Spaces:
Running
Running
File size: 25,281 Bytes
da87199 05dc4f5 69f5c23 da87199 75b15f6 00dba49 e80ec12 69f5c23 e80ec12 69f5c23 e80ec12 417b22d 69f5c23 417b22d 3cf27d9 417b22d 657527f 69f5c23 657527f 0889c6d 69f5c23 0889c6d 69f5c23 0889c6d 657527f 69f5c23 657527f 417b22d 69f5c23 417b22d 69f5c23 417b22d 69f5c23 417b22d 69f5c23 417b22d beb0aac 417b22d 69f5c23 417b22d 69f5c23 417b22d beb0aac 69f5c23 beb0aac 69f5c23 beb0aac 69f5c23 417b22d beb0aac 417b22d 69f5c23 417b22d 371a9fc 417b22d 371a9fc 6962585 371a9fc 6962585 69f5c23 6962585 371a9fc beb0aac 6962585 69f5c23 6962585 beb0aac 69f5c23 417b22d c19847c 69f5c23 c19847c 75b15f6 69f5c23 75b15f6 69f5c23 5718b5c 75b15f6 69f5c23 75b15f6 69f5c23 75b15f6 69f5c23 75b15f6 00dba49 69f5c23 5718b5c 00dba49 69f5c23 ced8ba1 69f5c23 00dba49 69f5c23 00dba49 5718b5c c19847c 69f5c23 c19847c 69f5c23 da87199 69f5c23 da87199 69f5c23 da87199 c19847c 69f5c23 c19847c 69f5c23 ced8ba1 69f5c23 ced8ba1 69f5c23 00dba49 69f5c23 e80ec12 69f5c23 75b15f6 69f5c23 c3d078f 75b15f6 69f5c23 da87199 00dba49 5718b5c 69f5c23 c3d078f 69f5c23 ced8ba1 da87199 69f5c23 da87199 69f5c23 da87199 69f5c23 da87199 69f5c23 ced8ba1 69f5c23 da87199 e80ec12 69f5c23 e80ec12 69f5c23 e80ec12 69f5c23 e80ec12 69f5c23 e80ec12 c19847c 69f5c23 c19847c 69f5c23 417b22d 69f5c23 417b22d e80ec12 ced8ba1 69f5c23 05dc4f5 69f5c23 657527f 69f5c23 e80ec12 69f5c23 e80ec12 69f5c23 e80ec12 69f5c23 e80ec12 69f5c23 e80ec12 69f5c23 dde0f10 c19847c 69f5c23 c19847c da87199 69f5c23 da87199 5eb62f9 9de7a98 c19847c f89a031 69f5c23 d36bd86 5eb62f9 d36bd86 c19847c 69f5c23 f89a031 69f5c23 f89a031 c19847c 69f5c23 f89a031 69f5c23 f89a031 c19847c da87199 c19847c 69f5c23 c19847c 417b22d 69f5c23 417b22d 69f5c23 417b22d 69f5c23 dc16673 69f5c23 417b22d 69f5c23 e828578 dc16673 417b22d 69f5c23 dc16673 69f5c23 dc16673 69f5c23 dc16673 417b22d 69f5c23 417b22d 69f5c23 417b22d 69f5c23 417b22d 69f5c23 417b22d 69f5c23 417b22d 69f5c23 dc16673 fcb9dfb 69f5c23 fcb9dfb 69f5c23 dc16673 69f5c23 dc16673 69f5c23 fcb9dfb dc16673 fcb9dfb 69f5c23 fcb9dfb 69f5c23 fcb9dfb 69f5c23 1ddc7cb fcb9dfb 69f5c23 1ddc7cb fcb9dfb 69f5c23 417b22d fcb9dfb 69f5c23 fcb9dfb 69f5c23 fcb9dfb bdad5ad 69f5c23 417b22d 69f5c23 dde0f10 69f5c23 417b22d 69f5c23 da87199 69f5c23 9a70f56 69f5c23 9a70f56 69f5c23 9a70f56 69f5c23 9a70f56 69f5c23 9a70f56 69f5c23 e828578 9a70f56 e828578 69f5c23 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 |
#!/usr/bin/env python
import os
import re
import json
import requests
from collections.abc import Iterator
from threading import Thread
import gradio as gr
from loguru import logger
import pandas as pd
import PyPDF2
##############################################################################
# API Configuration
##############################################################################
FRIENDLI_TOKEN = os.environ.get("FRIENDLI_TOKEN")
if not FRIENDLI_TOKEN:
raise ValueError("Please set FRIENDLI_TOKEN environment variable")
FRIENDLI_MODEL_ID = "dep89a2fld32mcm"
FRIENDLI_API_URL = "https://api.friendli.ai/dedicated/v1/chat/completions"
# SERPHouse API key
SERPHOUSE_API_KEY = os.getenv("SERPHOUSE_API_KEY", "")
if not SERPHOUSE_API_KEY:
logger.warning("SERPHOUSE_API_KEY not set. Web search functionality will be limited.")
