Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -3,18 +3,16 @@
|
|
3 |
import os
|
4 |
import re
|
5 |
import tempfile
|
6 |
-
import gc
|
7 |
from collections.abc import Iterator
|
8 |
from threading import Thread
|
9 |
import json
|
10 |
import requests
|
11 |
-
import cv2
|
12 |
import gradio as gr
|
13 |
import spaces
|
14 |
import torch
|
15 |
from loguru import logger
|
16 |
-
from
|
17 |
-
from transformers import AutoProcessor, Gemma3ForConditionalGeneration, TextIteratorStreamer
|
18 |
|
19 |
# CSV/TXT 분석
|
20 |
import pandas as pd
|
@@ -51,7 +49,6 @@ def extract_keywords(text: str, top_k: int = 5) -> str:
|
|
51 |
|
52 |
##############################################################################
|
53 |
# SerpHouse Live endpoint 호출
|
54 |
-
# - 상위 20개 결과 JSON을 LLM에 넘길 때 link, snippet 등 모두 포함
|
55 |
##############################################################################
|
56 |
def do_web_search(query: str) -> str:
|
57 |
"""
|
@@ -61,14 +58,13 @@ def do_web_search(query: str) -> str:
|
|
61 |
try:
|
62 |
url = "https://api.serphouse.com/serp/live"
|
63 |
|
64 |
-
# 기본 GET 방식으로 파라미터 간소화하고 결과 수를 20개로 제한
|
65 |
params = {
|
66 |
"q": query,
|
67 |
"domain": "google.com",
|
68 |
-
"serp_type": "web",
|
69 |
"device": "desktop",
|
70 |
"lang": "en",
|
71 |
-
"num": "20"
|
72 |
}
|
73 |
|
74 |
headers = {
|
@@ -76,44 +72,33 @@ def do_web_search(query: str) -> str:
|
|
76 |
}
|
77 |
|
78 |
logger.info(f"SerpHouse API 호출 중... 검색어: {query}")
|
79 |
-
logger.info(f"요청 URL: {url} - 파라미터: {params}")
|
80 |
|
81 |
-
# GET 요청 수행
|
82 |
response = requests.get(url, headers=headers, params=params, timeout=60)
|
83 |
response.raise_for_status()
|
84 |
|
85 |
-
logger.info(f"SerpHouse API 응답 상태 코드: {response.status_code}")
|
86 |
data = response.json()
|
87 |
|
88 |
# 다양한 응답 구조 처리
|
89 |
results = data.get("results", {})
|
90 |
organic = None
|
91 |
|
92 |
-
# 가능한 응답 구조 1
|
93 |
if isinstance(results, dict) and "organic" in results:
|
94 |
organic = results["organic"]
|
95 |
-
|
96 |
-
# 가능한 응답 구조 2 (중첩된 results)
|
97 |
elif isinstance(results, dict) and "results" in results:
|
98 |
if isinstance(results["results"], dict) and "organic" in results["results"]:
|
99 |
organic = results["results"]["organic"]
|
100 |
-
|
101 |
-
# 가능한 응답 구조 3 (최상위 organic)
|
102 |
elif "organic" in data:
|
103 |
organic = data["organic"]
|
104 |
|
105 |
if not organic:
|
106 |
logger.warning("응답에서 organic 결과를 찾을 수 없습니다.")
|
107 |
-
logger.debug(f"응답 구조: {list(data.keys())}")
|
108 |
-
if isinstance(results, dict):
|
109 |
-
logger.debug(f"results 구조: {list(results.keys())}")
|
110 |
return "No web search results found or unexpected API response structure."
|
111 |
|
112 |
# 결과 수 제한 및 컨텍스트 길이 최적화
|
113 |
max_results = min(20, len(organic))
|
114 |
limited_organic = organic[:max_results]
|
115 |
|
116 |
-
# 결과 형식 개선 - 마크다운 형식으로
|
117 |
summary_lines = []
|
118 |
for idx, item in enumerate(limited_organic, start=1):
|
119 |
title = item.get("title", "No title")
|
@@ -121,7 +106,6 @@ def do_web_search(query: str) -> str:
|
|
121 |
snippet = item.get("snippet", "No description")
|
122 |
displayed_link = item.get("displayed_link", link)
|
123 |
|
124 |
-
# 마크다운 형식 (링크 클릭 가능)
|
125 |
summary_lines.append(
|
126 |
f"### Result {idx}: {title}\n\n"
|
127 |
f"{snippet}\n\n"
|
@@ -129,7 +113,6 @@ def do_web_search(query: str) -> str:
|
|
129 |
f"---\n"
|
130 |
)
|
131 |
|
132 |
-
# 모델에게 명확한 지침 추가
|
133 |
instructions = """
|
134 |
# 웹 검색 결과
|
135 |
아래는 검색 결과입니다. 질문에 답변할 때 이 정보를 활용하세요:
|
@@ -147,31 +130,27 @@ def do_web_search(query: str) -> str:
|
|
147 |
logger.error(f"Web search failed: {e}")
|
148 |
return f"Web search failed: {str(e)}"
|
149 |
|
150 |
-
|
151 |
##############################################################################
|
152 |
-
#
|
153 |
##############################################################################
|
154 |
MAX_CONTENT_CHARS = 2000
|
155 |
-
MAX_INPUT_LENGTH = 2096
|
156 |
model_id = os.getenv("MODEL_ID", "VIDraft/Gemma-3-R1984-1B")
|
157 |
|
158 |
-
|
159 |
-
|
|
|
160 |
model_id,
|
161 |
device_map="auto",
|
162 |
torch_dtype=torch.bfloat16,
|
163 |
-
attn_implementation="eager"
|
164 |
)
|
165 |
-
MAX_NUM_IMAGES = int(os.getenv("MAX_NUM_IMAGES", "5"))
|
166 |
-
|
167 |
|
168 |
##############################################################################
|
169 |
# CSV, TXT, PDF 분석 함수
|
170 |
##############################################################################
|
171 |
def analyze_csv_file(path: str) -> str:
|
172 |
-
"""
|
173 |
-
CSV 파일을 전체 문자열로 변환. 너무 길 경우 일부만 표시.
