Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Commit 
							
							·
						
						21c6c10
	
1
								Parent(s):
							
							3f59270
								
chore: Remove unused files and dependencies
Browse filesThis view is limited to 50 files because it contains too many changes.  
							See raw diff
- __pycache__/utils.cpython-39.pyc +0 -0
 - app.py +13 -3
 - model/DensePose/__pycache__/__init__.cpython-39.pyc +0 -0
 - model/SCHP/LICENSE +0 -21
 - model/SCHP/README.md +0 -129
 - model/SCHP/__init__.py +0 -163
 - model/SCHP/__pycache__/__init__.cpython-310.pyc +0 -0
 - model/SCHP/__pycache__/__init__.cpython-39.pyc +0 -0
 - model/SCHP/datasets/__init__.py +0 -0
 - model/SCHP/datasets/__pycache__/__init__.cpython-39.pyc +0 -0
 - model/SCHP/datasets/__pycache__/simple_extractor_dataset.cpython-39.pyc +0 -0
 - model/SCHP/datasets/datasets.py +0 -205
 - model/SCHP/datasets/simple_extractor_dataset.py +0 -92
 - model/SCHP/datasets/target_generation.py +0 -40
 - model/SCHP/environment.yaml +0 -49
 - model/SCHP/evaluate.py +0 -210
 - model/SCHP/file_list.txt +0 -0
 - model/SCHP/mhp_extension/.ipynb_checkpoints/demo-checkpoint.ipynb +0 -0
 - model/SCHP/mhp_extension/README.md +0 -38
 - model/SCHP/mhp_extension/coco_style_annotation_creator/__pycache__/pycococreatortools.cpython-37.pyc +0 -0
 - model/SCHP/mhp_extension/coco_style_annotation_creator/human_to_coco.py +0 -166
 - model/SCHP/mhp_extension/coco_style_annotation_creator/pycococreatortools.py +0 -114
 - model/SCHP/mhp_extension/coco_style_annotation_creator/test_human2coco_format.py +0 -74
 - model/SCHP/mhp_extension/data/DemoDataset/global_pic/demo.jpg +0 -0
 - model/SCHP/mhp_extension/demo.ipynb +0 -0
 - model/SCHP/mhp_extension/demo/demo.jpg +0 -0
 - model/SCHP/mhp_extension/demo/demo_global_human_parsing.png +0 -0
 - model/SCHP/mhp_extension/demo/demo_instance_human_mask.png +0 -0
 - model/SCHP/mhp_extension/demo/demo_multiple_human_parsing.png +0 -0
 - model/SCHP/mhp_extension/detectron2/.circleci/config.yml +0 -179
 - model/SCHP/mhp_extension/detectron2/.clang-format +0 -85
 - model/SCHP/mhp_extension/detectron2/.flake8 +0 -9
 - model/SCHP/mhp_extension/detectron2/.github/CODE_OF_CONDUCT.md +0 -5
 - model/SCHP/mhp_extension/detectron2/.github/CONTRIBUTING.md +0 -49
 - model/SCHP/mhp_extension/detectron2/.github/Detectron2-Logo-Horz.svg +0 -1
 - model/SCHP/mhp_extension/detectron2/.github/ISSUE_TEMPLATE.md +0 -5
 - model/SCHP/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/bugs.md +0 -36
 - model/SCHP/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/config.yml +0 -9
 - model/SCHP/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/feature-request.md +0 -31
 - model/SCHP/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/questions-help-support.md +0 -26
 - model/SCHP/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/unexpected-problems-bugs.md +0 -45
 - model/SCHP/mhp_extension/detectron2/.github/pull_request_template.md +0 -9
 - model/SCHP/mhp_extension/detectron2/.gitignore +0 -46
 - model/SCHP/mhp_extension/detectron2/GETTING_STARTED.md +0 -79
 - model/SCHP/mhp_extension/detectron2/INSTALL.md +0 -184
 - model/SCHP/mhp_extension/detectron2/LICENSE +0 -201
 - model/SCHP/mhp_extension/detectron2/MODEL_ZOO.md +0 -903
 - model/SCHP/mhp_extension/detectron2/README.md +0 -56
 - model/SCHP/mhp_extension/detectron2/configs/Base-RCNN-C4.yaml +0 -18
 - model/SCHP/mhp_extension/detectron2/configs/Base-RCNN-DilatedC5.yaml +0 -31
 