##############################################################################
# File Processing Constants
##############################################################################
MAX_FILE_SIZE = 30 * 1024 * 1024 # 30MB
MAX_CONTENT_CHARS = 6000
##############################################################################
# Improved Keyword Extraction
##############################################################################
def extract_keywords(text: str, top_k: int = 5) -> str:
"""
Extract keywords: supports English and Korean
"""
stop_words = {'์', '๋', '์ด', '๊ฐ', '์', '๋ฅผ', '์', '์', '์์',
'the', 'is', 'at', 'on', 'in', 'a', 'an', 'and', 'or', 'but'}
text = re.sub(r"[^a-zA-Z0-9๊ฐ-ํฃ\s]", "", text)
tokens = text.split()
key_tokens = [
token for token in tokens
if token.lower() not in stop_words and len(token) > 1
][:top_k]
return " ".join(key_tokens)
##############################################################################
# File Size Validation
##############################################################################
def validate_file_size(file_path: str) -> bool:
"""Check if file size is within limits"""
try:
file_size = os.path.getsize(file_path)
return file_size <= MAX_FILE_SIZE
except:
return False
##############################################################################
# Web Search Function
##############################################################################
def do_web_search(query: str, use_korean: bool = False) -> str:
"""
Search web and return top 20 organic results
"""
if not SERPHOUSE_API_KEY:
return "Web search unavailable. API key not configured."
try:
url = "https://api.serphouse.com/serp/live"
params = {
"q": query,
"domain": "google.com",
"serp_type": "web",
"device": "desktop",
"lang": "ko" if use_korean else "en",
"num": "20"
}
headers = {
"Authorization": f"Bearer {SERPHOUSE_API_KEY}"
}
logger.info(f"Calling SerpHouse API... Query: {query}")
response = requests.get(url, headers=headers, params=params, timeout=30)
response.raise_for_status()
data = response.json()
# Parse results
results = data.get("results", {})
organic = None
if isinstance(results, dict) and "organic" in results:
organic = results["organic"]
elif isinstance(results, dict) and "results" in results:
if isinstance(results["results"], dict) and "organic" in results["results"]:
organic = results["results"]["organic"]
elif "organic" in data:
organic = data["organic"]
if not organic:
return "No search results found or unexpected API response structure."
max_results = min(20, len(organic))
limited_organic = organic[:max_results]
summary_lines = []
for idx, item in enumerate(limited_organic, start=1):
title = item.get("title", "No title")
link = item.get("link", "#")
snippet = item.get("snippet", "No description")
displayed_link = item.get("displayed_link", link)
summary_lines.append(
f"### Result {idx}: {title}\n\n"
f"{snippet}\n\n"
f"**Source**: [{displayed_link}]({link})\n\n"
f"---\n"
)
instructions = """
# Web Search Results
Below are the search results. Use this information when answering questions:
1. Reference the title, content, and source links
2. Explicitly cite sources in your answer (e.g., "According to source X...")
3. Include actual source links in your response
4. Synthesize information from multiple sources
"""
search_results = instructions + "\n".join(summary_lines)
return search_results
except requests.exceptions.Timeout:
logger.error("Web search timeout")
return "Web search timed out. Please try again."
except requests.exceptions.RequestException as e:
logger.error(f"Web search network error: {e}")
return "Network error during web search."