|
174 |
-
"""
|
175 |
try:
|
176 |
df = pd.read_csv(path)
|
177 |
if df.shape[0] > 50 or df.shape[1] > 10:
|
@@ -183,11 +162,8 @@ def analyze_csv_file(path: str) -> str:
|
|
183 |
except Exception as e:
|
184 |
return f"Failed to read CSV ({os.path.basename(path)}): {str(e)}"
|
185 |
|
186 |
-
|
187 |
def analyze_txt_file(path: str) -> str:
|
188 |
-
"""
|
189 |
-
TXT 파일 전문 읽기. 너무 길면 일부만 표시.
|
190 |
-
"""
|
191 |
try:
|
192 |
with open(path, "r", encoding="utf-8") as f:
|
193 |
text = f.read()
|
@@ -197,11 +173,8 @@ def analyze_txt_file(path: str) -> str:
|
|
197 |
except Exception as e:
|
198 |
return f"Failed to read TXT ({os.path.basename(path)}): {str(e)}"
|
199 |
|
200 |
-
|
201 |
def pdf_to_markdown(pdf_path: str) -> str:
|
202 |
-
"""
|
203 |
-
PDF 텍스트를 Markdown으로 변환. 페이지별로 간단히 텍스트 추출.
|
204 |
-
"""
|
205 |
text_chunks = []
|
206 |
try:
|
207 |
with open(pdf_path, "rb") as f:
|
@@ -226,146 +199,9 @@ def pdf_to_markdown(pdf_path: str) -> str:
|
|
226 |
|
227 |
return f"**[PDF File: {os.path.basename(pdf_path)}]**\n\n{full_text}"
|
228 |
|
229 |
-
|
230 |
-
##############################################################################
|
231 |
-
# 이미지/비디오 업로드 제한 검사
|
232 |
-
##############################################################################
|
233 |
-
def count_files_in_new_message(paths: list[str]) -> tuple[int, int]:
|
234 |
-
image_count = 0
|
235 |
-
video_count = 0
|
236 |
-
for path in paths:
|
237 |
-
if path.endswith(".mp4"):
|
238 |
-
video_count += 1
|
239 |
-
elif re.search(r"\.(png|jpg|jpeg|gif|webp)$", path, re.IGNORECASE):
|
240 |
-
image_count += 1
|
241 |
-
return image_count, video_count
|
242 |
-
|
243 |
-
|
244 |
-
def count_files_in_history(history: list[dict]) -> tuple[int, int]:
|
245 |
-
image_count = 0
|
246 |
-
video_count = 0
|
247 |
-
for item in history:
|
248 |
-
if item["role"] != "user" or isinstance(item["content"], str):
|
249 |
-
continue
|
250 |
-
if isinstance(item["content"], list) and len(item["content"]) > 0:
|
251 |
-
file_path = item["content"][0]
|
252 |
-
if isinstance(file_path, str):
|
253 |
-
if file_path.endswith(".mp4"):
|
254 |
-
video_count += 1
|
255 |
-
elif re.search(r"\.(png|jpg|jpeg|gif|webp)$", file_path, re.IGNORECASE):
|
256 |
-
image_count += 1
|
257 |
-
return image_count, video_count
|
258 |
-
|
259 |
-
|
260 |
-
def validate_media_constraints(message: dict, history: list[dict]) -> bool:
|
261 |
-
media_files = []
|
262 |
-
for f in message["files"]:
|
263 |
-
if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE) or f.endswith(".mp4"):
|
264 |
-
media_files.append(f)
|
265 |
-
|
266 |
-
new_image_count, new_video_count = count_files_in_new_message(media_files)
|
267 |
-
history_image_count, history_video_count = count_files_in_history(history)
|
268 |
-
image_count = history_image_count + new_image_count
|
269 |
-
video_count = history_video_count + new_video_count
|
270 |
-
|
271 |
-
if video_count > 1:
|
272 |
-
gr.Warning("Only one video is supported.")
|
273 |
-
return False
|
274 |
-
if video_count == 1:
|
275 |
-
if image_count > 0:
|
276 |
-
gr.Warning("Mixing images and videos is not allowed.")
|
277 |
-
return False
|
278 |
-
if "<image>" in message["text"]:
|
279 |
-
gr.Warning("Using <image> tags with video files is not supported.")
|
280 |
-
return False
|
281 |
-
if video_count == 0 and image_count > MAX_NUM_IMAGES:
|
282 |
-
gr.Warning(f"You can upload up to {MAX_NUM_IMAGES} images.")
|
283 |
-
return False
|
284 |
-
|
285 |
-
if "<image>" in message["text"]:
|
286 |
-
image_files = [f for f in message["files"] if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE)]
|
287 |
-
image_tag_count = message["text"].count("<image>")
|
288 |
-
if image_tag_count != len(image_files):
|
289 |
-
gr.Warning("The number of <image> tags in the text does not match the number of image files.")