    	
        __pycache__/utils.cpython-39.pyc
    ADDED
    
    | 
         Binary file (20.3 kB). View file 
     | 
| 
         | 
    	
        app.py
    CHANGED
    
    | 
         @@ -12,7 +12,7 @@ from diffusers.image_processor import VaeImageProcessor 
     | 
|
| 12 | 
         
             
            from huggingface_hub import snapshot_download
         
     | 
| 13 | 
         
             
            from PIL import Image
         
     | 
| 14 | 
         | 
| 15 | 
         
            -
            from model.cloth_masker import  
     | 
| 16 | 
         
             
            from model.pipeline import CatVTONPipeline
         
     | 
| 17 | 
         
             
            from utils import init_weight_dtype, resize_and_crop, resize_and_padding
         
     | 
| 18 | 
         | 
| 
         @@ -123,9 +123,9 @@ pipeline = CatVTONPipeline( 
     | 
|
| 123 | 
         
             
            )
         
     | 
| 124 | 
         
             
            # AutoMasker
         
     | 
| 125 | 
         
             
            mask_processor = VaeImageProcessor(vae_scale_factor=8, do_normalize=False, do_binarize=True, do_convert_grayscale=True)
         
     | 
| 126 | 
         
            -
            automasker =  
     | 
| 127 | 
         
             
                densepose_ckpt=os.path.join(repo_path, "DensePose"),
         
     | 
| 128 | 
         
            -
                 
     | 
| 129 | 
         
             
                device='cuda', 
         
     | 
| 130 | 
         
             
            )
         
     | 
| 131 | 
         | 
| 
         @@ -227,6 +227,9 @@ HEADER = """ 
     | 
|
| 227 | 
         
             
              <a href="http://120.76.142.206:8888" style="margin: 0 2px;">
         
     | 
| 228 | 
         
             
                <img src='https://img.shields.io/badge/Demo-Gradio-gold?style=flat&logo=Gradio&logoColor=red' alt='Demo'>
         
     | 
| 229 | 
         
             
              </a>
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 230 | 
         
             
              <a href='https://zheng-chong.github.io/CatVTON/' style="margin: 0 2px;">
         
     | 
| 231 | 
         
             
                <img src='https://img.shields.io/badge/Webpage-Project-silver?style=flat&logo=&logoColor=orange' alt='webpage'>
         
     | 
| 232 | 
         
             
              </a>
         
     | 
| 
         @@ -234,6 +237,13 @@ HEADER = """ 
     | 
|
| 234 | 
         
             
                <img src='https://img.shields.io/badge/License-CC BY--NC--SA--4.0-lightgreen?style=flat&logo=Lisence' alt='License'>
         
     | 
| 235 | 
         
             
              </a>
         
     | 
| 236 | 
         
             
            </div>
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 237 | 
         
             
            """
         
     | 
| 238 | 
         | 
| 239 | 
         
             
            def app_gradio():
         
     | 
| 
         | 
|
| 12 | 
         
             
            from huggingface_hub import snapshot_download
         
     | 
| 13 | 
         
             
            from PIL import Image
         
     | 
| 14 | 
         | 
| 15 | 
         
            +
            from model.cloth_masker import AutoMaskerSeg, vis_mask
         
     | 
| 16 | 
         
             
            from model.pipeline import CatVTONPipeline
         
     | 
| 17 | 
         
             
            from utils import init_weight_dtype, resize_and_crop, resize_and_padding
         
     | 
| 18 | 
         | 
| 
         | 
|
| 123 | 
         
             
            )
         
     | 
| 124 | 
         
             
            # AutoMasker
         
     | 
| 125 | 
         
             
            mask_processor = VaeImageProcessor(vae_scale_factor=8, do_normalize=False, do_binarize=True, do_convert_grayscale=True)
         
     | 
| 126 | 
         
            +
            automasker = AutoMaskerSeg(
         
     | 
| 127 | 
         
             
                densepose_ckpt=os.path.join(repo_path, "DensePose"),
         
     | 
| 128 | 
         
            +
                segformer_ckpt="/home/chongzheng_p23/data/Projects/CatVTON-main/Models/segformer_b3_clothes",
         
     | 
| 129 | 
         
             
                device='cuda', 
         
     | 
| 130 | 
         
             
            )
         
