(team_name)
new_data.append(contact_email.replace(',',' and ')) # Add contact email [private]
new_data.append(update_time) # Add the update time
new_data.append(team_name)
new_data.append(access_type)
csv_data.loc[col] = new_data
csv_data = csv_data.to_csv(I2V_DIR , index=False)
with open(INFO_DIR,'a') as f:
f.write(f"{model_name}\t{update_time}\t{model_publish}\t{model_resolution}\t{model_fps}\t{model_frame}\t{model_video_length}\t{model_checkpoint}\t{model_commit_id}\t{model_video_format}\n")
submission_repo.push_to_hub()
print("success update", model_name)
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
def get_normalized_df(df):
# final_score = df.drop('name', axis=1).sum(axis=1)
# df.insert(1, 'Overall Score', final_score)
normalize_df = df.copy().fillna(0.0)
for column in normalize_df.columns[1:-5]:
min_val = NORMALIZE_DIC[column]['Min']
max_val = NORMALIZE_DIC[column]['Max']
normalize_df[column] = (normalize_df[column] - min_val) / (max_val - min_val)
return normalize_df
def get_normalized_i2v_df(df):
normalize_df = df.copy().fillna(0.0)
for column in normalize_df.columns[1:-5]:
min_val = NORMALIZE_DIC_I2V[column]['Min']
max_val = NORMALIZE_DIC_I2V[column]['Max']
normalize_df[column] = (normalize_df[column] - min_val) / (max_val - min_val)
return normalize_df
def calculate_selected_score(df, selected_columns):
# selected_score = df[selected_columns].sum(axis=1)
selected_QUALITY = [i for i in selected_columns if i in QUALITY_LIST]
selected_SEMANTIC = [i for i in selected_columns if i in SEMANTIC_LIST]
selected_quality_score = df[selected_QUALITY].sum(axis=1)/sum([DIM_WEIGHT[i] for i in selected_QUALITY])
selected_semantic_score = df[selected_SEMANTIC].sum(axis=1)/sum([DIM_WEIGHT[i] for i in selected_SEMANTIC ])
if selected_quality_score.isna().any().any() and selected_semantic_score.isna().any().any():
selected_score = (selected_quality_score * QUALITY_WEIGHT + selected_semantic_score * SEMANTIC_WEIGHT) / (QUALITY_WEIGHT + SEMANTIC_WEIGHT)
return selected_score.fillna(0.0)
if selected_quality_score.isna().any().any():
return selected_semantic_score
if selected_semantic_score.isna().any().any():
return selected_quality_score
# print(selected_semantic_score,selected_quality_score )
selected_score = (selected_quality_score * QUALITY_WEIGHT + selected_semantic_score * SEMANTIC_WEIGHT) / (QUALITY_WEIGHT + SEMANTIC_WEIGHT)
return selected_score.fillna(0.0)
def calculate_selected_score_i2v(df, selected_columns):
# selected_score = df[selected_columns].sum(axis=1)
selected_QUALITY = [i for i in selected_columns if i in I2V_QUALITY_LIST]
selected_I2V = [i for i in selected_columns if i in I2V_LIST]
selected_quality_score = df[selected_QUALITY].sum(axis=1)/sum([DIM_WEIGHT_I2V[i] for i in selected_QUALITY])
selected_i2v_score = df[selected_I2V].sum(axis=1)/sum([DIM_WEIGHT_I2V[i] for i in selected_I2V ])
if selected_quality_score.isna().any().any() and selected_i2v_score.isna().any().any():
selected_score = (selected_quality_score * I2V_QUALITY_WEIGHT + selected_i2v_score * I2V_WEIGHT) / (I2V_QUALITY_WEIGHT + I2V_WEIGHT)
return selected_score.fillna(0.0)
if selected_quality_score.isna().any().any():
