__all__ = ['block', 'make_clickable_model', 'make_clickable_user', 'get_submissions'] import os import io import gradio as gr import pandas as pd import json import shutil import tempfile import datetime import zipfile import numpy as np from constants import * from huggingface_hub import Repository HF_TOKEN = os.environ.get("HF_TOKEN") global data_component, filter_component def upload_file(files): file_paths = [file.name for file in files] return file_paths def add_new_eval_i2v( input_file, model_name_textbox: str, revision_name_textbox: str, model_link: str, team_name: str, contact_email: str, access_type: str, model_publish: str, model_resolution: str, model_fps: str, model_frame: str, model_video_length: str, model_checkpoint: str, model_commit_id: str, model_video_format: str ): COLNAME2KEY={ "Video-Text Camera Motion":"camera_motion", "Video-Image Subject Consistency": "i2v_subject", "Video-Image Background Consistency": "i2v_background", "Subject Consistency": "subject_consistency", "Background Consistency": "background_consistency", "Motion Smoothness": "motion_smoothness", "Dynamic Degree": "dynamic_degree", "Aesthetic Quality": "aesthetic_quality", "Imaging Quality": "imaging_quality", "Temporal Flickering": "temporal_flickering" } if input_file is None: return "Error! Empty file!" if model_link == '' or model_name_textbox == '' or contact_email == '': return gr.update(visible=True), gr.update(visible=False), gr.update(visible=True) upload_content = input_file submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset") submission_repo.git_pull() filename = datetime.datetime.now().strftime("%Y%m%d_%H%M%S") now = datetime.datetime.now() update_time = now.strftime("%Y-%m-%d") # Capture update time with open(f'{SUBMISSION_NAME}/{filename}.zip','wb') as f: f.write(input_file) # shutil.copyfile(CSV_DIR, os.path.join(SUBMISSION_NAME, f"{input_file}")) csv_data = pd.read_csv(I2V_DIR) if revision_name_textbox == '': col = csv_data.shape[0] model_name = model_name_textbox.replace(',',' ') else: model_name = revision_name_textbox.replace(',',' ') model_name_list = csv_data['Model Name (clickable)'] name_list = [name.split(']')[0][1:] for name in model_name_list] if revision_name_textbox not in name_list: col = csv_data.shape[0] else: col = name_list.index(revision_name_textbox) if model_link == '': model_name = model_name # no url else: model_name = '[' + model_name + '](' + model_link + ')' os.makedirs(filename, exist_ok=True) with zipfile.ZipFile(io.BytesIO(input_file), 'r') as zip_ref: zip_ref.extractall(filename) upload_data = {} for file in os.listdir(filename): if file.startswith('.') or file.startswith('__'): print(f"Skip the file: {file}") continue cur_file = os.path.join(filename, file) if os.path.isdir(cur_file): for subfile in os.listdir(cur_file): if subfile.endswith(".json"): with open(os.path.join(cur_file, subfile)) as ff: cur_json = json.load(ff) print(file, type(cur_json)) if isinstance(cur_json, dict): print(cur_json.keys()) for key in cur_json: upload_data[key] = cur_json[key][0] print(f"{key}:{cur_json[key][0]}") elif cur_file.endswith('json'): with open(cur_file) as ff: cur_json = json.load(ff) print(file, type(cur_json)) if isinstance(cur_json, dict): print(cur_json.keys()) for key in cur_json: upload_data[key] = cur_json[key][0] print(f"{key}:{cur_json[key][0]}") # add new data new_data = [model_name] print('upload_data:', upload_data) I2V_HEAD= ["Video-Text Camera Motion", "Video-Image Subject Consistency", "Video-Image Background Consistency", "Subject Consistency", "Background Consistency", "Temporal Flickering", "Motion Smoothness", "Dynamic