     | 
| 131 | 
         | 
| 
         | 
|
| 227 | 
         
             
              <a href="http://120.76.142.206:8888" style="margin: 0 2px;">
         
     | 
| 228 | 
         
             
                <img src='https://img.shields.io/badge/Demo-Gradio-gold?style=flat&logo=Gradio&logoColor=red' alt='Demo'>
         
     | 
| 229 | 
         
             
              </a>
         
     | 
| 230 | 
         
            +
              <a href="https://huggingface.co/spaces/zhengchong/CatVTON" style="margin: 0 2px;">
         
     | 
| 231 | 
         
            +
                <img src='https://img.shields.io/badge/Space-ZeroGPU-orange?style=flat&logo=Gradio&logoColor=red' alt='Demo'>
         
     | 
| 232 | 
         
            +
              </a>
         
     | 
| 233 | 
         
             
              <a href='https://zheng-chong.github.io/CatVTON/' style="margin: 0 2px;">
         
     | 
| 234 | 
         
             
                <img src='https://img.shields.io/badge/Webpage-Project-silver?style=flat&logo=&logoColor=orange' alt='webpage'>
         
     | 
| 235 | 
         
             
              </a>
         
     | 
| 
         | 
|
| 237 | 
         
             
                <img src='https://img.shields.io/badge/License-CC BY--NC--SA--4.0-lightgreen?style=flat&logo=Lisence' alt='License'>
         
     | 
| 238 | 
         
             
              </a>
         
     | 
| 239 | 
         
             
            </div>
         
     | 
| 240 | 
         
            +
            <br>
         
     | 
| 241 | 
         
            +
             
     | 
| 242 | 
         
            +
            · Thanks to <a href="https://huggingface.co/zero-gpu-explorers">ZeroGPU</a>  for providing A100 for this demo. <br> 
         
     | 
| 243 | 
         
            +
            · To adapt to ZeroGPU, we replace SCHP with <a href="https://huggingface.co/mattmdjaga/segformer_b2_clothes">SegFormer</a> which may result in differences from <a href="http://120.76.142.206:8888">our own demo</a>. <br>
         
     | 
| 244 | 
         
            +
            · This demo and our weights are only open for **Non-commercial Use**. <br>
         
     | 
| 245 | 
         
            +
            · SafetyChecker is set to filter NSFW content, but it may block normal results too. Please adjust the <span>`seed`</span> for normal outcomes.
         
     | 
| 246 | 
         
            +
             
     | 
| 247 | 
         
             
            """
         
     | 
| 248 | 
         | 
| 249 | 
         
             
            def app_gradio():
         
     | 
    	
        model/DensePose/__pycache__/__init__.cpython-39.pyc
    CHANGED
    
    | 
         Binary files a/model/DensePose/__pycache__/__init__.cpython-39.pyc and b/model/DensePose/__pycache__/__init__.cpython-39.pyc differ 
     | 
| 
         | 
    	
        model/SCHP/LICENSE
    DELETED
    
    | 
         @@ -1,21 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            MIT License
         
     | 
| 2 | 
         
            -
             
     | 
| 3 | 
         
            -
            Copyright (c) 2020 Peike Li
         
     | 
| 4 | 
         
            -
             
     | 
| 5 | 
         
            -
            Permission is hereby granted, free of charge, to any person obtaining a copy
         
     | 
| 6 | 
         
            -
            of this software and associated documentation files (the "Software"), to deal
         
     | 
| 7 | 
         
            -
            in the Software without restriction, including without limitation the rights
         
     | 
| 8 | 
         
            -
            to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
         
     | 
| 9 | 
         
            -
            copies of the Software, and to permit persons to whom the Software is
         
     | 
| 10 | 
         
            -
            furnished to do so, subject to the following conditions:
         
     | 
| 11 | 
         
            -
             
     | 
| 12 | 
         
            -
            The above copyright notice and this permission notice shall be included in all
         
     | 
| 13 | 
         
            -
            copies or substantial portions of the Software.
         
     | 
| 14 | 
         
            -
             
     | 
| 15 | 
         
            -
            THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
         
     | 
| 16 | 
         
            -
            IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
         
     | 
| 17 | 
         
            -
            FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
         
     | 
| 18 | 
         
            -
            AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
         
     | 
| 19 | 
         
            -
            LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
         
     | 
| 20 | 
         
            -
            OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
         
     | 
| 21 | 
         
            -
            SOFTWARE.
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        model/SCHP/README.md
    DELETED
    
    | 
         @@ -1,129 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            # Self Correction for Human Parsing
         
     | 
| 2 | 
         
            -
             
     | 
| 3 | 
         
            -
            
         
     | 
| 4 | 
         
            -
            [](https://opensource.org/licenses/MIT)
         
     | 
| 5 | 
         
            -
             
     | 
| 6 | 
         
            -
            An out-of-box human parsing representation extractor.
         
