Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -8,151 +8,80 @@ from gtts import gTTS
|
|
8 |
import soundfile as sf
|
9 |
from transformers import VitsTokenizer, VitsModel, set_seed
|
10 |
|
11 |
-
#
|
12 |
-
|
13 |
-
os.system('git clone https://github.com/VarunGumma/IndicTransToolkit')
|
14 |
-
os.system('cd IndicTransToolkit && python3 -m pip install --editable ./')
|
15 |
|
16 |
-
#
|
17 |
-
|
18 |
-
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to("cuda" if torch.cuda.is_available() else "cpu")
|
19 |
|
20 |
-
#
|
21 |
-
|
22 |
-
|
23 |
-
inputs = blip_processor(image, "image of", return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu")
|
24 |
-
with torch.no_grad():
|
25 |
-
generated_ids = blip_model.generate(**inputs)
|
26 |
-
caption = blip_processor.decode(generated_ids[0], skip_special_tokens=True)
|
27 |
-
return caption
|
28 |
|
29 |
-
# Function
|
30 |
-
def
|
31 |
-
|
32 |
-
|
33 |
-
tokenizer_IT2 = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
34 |
-
model_IT2 = AutoModelForSeq2SeqLM.from_pretrained(model_name, trust_remote_code=True)
|
35 |
-
model_IT2 = torch.quantization.quantize_dynamic(
|
36 |
-
model_IT2, {torch.nn.Linear}, dtype=torch.qint8
|
37 |
-
)
|
38 |
-
|
39 |
-
ip = IndicProcessor(inference=True)
|
40 |
-
|
41 |
-
# Source language (English)
|
42 |
-
src_lang = "eng_Latn"
|
43 |
-
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
44 |
-
model_IT2.to(DEVICE) # Move model to the device
|
45 |
-
|
46 |
-
# Integrating with workflow now
|
47 |
-
input_sentences = [caption]
|
48 |
-
translations = {}
|
49 |
-
|
50 |
-
for tgt_lang in target_languages:
|
51 |
-
# Preprocess input sentences
|
52 |
-
batch = ip.preprocess_batch(input_sentences, src_lang=src_lang, tgt_lang=tgt_lang)
|
53 |
-
|
54 |
-
# Tokenize the sentences and generate input encodings
|
55 |
-
inputs = tokenizer_IT2(batch, truncation=True, padding="longest", return_tensors="pt").to(DEVICE)
|
56 |
-
|
57 |
-
# Generate translations using the model
|
58 |
with torch.no_grad():
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
#
|
85 |
-
|
86 |
-
tokenizer = VitsTokenizer.from_pretrained(model_name)
|
87 |
-
model = VitsModel.from_pretrained(model_name)
|
88 |
-
inputs = tokenizer(text=text, return_tensors="pt")
|
89 |
-
set_seed(555)
|
90 |
-
with torch.no_grad():
|
91 |
-
outputs = model(**inputs)
|
92 |
-
waveform = outputs.waveform[0].cpu().numpy()
|
93 |
-
sf.write(output_file, waveform, samplerate=model.config.sampling_rate)
|
94 |
-
return output_file
|
95 |
-
|
96 |
-
# Streamlit UI
|
97 |
-
st.title("Multilingual Assistive Model")
|
98 |
-
|
99 |
-
uploaded_image = st.file_uploader("Upload an Image", type=["jpg", "jpeg", "png"])
|
100 |
-
|
101 |
-
if uploaded_image is not None:
|
102 |
-
# Display the uploaded image
|
103 |
-
image = Image.open(uploaded_image)
|
104 |
-
st.image(image, caption="Uploaded Image", use_column_width=True)
|
105 |
-
|
106 |
-
# Generate Caption
|
107 |
-
st.write("Generating Caption...")
|
108 |
-
caption = generate_caption(uploaded_image)
|
109 |
-
st.write(f"Caption: {caption}")
|
110 |
|
111 |
-
# Select target languages
|
112 |
language_options = {
|
113 |
"hin_Deva": "Hindi (Devanagari)",
|
114 |
"mar_Deva": "Marathi (Devanagari)",
|
115 |
-
"guj_Gujr": "Gujarati (
|
116 |
-
"urd_Arab": "Urdu (Arabic)"
|
117 |
}
|
118 |
-
|
119 |
target_languages = st.multiselect(
|
120 |
-
"Select target languages for translation",
|
121 |
-
list(language_options.keys()),
|
122 |
-
[
|
123 |
)
|
124 |
|
125 |
-
|
126 |
-
|
127 |
-
st.write("Translating Caption...")
|
128 |
-
translations = translate_caption(caption, target_languages)
|
129 |
-
st.write("Translations:")
|
130 |
for lang in target_languages:
|
131 |
-
st.write(f"
|
132 |
-
|
133 |
-
# Select audio generation method
|
134 |
-
audio_method = st.radio("Choose Audio Generation Method", ("gTTS (Default)", "Facebook MMS-TTS"))
|
135 |
-
|
136 |
-
# Generate audio for each target language
|
137 |
-
for lang in target_languages:
|
138 |
-
st.write(f"Generating audio for {language_options[lang]}...")