Degree", "Aesthetic Quality", "Imaging Quality" ] for key in I2V_HEAD : sub_key = COLNAME2KEY[key] if sub_key in upload_data: new_data.append(upload_data[sub_key]) else: new_data.append(0) if team_name =='' or 'vbench' in team_name.lower(): new_data.append("User Upload") else: new_data.append(team_name) new_data.append(contact_email.replace(',',' and ')) # Add contact email [private] new_data.append(update_time) # Add the update time new_data.append(team_name) new_data.append(access_type) csv_data.loc[col] = new_data csv_data = csv_data.to_csv(I2V_DIR , index=False) with open(INFO_DIR,'a') as f: f.write(f"{model_name}\t{update_time}\t{model_publish}\t{model_resolution}\t{model_fps}\t{model_frame}\t{model_video_length}\t{model_checkpoint}\t{model_commit_id}\t{model_video_format}\n") submission_repo.push_to_hub() print("success update", model_name) return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False) def get_normalized_df(df): # final_score = df.drop('name', axis=1).sum(axis=1) # df.insert(1, 'Overall Score', final_score) normalize_df = df.copy().fillna(0.0) for column in normalize_df.columns[1:-5]: min_val = NORMALIZE_DIC[column]['Min'] max_val = NORMALIZE_DIC[column]['Max'] normalize_df[column] = (normalize_df[column] - min_val) / (max_val - min_val) return normalize_df def get_normalized_i2v_df(df): normalize_df = df.copy().fillna(0.0) for column in normalize_df.columns[1:-5]: min_val = NORMALIZE_DIC_I2V[column]['Min'] max_val = NORMALIZE_DIC_I2V[column]['Max'] normalize_df[column] = (normalize_df[column] - min_val) / (max_val - min_val) return normalize_df def calculate_selected_score(df, selected_columns): # selected_score = df[selected_columns].sum(axis=1) selected_QUALITY = [i for i in selected_columns if i in QUALITY_LIST] selected_SEMANTIC = [i for i in selected_columns if i in SEMANTIC_LIST] selected_quality_score = df[selected_QUALITY].sum(axis=1)/sum([DIM_WEIGHT[i] for i in selected_QUALITY]) selected_semantic_score = df[selected_SEMANTIC].sum(axis=1)/sum([DIM_WEIGHT[i] for i in selected_SEMANTIC ]) if selected_quality_score.isna().any().any() and selected_semantic_score.isna().any().any(): selected_score = (selected_quality_score * QUALITY_WEIGHT + selected_semantic_score * SEMANTIC_WEIGHT) / (QUALITY_WEIGHT + SEMANTIC_WEIGHT) return selected_score.fillna(0.0) if selected_quality_score.isna().any().any(): return selected_semantic_score if selected_semantic_score.isna().any().any(): return selected_quality_score # print(selected_semantic_score,selected_quality_score ) selected_score = (selected_quality_score * QUALITY_WEIGHT + selected_semantic_score * SEMANTIC_WEIGHT) / (QUALITY_WEIGHT + SEMANTIC_WEIGHT) return selected_score.fillna(0.0) def calculate_selected_score_i2v(df, selected_columns): # selected_score = df[selected_columns].sum(axis=1) selected_QUALITY = [i for i in selected_columns if i in I2V_QUALITY_LIST] selected_I2V = [i for i in selected_columns if i in I2V_LIST] selected_quality_score = df[selected_QUALITY].sum(axis=1)/sum([DIM_WEIGHT_I2V[i] for i in selected_QUALITY]) selected_i2v_score = df[selected_I2V].sum(axis=1)/sum([DIM_WEIGHT_I2V[i] for i in selected_I2V ]) if selected_quality_score.isna().any().any() and selected_i2v_score.isna().any().any(): selected_score = (selected_quality_score * I2V_QUALITY_WEIGHT + selected_i2v_score * I2V_WEIGHT) / (I2V_QUALITY_WEIGHT + I2V_WEIGHT) return selected_score.fillna(0.0) if selected_quality_score.isna().any().any(): return selected_i2v_score if selected_i2v_score.isna().any().any(): return selected_quality_score # print(selected_i2v_score,selected_quality_score ) selected_score = (selected_quality_score * I2V_QUALITY_WEIGHT + selected_i2v_score * I2V_WEIGHT) / (I2V_QUALITY_WEIGHT + I2V_WEIGHT) return selected_score.fillna(0.0) def get_final_score(df, selected_columns): normalize_df = get_normalized_df(df) #final_score = normalize_df.drop('name', axis=1).sum(axis=1) try: for name in normalize_df.drop('Model Name (clickable)', axis=1).drop("Sampled by", axis=1).drop('Mail', axis=1).drop('Date',axis=1).drop("Evaluated by", axis=1).drop("Accessibility", axis=1): normalize_df[name] = normalize_df[name]*DIM_WEIGHT[name] except: for name in normalize_df.drop('Model Name (clickable)', axis=1).drop("Sampled by", axis=1).drop('Mail', axis=1).drop('Date',axis=1): normalize_df[name] = normalize_df[name]*DIM_WEIGHT[name] quality_score = normalize_df[QUALITY_LIST].sum(axis=1)/sum([DIM_WEIGHT[i] for i in QUALITY_LIST]) semantic_score = normalize_df[SEMANTIC_LIST].sum(axis=1)/sum([DIM_WEIGHT[i] for i in SEMANTIC_LIST ]) final_score = (quality_score * QUALITY_WEIGHT + semantic_score * SEMANTIC_WEIGHT) / (QUALITY_WEIGHT + SEMANTIC_WEIGHT) if 'Total Score' in df: df['Total Score'] = final_score else: df.insert(1, 'Total Score', final_score) if 'Semantic Score' in df: df['Semantic Score'] = semantic_score else: df.insert(2, 'Semantic Score', semantic_score) if 'Quality Score' in df: df['Quality Score'] = quality_score else: df.insert(3, 'Quality Score', quality_score) selected_score = calculate_selected_score(normalize_df, selected_columns) if 'Selected Score' in df: df['Selected Score'] = selected_score else: df.insert(1, 'Selected Score', selected_score) return df def get_final_score_i2v(df, selected_columns): normalize_df = get_normalized_i2v_df(df) try: for name in normalize_df.drop('Model Name (clickable)', axis=1).drop("Sampled by", axis=1).drop('Mail', axis=1).drop('Date',axis=1).drop("Evaluated by", axis=1).drop("Accessibility", axis=1): normalize_df[name] = normalize_df[name]*DIM_WEIGHT_I2V[name] except: for name in normalize_df.drop('Model Name (clickable)', axis=1).drop("Sampled by", axis=1).drop('Mail', axis=1).drop('Date',axis=1): normalize_df[name] = normalize_df[name]*DIM_WEIGHT_I2V[name] quality_score = normalize_df[I2V_QUALITY_LIST].sum(axis=1)/sum([DIM_WEIGHT_I2V[i] for i in I2V_QUALITY_LIST]) i2v_score = normalize_df[I2V_LIST].sum(axis=1)/sum([DIM_WEIGHT_I2V[i] for i in I2V_LIST ]) final_score = (quality_score * I2V_QUALITY_WEIGHT + i2v_score * I2V_WEIGHT) / (I2V_QUALITY_WEIGHT + I2V_WEIGHT) if 'Total Score' in df: df['Total Score'] = final_score else: df.insert(1, 'Total Score', final_score) if 'I2V Score' in df: df['I2V Score'] = i2v_score else: df.insert(2, 'I2V Score', i2v_score) if 'Quality Score' in df: df['Quality Score'] = quality_score else: df.insert(3, 'Quality Score', quality_score) selected_score = calculate_selected_score_i2v(normalize_df, selected_columns) if 'Selected Score' in df: df['Selected Score'] = selected_score else: df.insert(1, 'Selected Score', selected_score) # df.loc[df[9:].isnull().any(axis=1), ['Total Score', 'I2V Score']] = 'N.A.' mask = df.iloc[:, 5:-5].isnull().any(axis=1) df.loc[mask, ['Total Score', 'I2V Score','Selected Score' ]] = np.nan # df.fillna('N.A.', inplace=True) return df def get_final_score_quality(df, selected_columns): normalize_df = get_normalized_df(df) for name in normalize_df.drop('Model Name (clickable)', axis=1): normalize_df[name] = normalize_df[name]*DIM_WEIGHT[name] quality_score = normalize_df[QUALITY_TAB].sum(axis=1) / sum([DIM_WEIGHT[i] for i in QUALITY_TAB]) if 'Quality Score' in df: df['Quality Score'] = quality_score else: df.insert(1, 'Quality