return selected_i2v_score
if selected_i2v_score.isna().any().any():
return selected_quality_score
# print(selected_i2v_score,selected_quality_score )
selected_score = (selected_quality_score * I2V_QUALITY_WEIGHT + selected_i2v_score * I2V_WEIGHT) / (I2V_QUALITY_WEIGHT + I2V_WEIGHT)
return selected_score.fillna(0.0)
def get_final_score(df, selected_columns):
normalize_df = get_normalized_df(df)
#final_score = normalize_df.drop('name', axis=1).sum(axis=1)
try:
for name in normalize_df.drop('Model Name (clickable)', axis=1).drop("Sampled by", axis=1).drop('Mail', axis=1).drop('Date',axis=1).drop("Evaluated by", axis=1).drop("Accessibility", axis=1):
normalize_df[name] = normalize_df[name]*DIM_WEIGHT[name]
except:
for name in normalize_df.drop('Model Name (clickable)', axis=1).drop("Sampled by", axis=1).drop('Mail', axis=1).drop('Date',axis=1):
normalize_df[name] = normalize_df[name]*DIM_WEIGHT[name]
quality_score = normalize_df[QUALITY_LIST].sum(axis=1)/sum([DIM_WEIGHT[i] for i in QUALITY_LIST])
semantic_score = normalize_df[SEMANTIC_LIST].sum(axis=1)/sum([DIM_WEIGHT[i] for i in SEMANTIC_LIST ])
final_score = (quality_score * QUALITY_WEIGHT + semantic_score * SEMANTIC_WEIGHT) / (QUALITY_WEIGHT + SEMANTIC_WEIGHT)
if 'Total Score' in df:
df['Total Score'] = final_score
else:
df.insert(1, 'Total Score', final_score)
if 'Semantic Score' in df:
df['Semantic Score'] = semantic_score
else:
df.insert(2, 'Semantic Score', semantic_score)
if 'Quality Score' in df:
df['Quality Score'] = quality_score
else:
df.insert(3, 'Quality Score', quality_score)
selected_score = calculate_selected_score(normalize_df, selected_columns)
if 'Selected Score' in df:
df['Selected Score'] = selected_score
else:
df.insert(1, 'Selected Score', selected_score)
return df
def get_final_score_i2v(df, selected_columns):
normalize_df = get_normalized_i2v_df(df)
try:
for name in normalize_df.drop('Model Name (clickable)', axis=1).drop("Sampled by", axis=1).drop('Mail', axis=1).drop('Date',axis=1).drop("Evaluated by", axis=1).drop("Accessibility", axis=1):
normalize_df[name] = normalize_df[name]*DIM_WEIGHT_I2V[name]
except:
for name in normalize_df.drop('Model Name (clickable)', axis=1).drop("Sampled by", axis=1).drop('Mail', axis=1).drop('Date',axis=1):
normalize_df[name] = normalize_df[name]*DIM_WEIGHT_I2V[name]
quality_score = normalize_df[I2V_QUALITY_LIST].sum(axis=1)/sum([DIM_WEIGHT_I2V[i] for i in I2V_QUALITY_LIST])
i2v_score = normalize_df[I2V_LIST].sum(axis=1)/sum([DIM_WEIGHT_I2V[i] for i in I2V_LIST ])
final_score = (quality_score * I2V_QUALITY_WEIGHT + i2v_score * I2V_WEIGHT) / (I2V_QUALITY_WEIGHT + I2V_WEIGHT)
if 'Total Score' in df:
df['Total Score'] = final_score
else:
df.insert(1, 'Total Score', final_score)
if 'I2V Score' in df:
df['I2V Score'] = i2v_score
else:
df.insert(2, 'I2V Score', i2v_score)
if 'Quality Score' in df:
df['Quality Score'] = quality_score
else:
df.insert(3, 'Quality Score', quality_score)
selected_score = calculate_selected_score_i2v(normalize_df, selected_columns)
if 'Selected Score' in df:
df['Selected Score'] = selected_score
else:
df.insert(1, 'Selected Score', selected_score)