|
290 |
-
return False
|
291 |
-
|
292 |
-
return True
|
293 |
-
|
294 |
-
|
295 |
##############################################################################
|
296 |
-
#
|
297 |
##############################################################################
|
298 |
-
def downsample_video(video_path: str) -> list[tuple[Image.Image, float]]:
|
299 |
-
vidcap = cv2.VideoCapture(video_path)
|
300 |
-
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
301 |
-
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
302 |
-
frame_interval = max(int(fps), int(total_frames / 10))
|
303 |
-
frames = []
|
304 |
-
|
305 |
-
for i in range(0, total_frames, frame_interval):
|
306 |
-
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
307 |
-
success, image = vidcap.read()
|
308 |
-
if success:
|
309 |
-
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
310 |
-
# 이미지 크기 줄이기 추가
|
311 |
-
image = cv2.resize(image, (0, 0), fx=0.5, fy=0.5)
|
312 |
-
pil_image = Image.fromarray(image)
|
313 |
-
timestamp = round(i / fps, 2)
|
314 |
-
frames.append((pil_image, timestamp))
|
315 |
-
if len(frames) >= 5:
|
316 |
-
break
|
317 |
-
|
318 |
-
vidcap.release()
|
319 |
-
return frames
|
320 |
-
|
321 |
-
|
322 |
-
def process_video(video_path: str) -> tuple[list[dict], list[str]]:
|
323 |
-
content = []
|
324 |
-
temp_files = [] # 임시 파일 추적을 위한 리스트
|
325 |
-
|
326 |
-
frames = downsample_video(video_path)
|
327 |
-
for frame in frames:
|
328 |
-
pil_image, timestamp = frame
|
329 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
|
330 |
-
pil_image.save(temp_file.name)
|
331 |
-
temp_files.append(temp_file.name) # 추적을 위해 경로 저장
|
332 |
-
content.append({"type": "text", "text": f"Frame {timestamp}:"})
|
333 |
-
content.append({"type": "image", "url": temp_file.name})
|
334 |
-
|
335 |
-
return content, temp_files
|
336 |
-
|
337 |
-
|
338 |
-
##############################################################################
|
339 |
-
# interleaved <image> 처리
|
340 |
-
##############################################################################
|
341 |
-
def process_interleaved_images(message: dict) -> list[dict]:
|
342 |
-
parts = re.split(r"(<image>)", message["text"])
|
343 |
-
content = []
|
344 |
-
image_index = 0
|
345 |
-
|
346 |
-
image_files = [f for f in message["files"] if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE)]
|
347 |
-
|
348 |
-
for part in parts:
|
349 |
-
if part == "<image>" and image_index < len(image_files):
|
350 |
-
content.append({"type": "image", "url": image_files[image_index]})
|
351 |
-
image_index += 1
|
352 |
-
elif part.strip():
|
353 |
-
content.append({"type": "text", "text": part.strip()})
|
354 |
-
else:
|
355 |
-
if isinstance(part, str) and part != "<image>":
|
356 |
-
content.append({"type": "text", "text": part})
|
357 |
-
return content
|
358 |
-
|
359 |
-
|
360 |
-
##############################################################################
|
361 |
-
# PDF + CSV + TXT + 이미지/비디오
|
362 |
-
##############################################################################
|
363 |
-
def is_image_file(file_path: str) -> bool:
|
364 |
-
return bool(re.search(r"\.(png|jpg|jpeg|gif|webp)$", file_path, re.IGNORECASE))
|
365 |
-
|
366 |
-
def is_video_file(file_path: str) -> bool:
|
367 |
-
return file_path.endswith(".mp4")
|
368 |
-
|
369 |
def is_document_file(file_path: str) -> bool:
|
370 |
return (
|
371 |
file_path.lower().endswith(".pdf")
|
@@ -373,87 +209,59 @@ def is_document_file(file_path: str) -> bool:
|
|
373 |
or file_path.lower().endswith(".txt")
|
374 |
)
|
375 |
|
376 |
-
|
377 |
-
|
378 |
-
|
|
|
|
|
379 |
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
pdf_markdown = pdf_to_markdown(pdf_path)
|
401 |
-
content_list.append({"type": "text", "text": pdf_markdown})
|
402 |
-
|
403 |
-
if video_files:
|
404 |
-
video_content, video_temp_files = process_video(video_files[0])
|
405 |
-
content_list += video_content
|
406 |
-
temp_files.extend(video_temp_files)
|
407 |
-
return content_list, temp_files
|
408 |
-
|
409 |
-
if "<image>" in message["text"] and image_files:
|
410 |
-
interleaved_content = process_interleaved_images({"text": message["text"], "files": image_files})
|
411 |
-
if content_list and content_list[0]["type"] == "text":
|
412 |
-
content_list = content_list[1:]
|
413 |
-
return interleaved_content + content_list, temp_files
|
414 |
-
else:
|
415 |
-
for img_path in image_files:
|
416 |
-
content_list.append({"type": "image", "url": img_path})
|
417 |
-
|
418 |
-
return content_list, temp_files
|
419 |
-
|
420 |
|
421 |
##############################################################################
|
422 |
-
#
|
423 |
##############################################################################
|
424 |
-
def process_history(history: list[dict]) ->
|
425 |
-
|
426 |
-
|
|
|
427 |
for item in history:
|
428 |
if item["role"] == "assistant":
|
429 |
-
|
430 |
-
|
431 |
-
current_user_content = []
|
432 |
-
messages.append({"role": "assistant", "content": [{"type": "text", "text": item["content"]}]})
|
433 |
-
else:
|
434 |
content = item["content"]
|
435 |
if isinstance(content, str):
|
436 |
-
|
437 |
elif isinstance(content, list) and len(content) > 0:
|
|
|
438 |
file_path = content[0]
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
current_user_content.append({"type": "text", "text": f"[File: {os.path.basename(file_path)}]"})
|
443 |
-
|
444 |
-
if current_user_content:
|
445 |
-
messages.append({"role": "user", "content": current_user_content})
|
446 |
-
|
447 |
-
return messages
|
448 |
-
|
449 |
|
450 |
##############################################################################
|
451 |
-
# 모델 생성
|
452 |
##############################################################################
|
453 |
def _model_gen_with_oom_catch(**kwargs):
|
454 |
-
"""
|
455 |
-
별도 스레드에서 OutOfMemoryError를 잡아주기 위해
|
456 |
-
"""
|
457 |
try:
|
458 |
model.generate(**kwargs)
|
459 |
except torch.cuda.OutOfMemoryError:
|
@@ -462,12 +270,10 @@ def _model_gen_with_oom_catch(**kwargs):
|
|
462 |
"Max New Tokens을 줄이거나, 프롬프트 길이를 줄여주세요."
|
463 |
)
|
464 |
finally:
|
465 |
-
# 생성 완료 후 한번 더 캐시 비우기
|
466 |
clear_cuda_cache()
|
467 |
|
468 |
-
|
469 |
##############################################################################
|
470 |
-
# 메인 추론 함수 (
|
471 |
##############################################################################
|
472 |
@spaces.GPU(duration=120)
|
473 |
def run(
|
@@ -478,111 +284,83 @@ def run(
|
|
478 |
use_web_search: bool = False,
|
479 |
web_search_query: str = "",
|
480 |
) -> Iterator[str]:
|
481 |
-
|
482 |
-
if not validate_media_constraints(message, history):
|
483 |
-
yield ""
|
484 |
-
return
|
485 |
-
|
486 |
-
temp_files = [] # 임시 파일 추적용
|
487 |
|
488 |
try:
|
489 |
-
|
490 |
-
|
491 |
-
|
|
|
492 |
if system_prompt.strip():
|
493 |
-
|
494 |
-
|
|
|
495 |
if use_web_search:
|
496 |
user_text = message["text"]
|
497 |
ws_query = extract_keywords(user_text, top_k=5)
|
498 |
if ws_query.strip():
|
499 |
logger.info(f"[Auto WebSearch Keyword] {ws_query!r}")
|
500 |
ws_result = do_web_search(ws_query)
|
501 |
-
|
502 |
-
|
503 |
-
combined_system_msg += "[참고: 위 검색결과 내용과 link를 출처로 인용하여 답변해 주세요.]\n\n"
|
504 |
-
combined_system_msg += """
|
505 |
-
[중요 지시사항]
|
506 |
-
1. 답변에 검색 결과에서 찾은 ��보의 출처를 반드시 인용하세요.