Score', quality_score) # selected_score = normalize_df[selected_columns].sum(axis=1) / len(selected_columns) selected_score = normalize_df[selected_columns].sum(axis=1)/sum([DIM_WEIGHT[i] for i in selected_columns]) if 'Selected Score' in df: df['Selected Score'] = selected_score else: df.insert(1, 'Selected Score', selected_score) return df def get_baseline_df(): submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset") submission_repo.git_pull() df = pd.read_csv(CSV_DIR) df = get_final_score(df, checkbox_group.value) df = df.sort_values(by="Selected Score", ascending=False) present_columns = MODEL_INFO + checkbox_group.value # print(present_columns) df = df[present_columns] # Add this line to display the results evaluated by VBench by default df = df[df['Evaluated by'] == 'VBench Team'] df = convert_scores_to_percentage(df) return df def get_all_df(selected_columns, dir=CSV_DIR): submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset") submission_repo.git_pull() df = pd.read_csv(dir) df = get_final_score(df, selected_columns) df = df.sort_values(by="Selected Score", ascending=False) return df def get_all_df_quality(selected_columns, dir=QUALITY_DIR): submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset") submission_repo.git_pull() df = pd.read_csv(dir) df = get_final_score_quality(df, selected_columns) df = df.sort_values(by="Selected Score", ascending=False) return df def get_all_df_i2v(selected_columns, dir=I2V_DIR): submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset") submission_repo.git_pull() df = pd.read_csv(dir) df = get_final_score_i2v(df, selected_columns) df = df.sort_values(by="Selected Score", ascending=False) return df def get_all_df_long(selected_columns, dir=LONG_DIR): submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset") submission_repo.git_pull() df = pd.read_csv(dir) df = get_final_score(df, selected_columns) df = df.sort_values(by="Selected Score", ascending=False) return df def convert_scores_to_percentage(df): # Operate on every column in the DataFrame (except the'name 'column) if "Sampled by" in df.columns: skip_col =3 else: skip_col =1 print(df) for column in df.columns[skip_col:]: # 假设第一列是'name' # if df[column].isdigit(): # print(df[column]) # is_numeric = pd.to_numeric(df[column], errors='coerce').notna().all() valid_numeric_count = pd.to_numeric(df[column], errors='coerce').notna().sum() if valid_numeric_count > 0: df[column] = round(df[column] * 100,2) df[column] = df[column].apply(lambda x: f"{x:05.2f}%" if pd.notna(pd.to_numeric(x, errors='coerce')) else x) # df[column] = df[column].apply(lambda x: f"{x:05.2f}") + '%' return df def choose_all_quailty(): return gr.update(value=QUALITY_LIST) def choose_all_semantic(): return gr.update(value=SEMANTIC_LIST) def disable_all(): return gr.update(value=[]) def enable_all(): return gr.update(value=TASK_INFO) # select function def on_filter_model_size_method_change(selected_columns, vbench_team_sample, vbench_team_eval=False): updated_data = get_all_df(selected_columns, CSV_DIR) if vbench_team_sample: updated_data = updated_data[updated_data["Sampled by"] == 'VBench Team'] if vbench_team_eval: updated_data = updated_data[updated_data['Evaluated by'] == 'VBench Team'] #print(updated_data) # columns: selected_columns = [item for item in TASK_INFO if item in selected_columns] present_columns = MODEL_INFO + selected_columns updated_data = updated_data[present_columns] updated_data = updated_data.sort_values(by="Selected Score", ascending=False) updated_data = convert_scores_to_percentage(updated_data) updated_headers = present_columns print(COLUMN_NAMES,updated_headers,DATA_TITILE_TYPE ) update_datatype = [DATA_TITILE_TYPE[COLUMN_NAMES.index(x)] for x in updated_headers] # print(updated_data,present_columns,update_datatype) filter_component = gr.components.Dataframe( value=updated_data, headers=updated_headers, type="pandas", datatype=update_datatype, interactive=False, visible=True, ) return filter_component#.value def on_filter_model_size_method_change_quality(selected_columns): updated_data = get_all_df_quality(selected_columns, QUALITY_DIR) #print(updated_data) # columns: selected_columns = [item for item in QUALITY_TAB if item in selected_columns] present_columns = MODEL_INFO_TAB_QUALITY + selected_columns updated_data = updated_data[present_columns] updated_data = updated_data.sort_values(by="Selected Score", ascending=False) updated_data = convert_scores_to_percentage(updated_data) updated_headers = present_columns update_datatype = [DATA_TITILE_TYPE[COLUMN_NAMES.index(x)] for x in updated_headers] # print(updated_data,present_columns,update_datatype) filter_component = gr.components.Dataframe( value=updated_data, headers=updated_headers, type="pandas", datatype=update_datatype, interactive=False, visible=True, ) return filter_component#.value def on_filter_model_size_method_change_i2v(selected_columns,vbench_team_sample, vbench_team_eval=False): updated_data = get_all_df_i2v(selected_columns, I2V_DIR) if vbench_team_sample: updated_data = updated_data[updated_data["Sampled by"] == 'VBench Team'] # if vbench_team_eval: # updated_data = updated_data[updated_data['Eval'] == 'VBench Team'] selected_columns = [item for item in I2V_TAB if item in selected_columns] present_columns = MODEL_INFO_TAB_I2V + selected_columns updated_data = updated_data[present_columns] updated_data = updated_data.sort_values(by="Selected Score", ascending=False) updated_data = convert_scores_to_percentage(updated_data) updated_headers = present_columns update_datatype = [DATA_TITILE_TYPE[COLUMN_NAMES_I2V.index(x)] for x in updated_headers] # print(updated_data,present_columns,update_datatype) filter_component = gr.components.Dataframe( value=updated_data, headers=updated_headers, type="pandas", datatype=update_datatype, interactive=False, visible=True, ) return filter_component#.value def on_filter_model_size_method_change_long(selected_columns, vbench_team_sample, vbench_team_eval=False): updated_data = get_all_df_long(selected_columns, LONG_DIR) if vbench_team_sample: updated_data = updated_data[updated_data["Sampled by"] == 'VBench Team'] if vbench_team_eval: updated_data = updated_data[updated_data['Evaluated by'] == 'VBench Team'] selected_columns = [item for item in TASK_INFO if item in selected_columns] present_columns = MODEL_INFO + selected_columns updated_data = updated_data[present_columns] updated_data = updated_data.sort_values(by="Selected Score", ascending=False) updated_data = convert_scores_to_percentage(updated_data) updated_headers = present_columns update_datatype = [DATA_TITILE_TYPE[COLUMN_NAMES.index(x)] for x in updated_headers] filter_component = gr.components.Dataframe( value=updated_data, headers=updated_headers, type="pandas", datatype=update_datatype, interactive=False, visible=True, ) return filter_component#.value block = gr.Blocks() with block: gr.Markdown( LEADERBORAD_INTRODUCTION ) with gr.Tabs(elem_classes="tab-buttons") as tabs: # Table 0 df_raw = pd.read_csv( "https://huggingface.co/spaces/V-STaR-Bench/V-STaR-LeaderBoard/resolve/main/leaderboard.csv", header=[0, 1] # 告诉 pandas 前两行为表头 ).map(lambda x: f"{x:.2f}" if isinstance(x, (int, float)) else x) df_domain = pd.read_csv( "https://huggingface.co/spaces/V-STaR-Bench/V-STaR-LeaderBoard/resolve/main/results.csv", header=[0, 