# df.loc[df[9:].isnull().any(axis=1), ['Total Score', 'I2V Score']] = 'N.A.'
mask = df.iloc[:, 5:-5].isnull().any(axis=1)
df.loc[mask, ['Total Score', 'I2V Score','Selected Score' ]] = np.nan
# df.fillna('N.A.', inplace=True)
return df
def get_final_score_quality(df, selected_columns):
normalize_df = get_normalized_df(df)
for name in normalize_df.drop('Model Name (clickable)', axis=1):
normalize_df[name] = normalize_df[name]*DIM_WEIGHT[name]
quality_score = normalize_df[QUALITY_TAB].sum(axis=1) / sum([DIM_WEIGHT[i] for i in QUALITY_TAB])
if 'Quality Score' in df:
df['Quality Score'] = quality_score
else:
df.insert(1, 'Quality Score', quality_score)
# selected_score = normalize_df[selected_columns].sum(axis=1) / len(selected_columns)
selected_score = normalize_df[selected_columns].sum(axis=1)/sum([DIM_WEIGHT[i] for i in selected_columns])
if 'Selected Score' in df:
df['Selected Score'] = selected_score
else:
df.insert(1, 'Selected Score', selected_score)
return df
def get_baseline_df():
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
submission_repo.git_pull()
df = pd.read_csv(CSV_DIR)
df = get_final_score(df, checkbox_group.value)
df = df.sort_values(by="Selected Score", ascending=False)
present_columns = MODEL_INFO + checkbox_group.value
# print(present_columns)
df = df[present_columns]
# Add this line to display the results evaluated by VBench by default
df = df[df['Evaluated by'] == 'VBench Team']
df = convert_scores_to_percentage(df)
return df
def get_all_df(selected_columns, dir=CSV_DIR):
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
submission_repo.git_pull()
df = pd.read_csv(dir)
df = get_final_score(df, selected_columns)
df = df.sort_values(by="Selected Score", ascending=False)
return df
def get_all_df_quality(selected_columns, dir=QUALITY_DIR):
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
submission_repo.git_pull()
df = pd.read_csv(dir)
df = get_final_score_quality(df, selected_columns)
df = df.sort_values(by="Selected Score", ascending=False)
return df
def get_all_df_i2v(selected_columns, dir=I2V_DIR):
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
submission_repo.git_pull()
df = pd.read_csv(dir)
df = get_final_score_i2v(df, selected_columns)
df = df.sort_values(by="Selected Score", ascending=False)
return df
def get_all_df_long(selected_columns, dir=LONG_DIR):
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
submission_repo.git_pull()
df = pd.read_csv(dir)
df = get_final_score(df, selected_columns)
df = df.sort_values(by="Selected Score", ascending=False)
return df
def convert_scores_to_percentage(df):
# Operate on every column in the DataFrame (except the'name 'column)
if "Sampled by" in df.columns:
skip_col =3
else:
skip_col =1
print(df)
for column in df.columns[skip_col:]: # 假设第一列是'name'
# if df[column].isdigit():
# print(df[column])
# is_numeric = pd.to_numeric(df[column], errors='coerce').notna().all()
valid_numeric_count = pd.to_numeric(df[column], errors='coerce').notna().sum()
if valid_numeric_count > 0:
df[column] = round(df[column] * 100,2)
df[column] = df[column].apply(lambda x: f"{x:05.2f}%" if pd.notna(pd.to_numeric(x, errors='coerce')) else x)
# df[column] = df[column].apply(lambda x: f"{x:05.2f}") + '%'
return df
def choose_all_quailty():
return gr.update(value=QUALITY_LIST)
def choose_all_semantic():
return gr.update(value=SEMANTIC_LIST)
def disable_all():
return gr.update(value=[])
def enable_all():
return gr.update(value=TASK_INFO)
# select function
def on_filter_model_size_method_change(selected_columns, vbench_team_sample, vbench_team_eval=False):
updated_data = get_all_df(selected_columns, CSV_DIR)
if vbench_team_sample:
updated_data = updated_data[updated_data["Sampled by"] == 'VBench Team']
if vbench_team_eval:
updated_data = updated_data[updated_data['Evaluated by'] == 'VBench Team']
#print(updated_data)
# columns:
selected_columns = [item for item in TASK_INFO if item in selected_columns]
present_columns = MODEL_INFO + selected_columns
updated_data = updated_data[present_columns]
updated_data = updated_data.sort_values(by="Selected Score", ascending=False)