|
507 |
-
2. 출처 인용 시 "[출처 제목](링크)" 형식의 마크다운 링크를 사용하세요.
|
508 |
-
3. 여러 출처의 정보를 종합하여 답변하세요.
|
509 |
-
4. 답변 마지막에 "참고 자료:" 섹션을 추가하고 사용한 주요 출처 링크를 나열하세요.
|
510 |
-
"""
|
511 |
-
else:
|
512 |
-
combined_system_msg += "[No valid keywords found, skipping WebSearch]\n\n"
|
513 |
-
|
514 |
-
messages = []
|
515 |
-
if combined_system_msg.strip():
|
516 |
-
messages.append({
|
517 |
-
"role": "system",
|
518 |
-
"content": [{"type": "text", "text": combined_system_msg.strip()}],
|
519 |
-
})
|
520 |
-
|
521 |
-
messages.extend(process_history(history))
|
522 |
-
|
523 |
-
user_content, user_temp_files = process_new_user_message(message)
|
524 |
-
temp_files.extend(user_temp_files) # 임시 파일 추적
|
525 |
|
526 |
-
|
527 |
-
|
528 |
-
|
529 |
-
|
530 |
-
|
531 |
-
|
532 |
-
|
533 |
-
|
534 |
-
|
535 |
-
|
|
|
|
|
536 |
return_tensors="pt",
|
537 |
-
|
|
|
|
|
538 |
|
539 |
-
#
|
540 |
-
|
541 |
-
|
542 |
-
|
543 |
-
|
|
|
|
|
544 |
|
545 |
-
streamer = TextIteratorStreamer(processor, timeout=30.0, skip_prompt=True, skip_special_tokens=True)
|
546 |
gen_kwargs = dict(
|
547 |
inputs,
|
548 |
streamer=streamer,
|
549 |
max_new_tokens=max_new_tokens,
|
|
|
|
|
|
|
550 |
)
|
551 |
-
|
|
|
552 |
t = Thread(target=_model_gen_with_oom_catch, kwargs=gen_kwargs)
|
553 |
t.start()
|
554 |
-
|
|
|
555 |
output = ""
|
556 |
for new_text in streamer:
|
557 |
output += new_text
|
558 |
yield output
|
559 |
-
|
560 |
except Exception as e:
|
561 |
logger.error(f"Error in run: {str(e)}")
|
562 |
yield f"죄송합니다. 오류가 발생했습니다: {str(e)}"
|
563 |
|
564 |
finally:
|
565 |
-
#
|
566 |
-
for temp_file in temp_files:
|
567 |
-
try:
|
568 |
-
if os.path.exists(temp_file):
|
569 |
-
os.unlink(temp_file)
|
570 |
-
logger.info(f"Deleted temp file: {temp_file}")
|
571 |
-
except Exception as e:
|
572 |
-
logger.warning(f"Failed to delete temp file {temp_file}: {e}")
|
573 |
-
|
574 |
-
# 명시적 메모리 정리
|
575 |
try:
|
576 |
-
del inputs
|
577 |
except:
|
578 |
pass
|
579 |
-
|
580 |
clear_cuda_cache()
|
581 |
|
582 |
-
|
583 |
-
|
584 |
##############################################################################
|
585 |
-
# 예시들 (
|
586 |
##############################################################################
|
587 |
examples = [
|
588 |
[
|
@@ -602,100 +380,49 @@ examples = [
|
|
602 |
],
|
603 |
[
|
604 |
{
|
605 |
-
"text": "
|
606 |
-
"files": ["assets/additional-examples/
|
607 |
-
}
|
608 |
-
],
|
609 |
-
[
|
610 |
-
{
|
611 |
-
"text": "Describe the cover and read the text on it.",
|
612 |
-
"files": ["assets/additional-examples/maz.jpg"],
|
613 |
-
}
|
614 |
-
],
|
615 |
-
[
|
616 |
-
{
|
617 |
-
"text": "I already have this supplement <image> and I plan to buy this product <image>. Are there any precautions when taking them together?",
|
618 |
-
"files": ["assets/additional-examples/pill1.png", "assets/additional-examples/pill2.png"],
|
619 |
}
|
620 |
],
|
621 |
[
|
622 |
{
|
623 |
-
"text": "
|
624 |
-
"files": ["assets/additional-examples/
|
625 |
}
|
626 |
],
|
627 |
[
|
628 |
{
|
629 |
-
"text": "
|
630 |
-
"files": ["assets/additional-examples/
|
631 |
}
|
632 |
],
|
633 |
-
[
|
634 |
-
{
|
635 |
-
"text": "Based on the sequence of these images, create a short story.",
|
636 |
-
"files": [
|
637 |
-
"assets/sample-images/09-1.png",
|
638 |
-
"assets/sample-images/09-2.png",
|
639 |
-
"assets/sample-images/09-3.png",
|
640 |
-
"assets/sample-images/09-4.png",
|
641 |
-
"assets/sample-images/09-5.png",
|
642 |
-
],
|
643 |
-
}
|
644 |
-
],
|
645 |
-
[
|
646 |
-
{
|
647 |
-
"text": "Write Python code using matplotlib to plot a bar chart that matches this image.",
|
648 |
-
"files": ["assets/additional-examples/barchart.png"],
|
649 |
-
}
|
650 |
-
],
|
651 |
-
[
|
652 |
-
{
|
653 |
-
"text": "Read the text in the image and write it out in Markdown format.",
|
654 |
-
"files": ["assets/additional-examples/3.png"],
|
655 |
-
}
|
656 |
-
],
|
657 |
-
[
|
658 |
-
{
|
659 |
-
"text": "What does this sign say?",
|
660 |
-
"files": ["assets/sample-images/02.png"],
|
661 |
-
}
|
662 |
-
],
|
663 |
-
[
|
664 |
-
{
|
665 |
-
"text": "Compare the two images and describe their similarities and differences.",
|
666 |
-
"files": ["assets/sample-images/03.png"],
|
667 |
-
}
|
668 |
-
],
|
669 |
]
|
670 |
|
671 |
##############################################################################
|
672 |
-
# Gradio UI
|
673 |
##############################################################################
|
674 |
css = """
|
675 |
-
/* 1) UI를 처음부터 가장 넓게 (width 100%) 고정하여 표시 */
|
676 |
.gradio-container {
|
677 |
-