except Exception as e:
logger.error(f"Web search failed: {e}")
return f"Web search failed: {str(e)}"
##############################################################################
# File Analysis Functions
##############################################################################
def analyze_csv_file(path: str) -> str:
"""Analyze CSV file with size validation and encoding handling"""
if not validate_file_size(path):
return f"โ ๏ธ Error: File size exceeds {MAX_FILE_SIZE/1024/1024:.1f}MB limit."
try:
encodings = ['utf-8', 'cp949', 'euc-kr', 'latin-1']
df = None
for encoding in encodings:
try:
df = pd.read_csv(path, encoding=encoding, nrows=50)
break
except UnicodeDecodeError:
continue
if df is None:
return f"Failed to read CSV: Unsupported encoding"
total_rows = len(pd.read_csv(path, encoding=encoding, usecols=[0]))
if df.shape[1] > 10:
df = df.iloc[:, :10]
summary = f"**Data size**: {total_rows} rows x {df.shape[1]} columns\n"
summary += f"**Showing**: Top {min(50, total_rows)} rows\n"
summary += f"**Columns**: {', '.join(df.columns)}\n\n"
df_str = df.to_string()
if len(df_str) > MAX_CONTENT_CHARS:
df_str = df_str[:MAX_CONTENT_CHARS] + "\n...(truncated)..."
return f"**[CSV File: {os.path.basename(path)}]**\n\n{summary}{df_str}"
except Exception as e:
logger.error(f"CSV read error: {e}")
return f"Failed to read CSV file ({os.path.basename(path)}): {str(e)}"
def analyze_txt_file(path: str) -> str:
"""Analyze text file with automatic encoding detection"""
if not validate_file_size(path):
return f"โ ๏ธ Error: File size exceeds {MAX_FILE_SIZE/1024/1024:.1f}MB limit."
encodings = ['utf-8', 'cp949', 'euc-kr', 'latin-1', 'utf-16']
for encoding in encodings:
try:
with open(path, "r", encoding=encoding) as f:
text = f.read()
file_size = os.path.getsize(path)
size_info = f"**File size**: {file_size/1024:.1f}KB\n\n"
if len(text) > MAX_CONTENT_CHARS:
text = text[:MAX_CONTENT_CHARS] + "\n...(truncated)..."
return f"**[TXT File: {os.path.basename(path)}]**\n\n{size_info}{text}"
except UnicodeDecodeError:
continue
return f"Failed to read text file ({os.path.basename(path)}): Unsupported encoding"
def pdf_to_markdown(pdf_path: str) -> str:
"""Convert PDF to markdown with improved error handling"""
if not validate_file_size(pdf_path):
return f"โ ๏ธ Error: File size exceeds {MAX_FILE_SIZE/1024/1024:.1f}MB limit."
text_chunks = []
try:
with open(pdf_path, "rb") as f:
reader = PyPDF2.PdfReader(f)
total_pages = len(reader.pages)
max_pages = min(5, total_pages)
text_chunks.append(f"**Total pages**: {total_pages}")
text_chunks.append(f"**Showing**: First {max_pages} pages\n")
for page_num in range(max_pages):
try:
page = reader.pages[page_num]
page_text = page.extract_text() or ""
page_text = page_text.strip()
if page_text:
if len(page_text) > MAX_CONTENT_CHARS // max_pages:
page_text = page_text[:MAX_CONTENT_CHARS // max_pages] + "...(truncated)"
text_chunks.append(f"## Page {page_num+1}\n\n{page_text}\n")
except Exception as e:
text_chunks.append(f"## Page {page_num+1}\n\nFailed to read page: {str(e)}\n")
if total_pages > max_pages:
text_chunks.append(f"\n...({max_pages}/{total_pages} pages shown)...")
except Exception as e:
logger.error(f"PDF read error: {e}")
return f"Failed to read PDF file ({os.path.basename(pdf_path)}): {str(e)}"
full_text = "\n".join(text_chunks)
if len(full_text) > MAX_CONTENT_CHARS:
full_text = full_text[:MAX_CONTENT_CHARS] + "\n...(truncated)..."