updated_data = convert_scores_to_percentage(updated_data)
updated_headers = present_columns
print(COLUMN_NAMES,updated_headers,DATA_TITILE_TYPE )
update_datatype = [DATA_TITILE_TYPE[COLUMN_NAMES.index(x)] for x in updated_headers]
# print(updated_data,present_columns,update_datatype)
filter_component = gr.components.Dataframe(
value=updated_data,
headers=updated_headers,
type="pandas",
datatype=update_datatype,
interactive=False,
visible=True,
)
return filter_component#.value
def on_filter_model_size_method_change_quality(selected_columns):
updated_data = get_all_df_quality(selected_columns, QUALITY_DIR)
#print(updated_data)
# columns:
selected_columns = [item for item in QUALITY_TAB if item in selected_columns]
present_columns = MODEL_INFO_TAB_QUALITY + selected_columns
updated_data = updated_data[present_columns]
updated_data = updated_data.sort_values(by="Selected Score", ascending=False)
updated_data = convert_scores_to_percentage(updated_data)
updated_headers = present_columns
update_datatype = [DATA_TITILE_TYPE[COLUMN_NAMES.index(x)] for x in updated_headers]
# print(updated_data,present_columns,update_datatype)
filter_component = gr.components.Dataframe(
value=updated_data,
headers=updated_headers,
type="pandas",
datatype=update_datatype,
interactive=False,
visible=True,
)
return filter_component#.value
def on_filter_model_size_method_change_i2v(selected_columns,vbench_team_sample, vbench_team_eval=False):
updated_data = get_all_df_i2v(selected_columns, I2V_DIR)
if vbench_team_sample:
updated_data = updated_data[updated_data["Sampled by"] == 'VBench Team']
# if vbench_team_eval:
# updated_data = updated_data[updated_data['Eval'] == 'VBench Team']
selected_columns = [item for item in I2V_TAB if item in selected_columns]
present_columns = MODEL_INFO_TAB_I2V + selected_columns
updated_data = updated_data[present_columns]
updated_data = updated_data.sort_values(by="Selected Score", ascending=False)
updated_data = convert_scores_to_percentage(updated_data)
updated_headers = present_columns
update_datatype = [DATA_TITILE_TYPE[COLUMN_NAMES_I2V.index(x)] for x in updated_headers]
# print(updated_data,present_columns,update_datatype)
filter_component = gr.components.Dataframe(
value=updated_data,
headers=updated_headers,
type="pandas",
datatype=update_datatype,
interactive=False,
visible=True,
)
return filter_component#.value
def on_filter_model_size_method_change_long(selected_columns, vbench_team_sample, vbench_team_eval=False):
updated_data = get_all_df_long(selected_columns, LONG_DIR)
if vbench_team_sample:
updated_data = updated_data[updated_data["Sampled by"] == 'VBench Team']
if vbench_team_eval:
updated_data = updated_data[updated_data['Evaluated by'] == 'VBench Team']
selected_columns = [item for item in TASK_INFO if item in selected_columns]
present_columns = MODEL_INFO + selected_columns
updated_data = updated_data[present_columns]
updated_data = updated_data.sort_values(by="Selected Score", ascending=False)
updated_data = convert_scores_to_percentage(updated_data)
updated_headers = present_columns
update_datatype = [DATA_TITILE_TYPE[COLUMN_NAMES.index(x)] for x in updated_headers]
filter_component = gr.components.Dataframe(
value=updated_data,
headers=updated_headers,
type="pandas",
datatype=update_datatype,
interactive=False,
visible=True,
)
return filter_component#.value
block = gr.Blocks()
with block:
gr.Markdown(
LEADERBORAD_INTRODUCTION
)
with gr.Tabs(elem_classes="tab-buttons") as tabs:
# Table 0
df_raw = pd.read_csv(
"https://huggingface.co/spaces/V-STaR-Bench/V-STaR-LeaderBoard/resolve/main/leaderboard.csv",
header=[0, 1] # 告诉 pandas 前两行为表头
).map(lambda x: f"{x:.2f}" if isinstance(x, (int, float)) else x)
df_domain = pd.read_csv(
"https://huggingface.co/spaces/V-STaR-Bench/V-STaR-LeaderBoard/resolve/main/results.csv",
header=[0, 1] # 告诉 pandas 前两行为表头
).map(lambda x: f"{x:.2f}" if isinstance(x, (int, float)) else x)
df_chain_1 = pd.read_csv(
"https://huggingface.co/spaces/V-STaR-Bench/V-STaR-LeaderBoard/resolve/main/leaderboard_chain1.csv",