background: rgba(255, 255, 255, 0.7);
|
678 |
padding: 30px 40px;
|
679 |
-
margin: 20px auto;
|
680 |
width: 100% !important;
|
681 |
-
max-width: none !important;
|
682 |
}
|
683 |
.fillable {
|
684 |
width: 100% !important;
|
685 |
max-width: 100% !important;
|
686 |
}
|
687 |
-
/* 2) 배경을 완전히 투명하게 변경 */
|
688 |
body {
|
689 |
-
background: transparent;
|
690 |
margin: 0;
|
691 |
padding: 0;
|
692 |
font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif;
|
693 |
color: #333;
|
694 |
}
|
695 |
-
/* 버튼 색상 완전히 제거하고 투명하게 */
|
696 |
button, .btn {
|
697 |
-
background: transparent !important;
|
698 |
-
border: 1px solid #ddd;
|
699 |
color: #333;
|
700 |
padding: 12px 24px;
|
701 |
text-transform: uppercase;
|
@@ -704,93 +431,32 @@ button, .btn {
|
|
704 |
cursor: pointer;
|
705 |
}
|
706 |
button:hover, .btn:hover {
|
707 |
-
background: rgba(0, 0, 0, 0.05) !important; /* 호버 시 아주 살짝 어둡게만 */
|
708 |
-
}
|
709 |
-
|
710 |
-
/* examples 관련 모든 색상 제거 */
|
711 |
-
#examples_container, .examples-container {
|
712 |
-
margin: auto;
|
713 |
-
width: 90%;
|
714 |
-
background: transparent !important;
|
715 |
-
}
|
716 |
-
#examples_row, .examples-row {
|
717 |
-
justify-content: center;
|
718 |
-
background: transparent !important;
|
719 |
-
}
|
720 |
-
|
721 |
-
/* examples 버튼 내부의 모든 색상 제거 */
|
722 |
-
.gr-samples-table button,
|
723 |
-
.gr-samples-table .gr-button,
|
724 |
-
.gr-samples-table .gr-sample-btn,
|
725 |
-
.gr-examples button,
|
726 |
-
.gr-examples .gr-button,
|
727 |
-
.gr-examples .gr-sample-btn,
|
728 |
-
.examples button,
|
729 |
-
.examples .gr-button,
|
730 |
-
.examples .gr-sample-btn {
|
731 |
-
background: transparent !important;
|
732 |
-
border: 1px solid #ddd;
|
733 |
-
color: #333;
|
734 |
-
}
|
735 |
-
|
736 |
-
/* examples 버튼 호버 시에도 색상 없게 */
|
737 |
-
.gr-samples-table button:hover,
|
738 |
-
.gr-samples-table .gr-button:hover,
|
739 |
-
.gr-samples-table .gr-sample-btn:hover,
|
740 |
-
.gr-examples button:hover,
|
741 |
-
.gr-examples .gr-button:hover,
|
742 |
-
.gr-examples .gr-sample-btn:hover,
|
743 |
-
.examples button:hover,
|
744 |
-
.examples .gr-button:hover,
|
745 |
-
.examples .gr-sample-btn:hover {
|
746 |
background: rgba(0, 0, 0, 0.05) !important;
|
747 |
}
|
748 |
-
|
749 |
-
/* 채팅 인터페이스 요소들도 투명하게 */
|
750 |
-
.chatbox, .chatbot, .message {
|
751 |
-
background: transparent !important;
|
752 |
-
}
|
753 |
-
|
754 |
-
/* 입력창 투명도 조정 */
|
755 |
-
.multimodal-textbox, textarea, input {
|
756 |
-
background: rgba(255, 255, 255, 0.5) !important;
|
757 |
-
}
|
758 |
-
|
759 |
-
/* 모든 컨테이너 요소에 배경색 제거 */
|
760 |
-
.container, .wrap, .box, .panel, .gr-panel {
|
761 |
-
background: transparent !important;
|
762 |
-
}
|
763 |
-
|
764 |
-
/* 예제 섹션의 모든 요소에서 배경색 제거 */
|
765 |
-
.gr-examples-container, .gr-examples, .gr-sample, .gr-sample-row, .gr-sample-cell {
|
766 |
-
background: transparent !important;
|
767 |
-
}
|
768 |
"""
|
769 |
|
770 |
title_html = """
|
771 |
-
<h1 align="center" style="margin-bottom: 0.2em; font-size: 1.6em;"> 🤗 Gemma3-R1984-1B </h1>
|
772 |
<p align="center" style="font-size:1.1em; color:#555;">
|
773 |
-
✅Agentic AI Platform ✅Reasoning
|
774 |
-
|
775 |
-
|
|
|
776 |
</p>
|
777 |
"""
|
778 |
|
779 |
-
|
780 |
with gr.Blocks(css=css, title="Gemma3-R1984-1B") as demo:
|
781 |
gr.Markdown(title_html)
|
782 |
|
783 |
-
# Display the web search option (while the system prompt and token slider remain hidden)
|
784 |
web_search_checkbox = gr.Checkbox(
|
785 |
label="Deep Research",
|
786 |
value=False
|
787 |
)
|
788 |
|
789 |
-
# Used internally but not visible to the user
|
790 |
system_prompt_box = gr.Textbox(
|
791 |
lines=3,
|
792 |
value="You are a deep thinking AI that may use extremely long chains of thought to thoroughly analyze the problem and deliberate using systematic reasoning processes to arrive at a correct solution before answering.",
|
793 |
-
visible=False
|
794 |
)
|
795 |
|
796 |
max_tokens_slider = gr.Slider(
|
@@ -799,26 +465,22 @@ with gr.Blocks(css=css, title="Gemma3-R1984-1B") as demo:
|
|
799 |
maximum=8000,
|
800 |
step=50,
|
801 |
value=1000,
|
802 |
-
visible=False
|
803 |
)
|
804 |
|
805 |
web_search_text = gr.Textbox(
|
806 |
lines=1,
|
807 |
label="(Unused) Web Search Query",
|
808 |
placeholder="No direct input needed",
|
809 |
-
visible=False
|
810 |
)
|
811 |
|
812 |
-
# Configure the chat interface
|
813 |
chat = gr.ChatInterface(
|
814 |
fn=run,
|
815 |
type="messages",
|
816 |
-
chatbot=gr.Chatbot(type="messages", scale=1
|
817 |
textbox=gr.MultimodalTextbox(
|
818 |
-
file_types=[
|
819 |
-