return f"**[PDF File: {os.path.basename(pdf_path)}]**\n\n{full_text}"
##############################################################################
# File Type Check Functions
##############################################################################
def is_image_file(file_path: str) -> bool:
"""Check if file is an image"""
return bool(re.search(r"\.(png|jpg|jpeg|gif|webp)$", file_path, re.IGNORECASE))
def is_video_file(file_path: str) -> bool:
"""Check if file is a video"""
return bool(re.search(r"\.(mp4|avi|mov|mkv)$", file_path, re.IGNORECASE))
def is_document_file(file_path: str) -> bool:
"""Check if file is a document"""
return bool(re.search(r"\.(pdf|csv|txt)$", file_path, re.IGNORECASE))
##############################################################################
# Message Processing Functions
##############################################################################
def process_new_user_message(message: dict) -> str:
"""Process user message and convert to text"""
content_parts = [message["text"]]
if not message.get("files"):
return message["text"]
# Classify files
csv_files = []
txt_files = []
pdf_files = []
image_files = []
video_files = []
unknown_files = []
for file_path in message["files"]:
if file_path.lower().endswith(".csv"):
csv_files.append(file_path)
elif file_path.lower().endswith(".txt"):
txt_files.append(file_path)
elif file_path.lower().endswith(".pdf"):
pdf_files.append(file_path)
elif is_image_file(file_path):
image_files.append(file_path)
elif is_video_file(file_path):
video_files.append(file_path)
else:
unknown_files.append(file_path)
# Process document files
for csv_path in csv_files:
csv_analysis = analyze_csv_file(csv_path)
content_parts.append(csv_analysis)
for txt_path in txt_files:
txt_analysis = analyze_txt_file(txt_path)
content_parts.append(txt_analysis)
for pdf_path in pdf_files:
pdf_markdown = pdf_to_markdown(pdf_path)
content_parts.append(pdf_markdown)
# Warning messages for unsupported files
if image_files:
image_names = [os.path.basename(f) for f in image_files]
content_parts.append(
f"\nโ ๏ธ **Image files detected**: {', '.join(image_names)}\n"
"This demo currently does not support image analysis. "
"Please describe the image content in text if you need help with it."
)
if video_files:
video_names = [os.path.basename(f) for f in video_files]
content_parts.append(
f"\nโ ๏ธ **Video files detected**: {', '.join(video_names)}\n"
"This demo currently does not support video analysis. "
"Please describe the video content in text if you need help with it."
)
if unknown_files:
unknown_names = [os.path.basename(f) for f in unknown_files]
content_parts.append(
f"\nโ ๏ธ **Unsupported file format**: {', '.join(unknown_names)}\n"
"Supported formats: PDF, CSV, TXT"
)
return "\n\n".join(content_parts)
def process_history(history: list[dict]) -> list[dict]:
"""Convert conversation history to Friendli API format"""
messages = []
for item in history:
if item["role"] == "assistant":
messages.append({
"role": "assistant",
"content": item["content"]
})
else: # user
content = item["content"]
if isinstance(content, str):
messages.append({
"role": "user",
"content": content
})
elif isinstance(content, list) and len(content) > 0:
# File processing
file_info = []
for file_path in content:
if isinstance(file_path, str):
file_info.append(f"[File: {os.path.basename(file_path)}]")
if file_info:
messages.append({
"role": "user",
"content": " ".join(file_info)
})
return messages
##############################################################################
# Streaming Response Handler
##############################################################################
def stream_friendli_response(messages: list[dict], max_tokens: int = 1000) -> Iterator[str]:
"""Get streaming response from Friendli AI API"""
headers = {
"Authorization": f"Bearer {FRIENDLI_TOKEN}",
"Content-Type": "application/json"
}
payload = {
"model": FRIENDLI_MODEL_ID,
"messages": messages,
"max_tokens": max_tokens,
"top_p": 0.8,
"temperature": 0.7,
"stream": True,
"stream_options": {
"include_usage": True
}
}
try:
response = requests.post(
FRIENDLI_API_URL,
headers=headers,
json=payload,
stream=True,
timeout=60
)
response.raise_for_status()
full_response = ""
for line in response.iter_lines():
if line:
line_text = line.decode('utf-8')
if line_text.startswith("data: "):
data_str = line_text[6:]
if data_str == "[DONE]":
break
try:
data = json.loads(data_str)
if "choices" in data and len(data["choices"]) > 0:
delta = data["choices"][0].get("delta", {})
content = delta.get("content", "")
if content:
full_response += content
yield full_response
except json.JSONDecodeError:
logger.warning(f"JSON parsing failed: {data_str}")
continue
except requests.exceptions.Timeout:
yield "โ ๏ธ Response timeout. Please try again."