# header=[0, 1] # 告诉 pandas 前两行为表头
).map(lambda x: f"{x:.2f}" if isinstance(x, (int, float)) else x)
df_chain_2 = pd.read_csv(
"https://huggingface.co/spaces/V-STaR-Bench/V-STaR-LeaderBoard/resolve/main/leaderboard_chain2.csv",
# header=[0, 1] # 告诉 pandas 前两行为表头
).map(lambda x: f"{x:.2f}" if isinstance(x, (int, float)) else x)
# 2) 将 MultiIndex 列名转换为单层列名,例如 "Animals-mAM"
new_columns = []
for col_tuple in df_raw.columns:
# col_tuple 是形如 ("Animals", "mAM") 或 ("Model", nan) 的二元元组
domain = str(col_tuple[0]).strip() if pd.notnull(col_tuple[0]) else ""
metric = str(col_tuple[1]).strip() if pd.notnull(col_tuple[1]) else ""
if domain and metric:
new_columns.append(f"{domain}-{metric}")
else:
# 如果某一层为空,就只使用非空的那层
new_columns.append(domain or metric)
df_raw.columns = new_columns
# 如果第一列是 "Model-" 这种情况,可以进行一下修正
if df_raw.columns[0].endswith("-"):
df_raw.rename(columns={df_raw.columns[0]: "Model"}, inplace=True)
# 3) 用前面处理过的列来构建 checkbox 选项
# 假设第一列 "Model" 不需要放到 checkbox 里
all_columns = df_raw.columns.tolist()[1:]
choices_from_csv = [col.strip() for col in all_columns if col.strip()]
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("📊 V-STaR"):
with gr.Row():
with gr.Accordion("Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=14,
)
gr.Markdown(TABLE_INTRODUCTION)
# 复选框
# checkbox_group = gr.CheckboxGroup(
# choices=choices_from_csv,
# value=choices_from_csv, # 默认全选
# label="Evaluation Dimension",
# interactive=True,
# )
# with gr.Row():
# checkbox_group
# 显示 DataFrame
data_component = gr.Dataframe(
value=df_raw,
type="pandas",
interactive=False,
visible=True,
)
with gr.TabItem("📊 Chain 1"):
with gr.Row():
with gr.Accordion("Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=14,
)
gr.Markdown(TABLE_INTRODUCTION)
# 复选框
# checkbox_group = gr.CheckboxGroup(
# choices=choices_from_csv,
# value=choices_from_csv, # 默认全选
# label="Evaluation Dimension",
# interactive=True,
# )
# with gr.Row():
# checkbox_group
# 显示 DataFrame
data_component = gr.Dataframe(
value=df_chain_1,
type="pandas",
interactive=False,
visible=True,
)
with gr.TabItem("📊 Chain 2"):
with gr.Row():
with gr.Accordion("Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=14,
)
gr.Markdown(TABLE_INTRODUCTION)
# 复选框
# checkbox_group = gr.CheckboxGroup(
# choices=choices_from_csv,
# value=choices_from_csv, # 默认全选
# label="Evaluation Dimension",
# interactive=True,
# )
# with gr.Row():
# checkbox_group
# 显示 DataFrame
data_component = gr.Dataframe(
value=df_chain_2,
type="pandas",
interactive=False,
visible=True,
)
with gr.TabItem("📊 Domain"):
with gr.Row():
with gr.Accordion("Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=14,
)
gr.Markdown(TABLE_INTRODUCTION)
# 复选框
# checkbox_group = gr.CheckboxGroup(
# choices=choices_from_csv,
# value=choices_from_csv, # 默认全选
# label="Evaluation Dimension",
# interactive=True,
# )
# with gr.Row():
# checkbox_group
# 显示 DataFrame
data_component = gr.Dataframe(
value=df_domain,
type="pandas",
interactive=False,
visible=True,
)
# table info
with gr.TabItem("📝 Submission", elem_id="mvbench-tab-table", id=3):
gr.Markdown(LEADERBORAD_INFO, elem_classes="markdown-text")
# with gr.TabItem("🚀 Submit here! ", elem_id="mvbench-i2v-tab-table", id=5):
# gr.Markdown(LEADERBORAD_INTRODUCTION, elem_classes="markdown-text")
with gr.Row():
gr.Markdown(SUBMIT_INTRODUCTION, elem_classes="markdown-text")
# with gr.Row():
# gr.Markdown("# ✉️✨ Submit your i2v model evaluation json file here!", elem_classes="markdown-text")
# with gr.Row():
# gr.Markdown("Here is a required field", elem_classes="markdown-text")
# with gr.Row():
# with gr.Column():
# model_name_textbox_i2v = gr.Textbox(
# label="Model name", placeholder="Required field"
# )
# revision_name_textbox_i2v = gr.Textbox(
# label="Revision Model Name(Optional)", placeholder="If you need to update the previous results, please fill in this line"
# )
# access_type_i2v = gr.Dropdown(["Open Source", "Ready to Open Source", "API", "Close"], label="Please select the way user can access your model. You can update the content by revision_name, or contact the VBench Team.")