".webp", ".png", ".jpg", ".jpeg", ".gif",
|
820 |
-
".mp4", ".csv", ".txt", ".pdf"
|
821 |
-
],
|
822 |
file_count="multiple",
|
823 |
autofocus=True
|
824 |
),
|
@@ -838,12 +500,9 @@ with gr.Blocks(css=css, title="Gemma3-R1984-1B") as demo:
|
|
838 |
delete_cache=(1800, 1800),
|
839 |
)
|
840 |
|
841 |
-
# Example section - since examples are already set in ChatInterface, this is for display only
|
842 |
with gr.Row(elem_id="examples_row"):
|
843 |
with gr.Column(scale=12, elem_id="examples_container"):
|
844 |
gr.Markdown("### Example Inputs (click to load)")
|
845 |
|
846 |
-
|
847 |
if __name__ == "__main__":
|
848 |
-
|
849 |
-
demo.launch()
|
|
|
3 |
import os
|
4 |
import re
|
5 |
import tempfile
|
6 |
+
import gc
|
7 |
from collections.abc import Iterator
|
8 |
from threading import Thread
|
9 |
import json
|
10 |
import requests
|
|
|
11 |
import gradio as gr
|
12 |
import spaces
|
13 |
import torch
|
14 |
from loguru import logger
|
15 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
|
|
|
16 |
|
17 |
# CSV/TXT 분석
|
18 |
import pandas as pd
|
|
|
49 |
|
50 |
##############################################################################
|
51 |
# SerpHouse Live endpoint 호출
|
|
|
52 |
##############################################################################
|
53 |
def do_web_search(query: str) -> str:
|
54 |
"""
|
|
|
58 |
try:
|
59 |
url = "https://api.serphouse.com/serp/live"
|
60 |
|
|
|
61 |
params = {
|
62 |
"q": query,
|
63 |
"domain": "google.com",
|
64 |
+
"serp_type": "web",
|
65 |
"device": "desktop",
|
66 |
"lang": "en",
|
67 |
+
"num": "20"
|
68 |
}
|
69 |
|
70 |
headers = {
|
|
|
72 |
}
|
73 |
|
74 |
logger.info(f"SerpHouse API 호출 중... 검색어: {query}")
|
|
|
75 |
|
|
|
76 |
response = requests.get(url, headers=headers, params=params, timeout=60)
|
77 |
response.raise_for_status()
|
78 |
|
|
|
79 |
data = response.json()
|
80 |
|
81 |
# 다양한 응답 구조 처리
|
82 |
results = data.get("results", {})
|
83 |
organic = None
|
84 |
|
|
|
85 |
if isinstance(results, dict) and "organic" in results:
|
86 |
organic = results["organic"]
|
|
|
|
|
87 |
elif isinstance(results, dict) and "results" in results:
|
88 |
if isinstance(results["results"], dict) and "organic" in results["results"]:
|
89 |
organic = results["results"]["organic"]
|
|
|
|
|
90 |
elif "organic" in data:
|
91 |
organic = data["organic"]
|
92 |
|
93 |
if not organic:
|
94 |
logger.warning("응답에서 organic 결과를 찾을 수 없습니다.")
|
|
|
|
|
|
|
95 |
return "No web search results found or unexpected API response structure."
|
96 |
|
97 |
# 결과 수 제한 및 컨텍스트 길이 최적화
|
98 |
max_results = min(20, len(organic))
|
99 |
limited_organic = organic[:max_results]
|
100 |
|
101 |
+
# 결과 형식 개선 - 마크다운 형식으로 출력
|
102 |
summary_lines = []
|
103 |
for idx, item in enumerate(limited_organic, start=1):
|
104 |
title = item.get("title", "No title")
|
|
|
106 |
snippet = item.get("snippet", "No description")
|
107 |
displayed_link = item.get("displayed_link", link)
|
108 |
|
|
|
109 |
summary_lines.append(
|
110 |
f"### Result {idx}: {title}\n\n"
|
111 |
f"{snippet}\n\n"
|
|
|
113 |
f"---\n"
|
114 |
)
|
115 |
|
|
|
116 |
instructions = """
|
117 |
# 웹 검색 결과
|
118 |
아래는 검색 결과입니다. 질문에 답변할 때 이 정보를 활용하세요:
|
|
|
130 |
logger.error(f"Web search failed: {e}")
|
131 |
return f"Web search failed: {str(e)}"
|
132 |
|
|
|
133 |
##############################################################################
|
134 |
+
# 모델/토크나이저 로딩 (텍스트 전용)
|
135 |
##############################################################################
|
136 |
MAX_CONTENT_CHARS = 2000
|
137 |
+
MAX_INPUT_LENGTH = 2096
|
138 |
model_id = os.getenv("MODEL_ID", "VIDraft/Gemma-3-R1984-1B")
|
139 |
|
140 |
+
# 텍스트 전용 모델로 로드
|
141 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
142 |
+
model = AutoModelForCausalLM.from_pretrained(
|
143 |
model_id,
|
144 |
device_map="auto",
|
145 |
torch_dtype=torch.bfloat16,
|
146 |
+
attn_implementation="eager"
|
147 |
)
|
|
|
|
|
148 |
|
149 |
##############################################################################
|
150 |
# CSV, TXT, PDF 분석 함수
|
151 |
##############################################################################
|
152 |
def analyze_csv_file(path: str) -> str:
|
153 |
+
"""CSV 파일을 전체 문자열로 변환. 너무 길 경우 일부만 표시."""
|
|
|
|
|
154 |
try:
|
155 |
df = pd.read_csv(path)
|
156 |
if df.shape[0] > 50 or df.shape[1] > 10:
|
|
|
162 |
except Exception as e:
|
163 |
return f"Failed to read CSV ({os.path.basename(path)}): {str(e)}"
|
164 |
|
|
|
165 |
def analyze_txt_file(path: str) -> str:
|
166 |
+
"""TXT 파일 전문 읽기. 너무 길면 일부만 표시."""