     | 
| 7 | 
         
            -
             
     | 
| 8 | 
         
            -
            Our solution ranks 1st for all human parsing tracks (including single, multiple and video) in the third LIP challenge!
         
     | 
| 9 | 
         
            -
             
     | 
| 10 | 
         
            -
             
         
     | 
| 11 | 
         
            -
             
     | 
| 12 | 
         
            -
            Features:
         
     | 
| 13 | 
         
            -
            - [x] Out-of-box human parsing extractor for other downstream applications.
         
     | 
| 14 | 
         
            -
            - [x] Pretrained model on three popular single person human parsing datasets.
         
     | 
| 15 | 
         
            -
            - [x] Training and inferecne code.
         
     | 
| 16 | 
         
            -
            - [x] Simple yet effective extension on multi-person and video human parsing tasks.
         
     | 
| 17 | 
         
            -
             
     | 
| 18 | 
         
            -
            ## Requirements
         
     | 
| 19 | 
         
            -
             
     | 
| 20 | 
         
            -
            ```
         
     | 
| 21 | 
         
            -
            conda env create -f environment.yaml
         
     | 
| 22 | 
         
            -
            conda activate schp
         
     | 
| 23 | 
         
            -
            pip install -r requirements.txt
         
     | 
| 24 | 
         
            -
            ```
         
     | 
| 25 | 
         
            -
             
     | 
| 26 | 
         
            -
            ## Simple Out-of-Box Extractor
         
     | 
| 27 | 
         
            -
             
     | 
| 28 | 
         
            -
            The easiest way to get started is to use our trained SCHP models on your own images to extract human parsing representations. Here we provided state-of-the-art [trained models](https://drive.google.com/drive/folders/1uOaQCpNtosIjEL2phQKEdiYd0Td18jNo?usp=sharing) on three popular datasets. Theses three datasets have different label system, you can choose the best one to fit on your own task.
         
     | 
| 29 | 
         
            -
             
     | 
| 30 | 
         
            -
            **LIP** ([exp-schp-201908261155-lip.pth](https://drive.google.com/file/d/1k4dllHpu0bdx38J7H28rVVLpU-kOHmnH/view?usp=sharing))
         
     | 
| 31 | 
         
            -
             
     | 
| 32 | 
         
            -
            * mIoU on LIP validation: **59.36 %**.
         
     | 
| 33 | 
         
            -
             
     | 
| 34 | 
         
            -
            * LIP is the largest single person human parsing dataset with 50000+ images. This dataset focus more on the complicated real scenarios. LIP has 20 labels, including 'Background', 'Hat', 'Hair', 'Glove', 'Sunglasses', 'Upper-clothes', 'Dress', 'Coat', 'Socks', 'Pants', 'Jumpsuits', 'Scarf', 'Skirt', 'Face', 'Left-arm', 'Right-arm', 'Left-leg', 'Right-leg', 'Left-shoe', 'Right-shoe'.
         
     | 
| 35 | 
         
            -
             
     | 
| 36 | 
         
            -
            **ATR** ([exp-schp-201908301523-atr.pth](https://drive.google.com/file/d/1ruJg4lqR_jgQPj-9K0PP-L2vJERYOxLP/view?usp=sharing))
         
     | 
| 37 | 
         
            -
             
     | 
| 38 | 
         
            -
            * mIoU on ATR test: **82.29%**.
         
     | 
| 39 | 
         
            -
             
     | 
| 40 | 
         
            -
            * ATR is a large single person human parsing dataset with 17000+ images. This dataset focus more on fashion AI. ATR has 18 labels, including 'Background', 'Hat', 'Hair', 'Sunglasses', 'Upper-clothes', 'Skirt', 'Pants', 'Dress', 'Belt', 'Left-shoe', 'Right-shoe', 'Face', 'Left-leg', 'Right-leg', 'Left-arm', 'Right-arm', 'Bag', 'Scarf'.
         