|
139 |
-
|
140 |
-
lang_code = {
|
141 |
-
"hin_Deva": "hi", # Hindi
|
142 |
-
"mar_Deva": "mr", # Marathi
|
143 |
-
"guj_Gujr": "gu", # Gujarati
|
144 |
-
"urd_Arab": "ur" # Urdu
|
145 |
-
}.get(lang, "en")
|
146 |
-
|
147 |
output_file = f"{lang}_audio.mp3"
|
148 |
|
149 |
-
if
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
audio_file = generate_audio_gtts(translations[lang], lang_code, output_file)
|
151 |
else:
|
152 |
-
model_name = "
|
153 |
-
audio_file = generate_audio_fbmms(translations[lang], model_name, output_file)
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
else:
|
158 |
-
st.write("Upload an image to start.")
|
|
|
8 |
import soundfile as sf
|
9 |
from transformers import VitsTokenizer, VitsModel, set_seed
|
10 |
|
11 |
+
# Set Hugging Face token (via environment or user input)
|
12 |
+
hf_token = st.text_input("Enter your Hugging Face API token", type="password")
|
|
|
|
|
13 |
|
14 |
+
# Ensure token is provided
|
15 |
+
if hf_token:
|
|
|
16 |
|
17 |
+
# Initialize BLIP for image captioning
|
18 |
+
blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
19 |
+
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
# Function to generate captions
|
22 |
+
def generate_caption(image_path):
|
23 |
+
image = Image.open(image_path).convert("RGB")
|
24 |
+
inputs = blip_processor(image, "image of", return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
with torch.no_grad():
|
26 |
+
generated_ids = blip_model.generate(**inputs)
|
27 |
+
caption = blip_processor.decode(generated_ids[0], skip_special_tokens=True)
|
28 |
+
return caption
|
29 |
+
|
30 |
+
# Function to load FB MMS TTS model with Hugging Face token
|
31 |
+
def load_fbmms_model(model_name, hf_token):
|
32 |
+
tokenizer = VitsTokenizer.from_pretrained(model_name, use_auth_token=hf_token)
|
33 |
+
model = VitsModel.from_pretrained(model_name, use_auth_token=hf_token)
|
34 |
+
return tokenizer, model
|
35 |
+
|
36 |
+
# Function to generate audio using Facebook MMS-TTS
|
37 |
+
def generate_audio_fbmms(text, model_name, hf_token, output_file):
|
38 |
+
tokenizer, model = load_fbmms_model(model_name, hf_token)
|
39 |
+
inputs = tokenizer(text=text, return_tensors="pt")
|
40 |
+
set_seed(555)
|
41 |
+
with torch.no_grad():
|
42 |
+
outputs = model(**inputs)
|
43 |
+
waveform = outputs.waveform[0].cpu().numpy()
|
44 |
+
sf.write(output_file, waveform, samplerate=model.config.sampling_rate)
|
45 |
+
return output_file
|
46 |
+
|
47 |
+
# Streamlit UI for TTS method
|
48 |
+
tts_method = st.selectbox(
|
49 |
+
"Choose Text-to-Speech Method",
|
50 |
+
options=["gTTS (Google)", "Facebook MMS TTS"],
|
51 |
+
index=0 # Default to gTTS
|
52 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
+
# Select target languages with human-readable names
|
55 |
language_options = {
|
56 |
"hin_Deva": "Hindi (Devanagari)",
|
57 |
"mar_Deva": "Marathi (Devanagari)",
|
58 |
+
"guj_Gujr": "Gujarati (Gujarati)",
|
59 |
+
"urd_Arab": "Urdu (Arabic)"
|
60 |
}
|
61 |
+
|
62 |
target_languages = st.multiselect(
|
63 |
+
"Select target languages for translation",
|
64 |
+
options=list(language_options.keys()),
|
65 |
+
format_func=lambda x: language_options[x]
|
66 |
)
|
67 |
|
68 |
+
if uploaded_image is not None and target_languages:
|
69 |
+
caption = generate_caption(uploaded_image)
|
|
|
|
|
|
|
70 |
for lang in target_languages:
|
71 |
+
st.write(f"Generating audio for {lang}...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
output_file = f"{lang}_audio.mp3"
|
73 |
|
74 |
+
if tts_method == "gTTS (Google)":
|
75 |
+
lang_code = {
|
76 |
+
"hin_Deva": "hi",
|
77 |
+
"mar_Deva": "mr",
|
78 |
+
"guj_Gujr": "gu",
|
79 |
+
"urd_Arab": "ur"
|
80 |
+
}.get(lang, "en")
|
81 |
audio_file = generate_audio_gtts(translations[lang], lang_code, output_file)
|
82 |
else:
|
83 |
+
model_name = f"facebook/mms-tts-{lang}"
|
84 |
+
audio_file = generate_audio_fbmms(translations[lang], model_name, hf_token, output_file)
|
85 |
+
|
86 |
+
if audio_file:
|
87 |
+
st.audio(audio_file)
|
|
|
|