# with gr.Column():
# model_link_i2v = gr.Textbox(
# label="Project Page/Paper Link/Github/HuggingFace Repo", placeholder="Required field. If filling in the wrong information, your results may be removed."
# )
# team_name_i2v = gr.Textbox(
# label="Your Team Name(If left blank, it will be user upload)", placeholder="User Upload"
# )
# contact_email_i2v = gr.Textbox(
# label="E-Mail(Will not be displayed)", placeholder="Required field"
# )
# with gr.Row():
# gr.Markdown("The following is optional and will be synced to [GitHub] (https://github.com/Vchitect/VBench/tree/master/sampled_videos#what-are-the-details-of-the-video-generation-models)", elem_classes="markdown-text")
# with gr.Row():
# release_time_i2v = gr.Textbox(label="Time of Publish", placeholder="1970-01-01")
# model_resolution_i2v = gr.Textbox(label="resolution", )#placeholder="Width x Height")
# model_fps_i2v = gr.Textbox(label="model fps", placeholder="FPS(int)")
# model_frame_i2v = gr.Textbox(label="model frame count", placeholder="INT")
# model_video_length_i2v = gr.Textbox(label="model video length", placeholder="float(2.0)")
# model_checkpoint_i2v = gr.Textbox(label="model checkpoint", placeholder="optional")
# model_commit_id_i2v = gr.Textbox(label="github commit id", placeholder='main')
# model_video_format_i2v = gr.Textbox(label="pipeline format", placeholder='mp4')
# with gr.Column():
# input_file_i2v = gr.components.File(label = "Click to Upload a ZIP File", file_count="single", type='binary')
# submit_button_i2v = gr.Button("Submit Eval")
# submit_succ_button_i2v = gr.Markdown("Submit Success! Please press refresh and retfurn to LeaderBoard!", visible=False)
# fail_textbox_i2v = gr.Markdown('<span style="color:red;">Please ensure that the `Model Name`, `Project Page`, and `Email` are filled in correctly.</span>', elem_classes="markdown-text",visible=False)
# submission_result_i2v = gr.Markdown()
# submit_button_i2v.click(
# add_new_eval_i2v,
# inputs = [
# input_file_i2v,
# model_name_textbox_i2v,
# revision_name_textbox_i2v,
# model_link_i2v,
# team_name_i2v,
# contact_email_i2v,
# release_time_i2v,
# access_type_i2v,
# model_resolution_i2v,
# model_fps_i2v,
# model_frame_i2v,
# model_video_length_i2v,
# model_checkpoint_i2v,
# model_commit_id_i2v,
# model_video_format_i2v
# ],
# outputs=[submit_button_i2v, submit_succ_button_i2v, fail_textbox_i2v]
# )
# def refresh_data():
# value1 = get_baseline_df()
# return value1
# with gr.Row():
# data_run = gr.Button("Refresh")
# # data_run.click(on_filter_model_size_method_change, inputs=[checkbox_group], outputs=data_component)
# data_run.click(on_filter_model_size_method_change, outputs=data_component)
block.launch()