     | 
| 41 | 
         
            -
             
     | 
| 42 | 
         
            -
            **Pascal-Person-Part** ([exp-schp-201908270938-pascal-person-part.pth](https://drive.google.com/file/d/1E5YwNKW2VOEayK9mWCS3Kpsxf-3z04ZE/view?usp=sharing))
         
     | 
| 43 | 
         
            -
             
     | 
| 44 | 
         
            -
            * mIoU on Pascal-Person-Part validation: **71.46** %.
         
     | 
| 45 | 
         
            -
             
     | 
| 46 | 
         
            -
            * Pascal Person Part is a tiny single person human parsing dataset with 3000+ images. This dataset focus more on body parts segmentation. Pascal Person Part has 7 labels, including 'Background', 'Head', 'Torso', 'Upper Arms', 'Lower Arms', 'Upper Legs', 'Lower Legs'.
         
     | 
| 47 | 
         
            -
             
     | 
| 48 | 
         
            -
            Choose one and have fun on your own task!
         
     | 
| 49 | 
         
            -
             
     | 
| 50 | 
         
            -
            To extract the human parsing representation, simply put your own image in the `INPUT_PATH` folder, then download a pretrained model and run the following command. The output images with the same file name will be saved in `OUTPUT_PATH`
         
     | 
| 51 | 
         
            -
             
     | 
| 52 | 
         
            -
            ```
         
     | 
| 53 | 
         
            -
            python simple_extractor.py --dataset [DATASET] --model-restore [CHECKPOINT_PATH] --input-dir [INPUT_PATH] --output-dir [OUTPUT_PATH]
         
     | 
| 54 | 
         
            -
            ```
         
     | 
| 55 | 
         
            -
             
     | 
| 56 | 
         
            -
            **[Updated]** Here is also a [colab demo example](https://colab.research.google.com/drive/1JOwOPaChoc9GzyBi5FUEYTSaP2qxJl10?usp=sharing) for quick inference provided by [@levindabhi](https://github.com/levindabhi).
         
     | 
| 57 | 
         
            -
             
     | 
| 58 | 
         
            -
            The `DATASET` command has three options, including 'lip', 'atr' and 'pascal'. Note each pixel in the output images denotes the predicted label number. The output images have the same size as the input ones. To better visualization, we put a palette with the output images. We suggest you to read the image with `PIL`.
         
     | 
| 59 | 
         
            -
             
     | 
| 60 | 
         
            -
            If you need not only the final parsing images, but also the feature map representations. Add `--logits` command to save the output feature maps. These feature maps are the logits before softmax layer.
         
     | 
| 61 | 
         
            -
             
     | 
| 62 | 
         
            -
            ## Dataset Preparation
         
     | 
| 63 | 
         
            -
             
     | 
| 64 | 
         
            -
            Please download the [LIP](http://sysu-hcp.net/lip/) dataset following the below structure.
         
     | 
| 65 | 
         
            -
             
     | 
| 66 | 
         
            -
            ```commandline
         
     | 
| 67 | 
         
            -
            data/LIP
         
     | 
| 68 | 
         
            -
            |--- train_imgaes # 30462 training single person images
         
     | 
| 69 | 
         
            -
            |--- val_images # 10000 validation single person images
         
     | 
| 70 | 
         
            -
            |--- train_segmentations # 30462 training annotations
         
     | 
| 71 | 
         
            -
            |--- val_segmentations # 10000 training annotations
         
     | 
| 72 | 
         
            -
            |--- train_id.txt # training image list
         
     | 
| 73 | 
         
            -
            |--- val_id.txt # validation image list
         
     | 
| 74 | 
         
            -
            ```
         
     | 
| 75 | 
         
            -
             
     | 
| 76 | 
         
            -
            ## Training
         
     | 
| 77 | 
         
            -
             
     | 
| 78 | 
         
            -
            ```
         
     | 
| 79 | 
         
            -
            python train.py 
         
     | 
| 80 | 
         
            -
            ```
         
     | 
| 81 | 
         
            -
            By default, the trained model will be saved in `./log` directory. Please read the arguments for more details.
         
     | 
| 82 | 
         
            -
             
     | 
| 83 | 
         
            -
            ## Evaluation
         
     | 
| 84 | 
         
            -
            ```
         
     | 
| 85 | 
         
            -
            python evaluate.py --model-restore [CHECKPOINT_PATH]
         
     | 
| 86 | 
         
            -
            ```
         
     | 
| 87 | 
         
            -
            CHECKPOINT_PATH should be the path of trained model.
         