except requests.exceptions.RequestException as e:
logger.error(f"Friendli API network error: {e}")
yield f"โ ๏ธ Network error occurred: {str(e)}"
except Exception as e:
logger.error(f"Friendli API error: {str(e)}")
yield f"โ ๏ธ API call error: {str(e)}"
##############################################################################
# Main Inference Function
##############################################################################
def run(
message: dict,
history: list[dict],
max_new_tokens: int = 512,
use_web_search: bool = False,
use_korean: bool = False,
system_prompt: str = "",
) -> Iterator[str]:
try:
# Prepare system message
messages = []
if use_korean:
combined_system_msg = "๋๋ AI ์ด์์คํดํธ ์ญํ ์ด๋ค. ํ๊ตญ์ด๋ก ์น์ ํ๊ณ ์ ํํ๊ฒ ๋ต๋ณํด๋ผ."
else:
combined_system_msg = "You are an AI assistant. Please respond helpfully and accurately in English."
if system_prompt.strip():
combined_system_msg += f"\n\n{system_prompt.strip()}"
# Web search processing
if use_web_search:
user_text = message.get("text", "")
if user_text:
ws_query = extract_keywords(user_text, top_k=5)
if ws_query.strip():
logger.info(f"[Auto web search keywords] {ws_query!r}")
ws_result = do_web_search(ws_query, use_korean=use_korean)
if not ws_result.startswith("Web search"):
combined_system_msg += f"\n\n[Search Results]\n{ws_result}"
if use_korean:
combined_system_msg += "\n\n[์ค์: ๋ต๋ณ์ ๊ฒ์ ๊ฒฐ๊ณผ์ ์ถ์ฒ๋ฅผ ๋ฐ๋์ ์ธ์ฉํ์ธ์]"
else:
combined_system_msg += "\n\n[Important: Always cite sources from search results in your answer]"
messages.append({
"role": "system",
"content": combined_system_msg
})
# Add conversation history
messages.extend(process_history(history))
# Process current message
user_content = process_new_user_message(message)
messages.append({
"role": "user",
"content": user_content
})
# Debug log
logger.debug(f"Total messages: {len(messages)}")
# Call Friendli API and stream
for response_text in stream_friendli_response(messages, max_new_tokens):
yield response_text
except Exception as e:
logger.error(f"run function error: {str(e)}")
yield f"โ ๏ธ Sorry, an error occurred: {str(e)}"
##############################################################################
# Examples
##############################################################################
examples = [
# PDF comparison example
[
{
"text": "Compare the contents of the two PDF files.",
"files": [
"assets/additional-examples/before.pdf",
"assets/additional-examples/after.pdf",
],
}
],
# CSV analysis example
[
{
"text": "Summarize and analyze the contents of the CSV file.",
"files": ["assets/additional-examples/sample-csv.csv"],
}
],
# Web search example
[
{
"text": "Explain discord.gg/openfreeai",
"files": [],
}
],
# Code generation example
[
{
"text": "Write Python code to generate Fibonacci sequence.",
"files": [],
}
],
]
##############################################################################
# Gradio UI - CSS Styles (Removed blue colors)
##############################################################################
css = """
/* Full width UI */
.gradio-container {
background: rgba(255, 255, 255, 0.95);
padding: 30px 40px;
margin: 20px auto;
width: 100% !important;
max-width: none !important;
border-radius: 12px;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}
.fillable {
width: 100% !important;
max-width: 100% !important;
}
/* Background */
body {
background: linear-gradient(135deg, #f5f7fa 0%, #e0e0e0 100%);
margin: 0;
padding: 0;
font-family: 'Segoe UI', 'Helvetica Neue', Arial, sans-serif;
color: #333;
}
/* Button styles - neutral gray */
button, .btn {
background: #6b7280 !important;
border: none;
color: white !important;
