from flask import Flask, request, render_template, send_from_directory from PIL import Image import torch from transformers import BlipProcessor, BlipForConditionalGeneration, AutoModelForSeq2SeqLM, AutoTokenizer from gtts import gTTS import os import soundfile as sf from transformers import VitsTokenizer, VitsModel, set_seed from IndicTransToolkit import IndicProcessor # Initialize Flask app app = Flask(__name__) UPLOAD_FOLDER = "./static/uploads/" AUDIO_FOLDER = "./static/audio/" os.makedirs(UPLOAD_FOLDER, exist_ok=True) os.makedirs(AUDIO_FOLDER, exist_ok=True) app.config["UPLOAD_FOLDER"] = UPLOAD_FOLDER app.config["AUDIO_FOLDER"] = AUDIO_FOLDER # Load models blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large") blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large").to("cuda" if torch.cuda.is_available() else "cpu") model_name = "ai4bharat/indictrans2-en-indic-1B" tokenizer_IT2 = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) model_IT2 = AutoModelForSeq2SeqLM.from_pretrained(model_name, trust_remote_code=True) model_IT2 = torch.quantization.quantize_dynamic( model_IT2, {torch.nn.Linear}, dtype=torch.qint8 ) model_IT2.to("cuda" if torch.cuda.is_available() else "cpu") ip = IndicProcessor(inference=True) # Functions def generate_caption(image_path): image = Image.open(image_path).convert("RGB") inputs = blip_processor(image, "image of", return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu") with torch.no_grad(): generated_ids = blip_model.generate(**inputs) return blip_processor.decode(generated_ids[0], skip_special_tokens=True) def translate_caption(caption, target_languages): src_lang = "eng_Latn" input_sentences = [caption] translations = {} for tgt_lang in target_languages: batch = ip.preprocess_batch(input_sentences, src_lang=src_lang, tgt_lang=tgt_lang) inputs = tokenizer_IT2(batch, truncation=True, padding="longest", return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu") with torch.no_grad(): generated_tokens = model_IT2.generate( **inputs, min_length=0, max_length=256, num_beams=5, num_return_sequences=1 ) with tokenizer_IT2.as_target_tokenizer(): translated_tokens = tokenizer_IT2.batch_decode(generated_tokens.detach().cpu().tolist(), skip_special_tokens=True, clean_up_tokenization_spaces=True) translations[tgt_lang] = ip.postprocess_batch(translated_tokens, lang=tgt_lang)[0] return translations def generate_audio_gtts(text, lang_code, output_file): tts = gTTS(text=text, lang=lang_code) tts.save(output_file) return output_file @app.route("/", methods=["GET", "POST"]) def index(): if request.method == "POST": image_file = request.files.get("image") if image_file: image_path = os.path.join(app.config["UPLOAD_FOLDER"], image_file.filename) image_file.save(image_path) caption = generate_caption(image_path) target_languages = request.form.getlist("languages") translations = translate_caption(caption, target_languages) audio_files = {} lang_codes = { "hin_Deva": "hi", "guj_Gujr": "gu", "urd_Arab": "ur", "mar_Deva": "mr" } for lang, translation in translations.items(): lang_code = lang_codes.get(lang, "en") audio_file_path = os.path.join(app.config["AUDIO_FOLDER"], f"{lang}.mp3") audio_files[lang] = generate_audio_gtts(translation, lang_code, audio_file_path) return render_template( "index.html", image_path=image_path, caption=caption, translations=translations, audio_files=audio_files ) return render_template("index.html") @app.route("/audio/") def audio(filename): return send_from_directory(app.config["AUDIO_FOLDER"], filename) if __name__ == "__main__": app.run(host="0.0.0.0", port=7860)