import gradio as gr from transformers import AutoTokenizer, AutoModelForSequenceClassification from sentence_transformers import SentenceTransformer, util import torch import torch.nn.functional as F # Load SBERT model sbert_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2") # Load NLI model nli_model_name = "tasksource/ModernBERT-base-nli" nli_tokenizer = AutoTokenizer.from_pretrained(nli_model_name) nli_model = AutoModelForSequenceClassification.from_pretrained(nli_model_name) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") nli_model.to(device) # SBERT function def compute_similarity(text1, text2): embeddings = sbert_model.encode([text1, text2], convert_to_tensor=True) similarity = float(util.pytorch_cos_sim(embeddings[0], embeddings[1])[0]) interpretation = "" if similarity > 0.9: interpretation = "🟢 Very High Similarity" elif similarity > 0.75: interpretation = "🟡 Moderate Similarity" elif similarity > 0.5: interpretation = "🟠 Low Similarity" else: interpretation = "🔴 Very Low Similarity" return round(similarity, 4), interpretation # NLI function def check_entail(premise, hypothesis): inputs = nli_tokenizer(premise, hypothesis, return_tensors="pt", truncation=True, padding=True, max_length=512).to(device) with torch.no_grad(): logits = nli_model(**inputs).logits probs = torch.softmax(logits, dim=-1)[0] label = ["entailment", "neutral", "contradiction"][torch.argmax(probs).item()] return label, { "entailment": float(probs[0]), "neutral": float(probs[1]), "contradiction": float(probs[2]) } def run_bi_direction(a, b): res1 = check_entail(a, b) res2 = check_entail(b, a) return res1[0], res1[1], res2[0], res2[1] # Build the interface with gr.Blocks() as demo: gr.Markdown("# ✍️ Essay Comparison Tool") with gr.Tab("Semantic Similarity (SBERT)"): a1 = gr.Textbox(label="Essay A", lines=8) b1 = gr.Textbox(label="Essay B", lines=8) sim_button = gr.Button("Compare Similarity") sim_score = gr.Textbox(label="Cosine Similarity (0–1)") sim_interpret = gr.Textbox(label="Interpretation") sim_button.click(fn=compute_similarity, inputs=[a1, b1], outputs=[sim_score, sim_interpret]) with gr.Tab("Bidirectional Entailment (NLI)"): a2 = gr.Textbox(label="Essay A (Original)", lines=8) b2 = gr.Textbox(label="Essay B (Modified)", lines=8) nli_button = gr.Button("Run Entailment Check") ab_label = gr.Textbox(label="A ➜ B Label") ab_scores = gr.JSON(label="A ➜ B Scores") ba_label = gr.Textbox(label="B ➜ A Label") ba_scores = gr.JSON(label="B ➜ A Scores") nli_button.click(fn=run_bi_direction, inputs=[a2, b2], outputs=[ab_label, ab_scores, ba_label, ba_scores]) if __name__ == "__main__": demo.launch()