VP12322 commited on
Commit
5fdd269
Β·
verified Β·
1 Parent(s): 6c5729e

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +71 -0
app.py ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
3
+ from sentence_transformers import SentenceTransformer, util
4
+ import torch
5
+ import torch.nn.functional as F
6
+
7
+ # Load SBERT model
8
+ sbert_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
9
+
10
+ # Load NLI model
11
+ nli_model_name = "tasksource/ModernBERT-base-nli"
12
+ nli_tokenizer = AutoTokenizer.from_pretrained(nli_model_name)
13
+ nli_model = AutoModelForSequenceClassification.from_pretrained(nli_model_name)
14
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
15
+ nli_model.to(device)
16
+
17
+ # SBERT function
18
+ def compute_similarity(text1, text2):
19
+ embeddings = sbert_model.encode([text1, text2], convert_to_tensor=True)
20
+ similarity = float(util.pytorch_cos_sim(embeddings[0], embeddings[1])[0])
21
+
22
+ interpretation = ""
23
+ if similarity > 0.9:
24
+ interpretation = "🟒 Very High Similarity"
25
+ elif similarity > 0.75:
26
+ interpretation = "🟑 Moderate Similarity"
27
+ elif similarity > 0.5:
28
+ interpretation = "🟠 Low Similarity"
29
+ else:
30
+ interpretation = "πŸ”΄ Very Low Similarity"
31
+
32
+ return round(similarity, 4), interpretation
33
+
34
+ # NLI function
35
+ def check_entail(premise, hypothesis):
36
+ inputs = nli_tokenizer(premise, hypothesis, return_tensors="pt", truncation=True, padding=True, max_length=512).to(device)
37
+ with torch.no_grad():
38
+ logits = nli_model(**inputs).logits
39
+ probs = torch.softmax(logits, dim=-1)[0]
40
+ label = ["entailment", "neutral", "contradiction"][torch.argmax(probs).item()]
41
+ return label, { "entailment": float(probs[0]), "neutral": float(probs[1]), "contradiction": float(probs[2]) }
42
+
43
+ def run_bi_direction(a, b):
44
+ res1 = check_entail(a, b)
45
+ res2 = check_entail(b, a)
46
+ return res1[0], res1[1], res2[0], res2[1]
47
+
48
+ # Build the interface
49
+ with gr.Blocks() as demo:
50
+ gr.Markdown("# ✍️ Essay Comparison Tool")
51
+
52
+ with gr.Tab("Semantic Similarity (SBERT)"):
53
+ a1 = gr.Textbox(label="Essay A", lines=8)
54
+ b1 = gr.Textbox(label="Essay B", lines=8)
55
+ sim_button = gr.Button("Compare Similarity")
56
+ sim_score = gr.Textbox(label="Cosine Similarity (0–1)")
57
+ sim_interpret = gr.Textbox(label="Interpretation")
58
+ sim_button.click(fn=compute_similarity, inputs=[a1, b1], outputs=[sim_score, sim_interpret])
59
+
60
+ with gr.Tab("Bidirectional Entailment (NLI)"):
61
+ a2 = gr.Textbox(label="Essay A (Original)", lines=8)
62
+ b2 = gr.Textbox(label="Essay B (Modified)", lines=8)
63
+ nli_button = gr.Button("Run Entailment Check")
64
+ ab_label = gr.Textbox(label="A ➜ B Label")
65
+ ab_scores = gr.JSON(label="A ➜ B Scores")
66
+ ba_label = gr.Textbox(label="B ➜ A Label")
67
+ ba_scores = gr.JSON(label="B ➜ A Scores")
68
+ nli_button.click(fn=run_bi_direction, inputs=[a2, b2], outputs=[ab_label, ab_scores, ba_label, ba_scores])
69
+
70
+ if __name__ == "__main__":
71
+ demo.launch()