|
|
|
|
|
167 |
try:
|
168 |
with open(path, "r", encoding="utf-8") as f:
|
169 |
text = f.read()
|
|
|
173 |
except Exception as e:
|
174 |
return f"Failed to read TXT ({os.path.basename(path)}): {str(e)}"
|
175 |
|
|
|
176 |
def pdf_to_markdown(pdf_path: str) -> str:
|
177 |
+
"""PDF 텍스트를 Markdown으로 변환. 페이지별로 간단히 텍스트 추출."""
|
|
|
|
|
178 |
text_chunks = []
|
179 |
try:
|
180 |
with open(pdf_path, "rb") as f:
|
|
|
199 |
|
200 |
return f"**[PDF File: {os.path.basename(pdf_path)}]**\n\n{full_text}"
|
201 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
##############################################################################
|
203 |
+
# 문서 파일 확인
|
204 |
##############################################################################
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
def is_document_file(file_path: str) -> bool:
|
206 |
return (
|
207 |
file_path.lower().endswith(".pdf")
|
|
|
209 |
or file_path.lower().endswith(".txt")
|
210 |
)
|
211 |
|
212 |
+
##############################################################################
|
213 |
+
# 메시지 처리 (텍스트 및 문서 파일만)
|
214 |
+
##############################################################################
|
215 |
+
def process_new_user_message(message: dict) -> str:
|
216 |
+
"""사용자 메시지와 첨부된 문서 파일들을 처리하여 하나의 텍스트로 결합"""
|
217 |
|
218 |
+
content_parts = [message["text"]]
|
219 |
+
|
220 |
+
if message.get("files"):
|
221 |
+
csv_files = [f for f in message["files"] if f.lower().endswith(".csv")]
|
222 |
+
txt_files = [f for f in message["files"] if f.lower().endswith(".txt")]
|
223 |
+
pdf_files = [f for f in message["files"] if f.lower().endswith(".pdf")]
|
224 |
+
|
225 |
+
for csv_path in csv_files:
|
226 |
+
csv_analysis = analyze_csv_file(csv_path)
|
227 |
+
content_parts.append(csv_analysis)
|
228 |
+
|
229 |
+
for txt_path in txt_files:
|
230 |
+
txt_analysis = analyze_txt_file(txt_path)
|
231 |
+
content_parts.append(txt_analysis)
|
232 |
+
|
233 |
+
for pdf_path in pdf_files:
|
234 |
+
pdf_markdown = pdf_to_markdown(pdf_path)
|
235 |
+
content_parts.append(pdf_markdown)
|
236 |
+
|
237 |
+
return "\n\n".join(content_parts)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
238 |
|
239 |
##############################################################################
|
240 |
+
# 대화 히스토리 처리
|
241 |
##############################################################################
|
242 |
+
def process_history(history: list[dict]) -> str:
|
243 |
+
"""대화 히스토리를 텍스트 형식으로 변환"""
|
244 |
+
conversation_text = ""
|
245 |
+
|
246 |
for item in history:
|
247 |
if item["role"] == "assistant":
|
248 |
+
conversation_text += f"\nAssistant: {item['content']}\n"
|
249 |
+
else: # user
|
|
|
|
|
|
|
250 |
content = item["content"]
|
251 |
if isinstance(content, str):
|
252 |
+
conversation_text += f"\nUser: {content}\n"
|
253 |
elif isinstance(content, list) and len(content) > 0:
|
254 |
+
# 파일 경로만 표시
|
255 |
file_path = content[0]
|
256 |
+
conversation_text += f"\nUser: [File: {os.path.basename(file_path)}]\n"
|
257 |
+
|
258 |
+
return conversation_text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
259 |
|
260 |
##############################################################################
|
261 |
+
# 모델 생성 함수
|
262 |
##############################################################################
|
263 |
def _model_gen_with_oom_catch(**kwargs):
|
264 |
+
"""별도 스레드에서 OutOfMemoryError를 잡아주기 위해"""
|
|
|
|
|
265 |
try:
|
266 |
model.generate(**kwargs)
|
267 |
except torch.cuda.OutOfMemoryError:
|
|
|
270 |
"Max New Tokens을 줄이거나, 프롬프트 길이를 줄여주세요."
|
271 |
)
|
272 |
finally:
|
|
|
273 |
clear_cuda_cache()
|
274 |
|
|
|
275 |
##############################################################################
|
276 |
+
# 메인 추론 함수 (텍스트 전용)
|
277 |
##############################################################################
|
278 |
@spaces.GPU(duration=120)
|
279 |
def run(
|
|
|
284 |
use_web_search: bool = False,
|
285 |
web_search_query: str = "",
|
286 |
) -> Iterator[str]:
|
|
|
|
|
|
|
|
|
|
|
|
|
287 |
|
288 |
try:
|
289 |
+
# 전체 프롬프트 구성
|
290 |
+
full_prompt = ""
|
291 |
+
|
292 |
+
# 시스템 프롬프트
|
293 |
if system_prompt.strip():
|
294 |
+
full_prompt += f"System: {system_prompt.strip()}\n\n"
|
295 |
+
|
296 |
+
# 웹 검색 수행
|
297 |
if use_web_search:
|
298 |
user_text = message["text"]
|
299 |
ws_query = extract_keywords(user_text, top_k=5)
|
300 |
if ws_query.strip():
|
301 |
logger.info(f"[Auto WebSearch Keyword] {ws_query!r}")
|
302 |
ws_result = do_web_search(ws_query)
|
303 |
+
full_prompt += f"[Web Search Results]\n{ws_result}\n\n"
|
304 |
+
full_prompt += "[중요: 위 검색결과의 출처를 인용하여 답변해 주세요.]\n\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
305 |
|
306 |
+
# 대화 히스토리
|
307 |
+
if history:
|
308 |
+
conversation_history = process_history(history)
|
309 |
+
full_prompt += conversation_history
|
310 |
+
|
311 |
+
# 현재 사용자 메시지
|
312 |
+
user_content = process_new_user_message(message)
|
313 |
+
full_prompt += f"\nUser: {user_content}\nAssistant:"
|
314 |
+
|
315 |
+
# 토큰화
|
316 |
+
inputs = tokenizer(
|
317 |
+
full_prompt,
|
318 |
return_tensors="pt",
|
319 |
+
truncation=True,
|
320 |
+
max_length=MAX_INPUT_LENGTH