1] # 告诉 pandas 前两行为表头 ).map(lambda x: f"{x:.2f}" if isinstance(x, (int, float)) else x) df_chain_1 = pd.read_csv( "https://huggingface.co/spaces/V-STaR-Bench/V-STaR-LeaderBoard/resolve/main/leaderboard_chain1.csv", # header=[0, 1] # 告诉 pandas 前两行为表头 ).map(lambda x: f"{x:.2f}" if isinstance(x, (int, float)) else x) df_chain_2 = pd.read_csv( "https://huggingface.co/spaces/V-STaR-Bench/V-STaR-LeaderBoard/resolve/main/leaderboard_chain2.csv", # header=[0, 1] # 告诉 pandas 前两行为表头 ).map(lambda x: f"{x:.2f}" if isinstance(x, (int, float)) else x) # 2) 将 MultiIndex 列名转换为单层列名,例如 "Animals-mAM" new_columns = [] for col_tuple in df_raw.columns: # col_tuple 是形如 ("Animals", "mAM") 或 ("Model", nan) 的二元元组 domain = str(col_tuple[0]).strip() if pd.notnull(col_tuple[0]) else "" metric = str(col_tuple[1]).strip() if pd.notnull(col_tuple[1]) else "" if domain and metric: new_columns.append(f"{domain}-{metric}") else: # 如果某一层为空,就只使用非空的那层 new_columns.append(domain or metric) df_raw.columns = new_columns # 如果第一列是 "Model-" 这种情况,可以进行一下修正 if df_raw.columns[0].endswith("-"): df_raw.rename(columns={df_raw.columns[0]: "Model"}, inplace=True) # 3) 用前面处理过的列来构建 checkbox 选项 # 假设第一列 "Model" 不需要放到 checkbox 里 all_columns = df_raw.columns.tolist()[1:] choices_from_csv = [col.strip() for col in all_columns if col.strip()] with gr.Tabs(elem_classes="tab-buttons") as tabs: with gr.TabItem("📊 V-STaR"): with gr.Row(): with gr.Accordion("Citation", open=False): citation_button = gr.Textbox( value=CITATION_BUTTON_TEXT, label=CITATION_BUTTON_LABEL, lines=14, ) gr.Markdown(TABLE_INTRODUCTION) # 复选框 # checkbox_group = gr.CheckboxGroup( # choices=choices_from_csv, # value=choices_from_csv, # 默认全选 # label="Evaluation Dimension", # interactive=True, # ) # with gr.Row(): # checkbox_group # 显示 DataFrame data_component = gr.Dataframe( value=df_raw, type="pandas", interactive=False, visible=True, ) with gr.TabItem("📊 Chain 1"): with gr.Row(): with gr.Accordion("Citation", open=False): citation_button = gr.Textbox( value=CITATION_BUTTON_TEXT, label=CITATION_BUTTON_LABEL, lines=14, ) gr.Markdown(TABLE_INTRODUCTION) # 复选框 # checkbox_group = gr.CheckboxGroup( # choices=choices_from_csv, # value=choices_from_csv, # 默认全选 # label="Evaluation Dimension", # interactive=True, # ) # with gr.Row(): # checkbox_group # 显示 DataFrame data_component = gr.Dataframe( value=df_chain_1, type="pandas", interactive=False, visible=True, ) with gr.TabItem("📊 Chain 2"): with gr.Row(): with gr.Accordion("Citation", open=False): citation_button = gr.Textbox( value=CITATION_BUTTON_TEXT, label=CITATION_BUTTON_LABEL, lines=14, ) gr.Markdown(TABLE_INTRODUCTION) # 复选框 # checkbox_group = gr.CheckboxGroup( # choices=choices_from_csv, # value=choices_from_csv, # 默认全选 # label="Evaluation Dimension", # interactive=True, # ) # with gr.Row(): # checkbox_group # 显示 DataFrame data_component = gr.Dataframe( value=df_chain_2, type="pandas", interactive=False, visible=True, ) with gr.TabItem("📊 Domain"): with gr.Row(): with gr.Accordion("Citation", open=False): citation_button = gr.Textbox( value=CITATION_BUTTON_TEXT, label=CITATION_BUTTON_LABEL, lines=14, ) gr.Markdown(TABLE_INTRODUCTION) # 复选框 # checkbox_group = gr.CheckboxGroup( # choices=choices_from_csv, # value=choices_from_csv, # 默认全选 # label="Evaluation Dimension", # interactive=True, # ) # with gr.Row(): # checkbox_group # 显示 DataFrame data_component = gr.Dataframe( value=df_domain, type="pandas", interactive=False, visible=True, ) # table info with gr.TabItem("📝 Submission", elem_id="mvbench-tab-table", id=3): gr.Markdown(LEADERBORAD_INFO, elem_classes="markdown-text") # with