padding: 10px 20px;
text-transform: uppercase;
font-weight: 600;
letter-spacing: 0.5px;
cursor: pointer;
border-radius: 6px;
transition: all 0.3s ease;
}
button:hover, .btn:hover {
background: #4b5563 !important;
transform: translateY(-1px);
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2);
}
/* Examples section */
#examples_container, .examples-container {
margin: 20px auto;
width: 90%;
background: rgba(255, 255, 255, 0.8);
padding: 20px;
border-radius: 8px;
}
#examples_row, .examples-row {
justify-content: center;
}
/* Example buttons */
.gr-samples-table button,
.gr-examples button,
.examples button {
background: #f0f2f5 !important;
border: 1px solid #d1d5db;
color: #374151 !important;
margin: 5px;
font-size: 14px;
}
.gr-samples-table button:hover,
.gr-examples button:hover,
.examples button:hover {
background: #e5e7eb !important;
border-color: #9ca3af;
}
/* Chat interface */
.chatbox, .chatbot {
background: white !important;
border-radius: 8px;
box-shadow: 0 1px 3px rgba(0, 0, 0, 0.1);
}
.message {
padding: 15px;
margin: 10px 0;
border-radius: 8px;
}
/* Input styles */
.multimodal-textbox, textarea, input[type="text"] {
background: white !important;
border: 1px solid #d1d5db;
border-radius: 6px;
padding: 10px;
font-size: 16px;
}
.multimodal-textbox:focus, textarea:focus, input[type="text"]:focus {
border-color: #6b7280;
outline: none;
box-shadow: 0 0 0 3px rgba(107, 114, 128, 0.1);
}
/* Warning messages */
.warning-box {
background: #fef3c7 !important;
border: 1px solid #f59e0b;
border-radius: 8px;
padding: 15px;
margin: 10px 0;
color: #92400e;
}
/* Headings */
h1, h2, h3 {
color: #1f2937;
}
/* Links - neutral gray */
a {
color: #6b7280;
text-decoration: none;
}
a:hover {
text-decoration: underline;
color: #4b5563;
}
/* Slider */
.gr-slider {
margin: 15px 0;
}
/* Checkbox */
input[type="checkbox"] {
width: 18px;
height: 18px;
margin-right: 8px;
}
/* Scrollbar */
::-webkit-scrollbar {
width: 8px;
height: 8px;
}
::-webkit-scrollbar-track {
background: #f1f1f1;
}
::-webkit-scrollbar-thumb {
background: #888;
border-radius: 4px;
}
::-webkit-scrollbar-thumb:hover {
background: #555;
}
"""
##############################################################################
# Gradio UI Main
##############################################################################
with gr.Blocks(css=css, title="Gemma-3-R1984-27B Chatbot") as demo:
# Title
gr.Markdown("# ๐ค Gemma-3-R1984-27B Chatbot")
gr.Markdown("Community: [https://discord.gg/openfreeai](https://discord.gg/openfreeai)")
# UI Components
with gr.Row():
with gr.Column(scale=2):
web_search_checkbox = gr.Checkbox(
label="๐ Enable Deep Research (Web Search)",
value=False,
info="Check for questions requiring latest information"
)
with gr.Column(scale=1):
korean_checkbox = gr.Checkbox(
label="๐ฐ๐ท ํ๊ธ (Korean)",
value=False,
info="Check for Korean responses"
)
with gr.Column(scale=1):
max_tokens_slider = gr.Slider(
label="Max Tokens",
minimum=100,
maximum=8000,
step=50,
value=1000,
info="Adjust response length"
)
# Main chat interface
chat = gr.ChatInterface(
fn=run,
type="messages",
chatbot=gr.Chatbot(type="messages", scale=1),
textbox=gr.MultimodalTextbox(
file_types=[
".webp", ".png", ".jpg", ".jpeg", ".gif",
".mp4", ".csv", ".txt", ".pdf"
],
file_count="multiple",
autofocus=True,
placeholder="Enter text or upload PDF, CSV, TXT files. (Images/videos not supported in this demo)"
),
multimodal=True,
additional_inputs=[
max_tokens_slider,
web_search_checkbox,
korean_checkbox,
],
stop_btn=False,
examples=examples,
run_examples_on_click=False,
cache_examples=False,
delete_cache=(1800, 1800),
)
if __name__ == "__main__":
demo.launch() |