|
321 |
+
).to(device=model.device)
|
322 |
|
323 |
+
# 스트리밍 설정
|
324 |
+
streamer = TextIteratorStreamer(
|
325 |
+
tokenizer,
|
326 |
+
timeout=30.0,
|
327 |
+
skip_prompt=True,
|
328 |
+
skip_special_tokens=True
|
329 |
+
)
|
330 |
|
|
|
331 |
gen_kwargs = dict(
|
332 |
inputs,
|
333 |
streamer=streamer,
|
334 |
max_new_tokens=max_new_tokens,
|
335 |
+
temperature=0.7,
|
336 |
+
top_p=0.9,
|
337 |
+
do_sample=True,
|
338 |
)
|
339 |
+
|
340 |
+
# 별도 스레드에서 생성
|
341 |
t = Thread(target=_model_gen_with_oom_catch, kwargs=gen_kwargs)
|
342 |
t.start()
|
343 |
+
|
344 |
+
# 스트리밍 출력
|
345 |
output = ""
|
346 |
for new_text in streamer:
|
347 |
output += new_text
|
348 |
yield output
|
349 |
+
|
350 |
except Exception as e:
|
351 |
logger.error(f"Error in run: {str(e)}")
|
352 |
yield f"죄송합니다. 오류가 발생했습니다: {str(e)}"
|
353 |
|
354 |
finally:
|
355 |
+
# 메모리 정리
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
356 |
try:
|
357 |
+
del inputs
|
358 |
except:
|
359 |
pass
|
|
|
360 |
clear_cuda_cache()
|
361 |
|
|
|
|
|
362 |
##############################################################################
|
363 |
+
# 예시들 (텍스트 및 문서 파일만)
|
364 |
##############################################################################
|
365 |
examples = [
|
366 |
[
|
|
|
380 |
],
|
381 |
[
|
382 |
{
|
383 |
+
"text": "What are the key findings from this research paper?",
|
384 |
+
"files": ["assets/additional-examples/research.pdf"],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
385 |
}
|
386 |
],
|
387 |
[
|
388 |
{
|
389 |
+
"text": "Analyze the data trends in this CSV file.",
|
390 |
+
"files": ["assets/additional-examples/data.csv"],
|
391 |
}
|
392 |
],
|
393 |
[
|
394 |
{
|
395 |
+
"text": "Summarize the main points from this text document.",
|
396 |
+
"files": ["assets/additional-examples/document.txt"],
|
397 |
}
|
398 |
],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
399 |
]
|
400 |
|
401 |
##############################################################################
|
402 |
+
# Gradio UI
|
403 |
##############################################################################
|
404 |
css = """
|
|
|
405 |
.gradio-container {
|
406 |
+
background: rgba(255, 255, 255, 0.7);
|
407 |
padding: 30px 40px;
|
408 |
+
margin: 20px auto;
|
409 |
width: 100% !important;
|
410 |
+
max-width: none !important;
|
411 |
}
|
412 |
.fillable {
|
413 |
width: 100% !important;
|
414 |
max-width: 100% !important;
|
415 |
}
|
|
|
416 |
body {
|
417 |
+
background: transparent;
|
418 |
margin: 0;
|
419 |
padding: 0;
|
420 |
font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif;
|
421 |
color: #333;
|
422 |
}
|
|
|
423 |
button, .btn {
|
424 |
+
background: transparent !important;
|
425 |
+
border: 1px solid #ddd;
|
426 |
color: #333;
|
427 |
padding: 12px 24px;
|
428 |
text-transform: uppercase;
|
|
|
431 |
cursor: pointer;
|
432 |
}
|
433 |
button:hover, .btn:hover {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
434 |
background: rgba(0, 0, 0, 0.05) !important;
|
435 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
436 |
"""
|
437 |
|
438 |
title_html = """
|
439 |
+
<h1 align="center" style="margin-bottom: 0.2em; font-size: 1.6em;"> 🤗 Gemma3-R1984-1B (Text Only) </h1>
|
440 |
<p align="center" style="font-size:1.1em; color:#555;">
|
441 |
+
✅Agentic AI Platform ✅Reasoning ✅Text Analysis ✅Deep-Research & RAG <br>
|
442 |
+
✅Document Processing (PDF, CSV, TXT) ✅Web Search Integration<br>
|
443 |
+
Operates on an ✅'NVIDIA L40s / A100(ZeroGPU) GPU' as an independent local server<br>
|
444 |
+
@Model Repository: VIDraft/Gemma-3-R1984-1B, @Based by 'Google Gemma-3-1b'
|
445 |
</p>
|
446 |
"""
|
447 |
|
|
|
448 |
with gr.Blocks(css=css, title="Gemma3-R1984-1B") as demo:
|
449 |
gr.Markdown(title_html)
|
450 |
|
|
|
451 |
web_search_checkbox = gr.Checkbox(
|
452 |
label="Deep Research",
|
453 |
value=False
|
454 |
)
|
455 |
|
|
|
456 |
system_prompt_box = gr.Textbox(
|
457 |
lines=3,
|
458 |
value="You are a deep thinking AI that may use extremely long chains of thought to thoroughly analyze the problem and deliberate using systematic reasoning processes to arrive at a correct solution before answering.",
|
459 |
+
visible=False
|
460 |
)
|
461 |
|
462 |
max_tokens_slider = gr.Slider(
|
|
|
465 |
maximum=8000,
|
466 |
step=50,
|
467 |
value=1000,
|
468 |
+
visible=False
|
469 |
)
|
470 |
|
471 |
web_search_text = gr.Textbox(
|
472 |
lines=1,
|
473 |
label="(Unused) Web Search Query",
|
474 |
placeholder="No direct input needed",
|
475 |
+
visible=False
|
476 |
)
|
477 |
|
|
|
478 |
chat = gr.ChatInterface(
|
479 |
fn=run,
|
480 |
type="messages",
|
481 |
+
chatbot=gr.Chatbot(type="messages", scale=1),
|
482 |
textbox=gr.MultimodalTextbox(
|
483 |
+
file_types=[".csv", ".txt", ".pdf"], # 이미지/비디오 제거
|
|
|
|
|
|
|
484 |
file_count="multiple",
|
485 |
autofocus=True
|
486 |
),
|
|
|
500 |
delete_cache=(1800, 1800),
|
501 |
)
|
502 |
|
|
|
503 |
with gr.Row(elem_id="examples_row"):
|
504 |
with gr.Column(scale=12, elem_id="examples_container"):
|
505 |
gr.Markdown("### Example Inputs (click to load)")
|
506 |
|
|
|
507 |
if __name__ == "__main__":
|
508 |
+
demo.launch()
|
|