gr.TabItem("🚀 Submit here! ", elem_id="mvbench-i2v-tab-table", id=5): # gr.Markdown(LEADERBORAD_INTRODUCTION, elem_classes="markdown-text") with gr.Row(): gr.Markdown(SUBMIT_INTRODUCTION, elem_classes="markdown-text") # with gr.Row(): # gr.Markdown("# ✉️✨ Submit your i2v model evaluation json file here!", elem_classes="markdown-text") # with gr.Row(): # gr.Markdown("Here is a required field", elem_classes="markdown-text") # with gr.Row(): # with gr.Column(): # model_name_textbox_i2v = gr.Textbox( # label="Model name", placeholder="Required field" # ) # revision_name_textbox_i2v = gr.Textbox( # label="Revision Model Name(Optional)", placeholder="If you need to update the previous results, please fill in this line" # ) # access_type_i2v = gr.Dropdown(["Open Source", "Ready to Open Source", "API", "Close"], label="Please select the way user can access your model. You can update the content by revision_name, or contact the VBench Team.") # with gr.Column(): # model_link_i2v = gr.Textbox( # label="Project Page/Paper Link/Github/HuggingFace Repo", placeholder="Required field. If filling in the wrong information, your results may be removed." # ) # team_name_i2v = gr.Textbox( # label="Your Team Name(If left blank, it will be user upload)", placeholder="User Upload" # ) # contact_email_i2v = gr.Textbox( # label="E-Mail(Will not be displayed)", placeholder="Required field" # ) # with gr.Row(): # gr.Markdown("The following is optional and will be synced to [GitHub] (https://github.com/Vchitect/VBench/tree/master/sampled_videos#what-are-the-details-of-the-video-generation-models)", elem_classes="markdown-text") # with gr.Row(): # release_time_i2v = gr.Textbox(label="Time of Publish", placeholder="1970-01-01") # model_resolution_i2v = gr.Textbox(label="resolution", )#placeholder="Width x Height") # model_fps_i2v = gr.Textbox(label="model fps", placeholder="FPS(int)") # model_frame_i2v = gr.Textbox(label="model frame count", placeholder="INT") # model_video_length_i2v = gr.Textbox(label="model video length", placeholder="float(2.0)") # model_checkpoint_i2v = gr.Textbox(label="model checkpoint", placeholder="optional") # model_commit_id_i2v = gr.Textbox(label="github commit id", placeholder='main') # model_video_format_i2v = gr.Textbox(label="pipeline format", placeholder='mp4') # with gr.Column(): # input_file_i2v = gr.components.File(label = "Click to Upload a ZIP File", file_count="single", type='binary') # submit_button_i2v = gr.Button("Submit Eval") # submit_succ_button_i2v = gr.Markdown("Submit Success! Please press refresh and retfurn to LeaderBoard!", visible=False) # fail_textbox_i2v = gr.Markdown('Please ensure that the `Model Name`, `Project Page`, and `Email` are filled in correctly.', elem_classes="markdown-text",visible=False) # submission_result_i2v = gr.Markdown() # submit_button_i2v.click( # add_new_eval_i2v, # inputs = [ # input_file_i2v, # model_name_textbox_i2v, # revision_name_textbox_i2v, # model_link_i2v, # team_name_i2v, # contact_email_i2v, # release_time_i2v, # access_type_i2v, # model_resolution_i2v, # model_fps_i2v, # model_frame_i2v, # model_video_length_i2v, # model_checkpoint_i2v, # model_commit_id_i2v, # model_video_format_i2v # ], # outputs=[submit_button_i2v, submit_succ_button_i2v, fail_textbox_i2v] # ) # def refresh_data(): # value1 = get_baseline_df() # return value1 # with gr.Row(): # data_run = gr.Button("Refresh") # # data_run.click(on_filter_model_size_method_change, inputs=[checkbox_group], outputs=data_component) # data_run.click(on_filter_model_size_method_change, outputs=data_component) block.launch()