     | 
| 88 | 
         
            -
             
     | 
| 89 | 
         
            -
            ## Extension on Multiple Human Parsing
         
     | 
| 90 | 
         
            -
             
     | 
| 91 | 
         
            -
            Please read [MultipleHumanParsing.md](./mhp_extension/README.md) for more details.
         
     | 
| 92 | 
         
            -
             
     | 
| 93 | 
         
            -
            ## Citation
         
     | 
| 94 | 
         
            -
             
     | 
| 95 | 
         
            -
            Please cite our work if you find this repo useful in your research.
         
     | 
| 96 | 
         
            -
             
     | 
| 97 | 
         
            -
            ```latex
         
     | 
| 98 | 
         
            -
            @article{li2020self,
         
     | 
| 99 | 
         
            -
              title={Self-Correction for Human Parsing}, 
         
     | 
| 100 | 
         
            -
              author={Li, Peike and Xu, Yunqiu and Wei, Yunchao and Yang, Yi},
         
     | 
| 101 | 
         
            -
              journal={IEEE Transactions on Pattern Analysis and Machine Intelligence}, 
         
     | 
| 102 | 
         
            -
              year={2020},
         
     | 
| 103 | 
         
            -
              doi={10.1109/TPAMI.2020.3048039}}
         
     | 
| 104 | 
         
            -
            ```
         
     | 
| 105 | 
         
            -
             
     | 
| 106 | 
         
            -
            ## Visualization
         
     | 
| 107 | 
         
            -
             
     | 
| 108 | 
         
            -
            * Source Image.
         
     | 
| 109 | 
         
            -
            
         
     | 
| 110 | 
         
            -
            * LIP Parsing Result.
         
     | 
| 111 | 
         
            -
            
         
     | 
| 112 | 
         
            -
            * ATR Parsing Result.
         
     | 
| 113 | 
         
            -
            
         
     | 
| 114 | 
         
            -
            * Pascal-Person-Part Parsing Result.
         
     | 
| 115 | 
         
            -
            
         
     | 
| 116 | 
         
            -
            * Source Image.
         
     | 
| 117 | 
         
            -
            
         
     | 
| 118 | 
         
            -
            * Instance Human Mask.
         
     | 
| 119 | 
         
            -
            
         
     | 
| 120 | 
         
            -
            * Global Human Parsing Result.
         
     | 
| 121 | 
         
            -
            
         
     | 
| 122 | 
         
            -
            * Multiple Human Parsing Result.
         
     | 
| 123 | 
         
            -
            
         
     | 
| 124 | 
         
            -
             
     | 
| 125 | 
         
            -
             
     | 
| 126 | 
         
            -
            ## Related
         
     | 
| 127 | 
         
            -
            Our code adopts the [InplaceSyncBN](https://github.com/mapillary/inplace_abn) to save gpu memory cost.
         
     | 
| 128 | 
         
            -
             
     | 
| 129 | 
         
            -
            There is also a [PaddlePaddle](https://github.com/PaddlePaddle/PaddleSeg/tree/develop/contrib/ACE2P) Implementation of this project.
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        model/SCHP/__init__.py
    DELETED
    
    | 
         @@ -1,163 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            from model.SCHP import networks
         
     | 
| 2 | 
         
            -
            from model.SCHP.utils.transforms import get_affine_transform, transform_logits
         
     | 
| 3 | 
         
            -
             
     | 
| 4 | 
         
            -
            from collections import OrderedDict
         
     | 
| 5 | 
         
            -
            import torch
         
     | 
| 6 | 
         
            -
            import numpy as np
         
     | 
| 7 | 
         
            -
            import cv2
         
     | 
| 8 | 
         
            -
            from PIL import Image
         
     | 
| 9 | 
         
            -
            from torchvision import transforms
         
     | 
| 10 | 
         
            -
             
     | 
| 11 | 
         
            -
            def get_palette(num_cls):
         
     | 
| 12 | 
         
            -
                """ Returns the color map for visualizing the segmentation mask.
         
     | 
| 13 | 
         
            -
                Args:
         
     | 
| 14 | 
         
            -
                    num_cls: Number of classes
         
     | 
| 15 | 
         
            -
                Returns:
         
     | 
| 16 | 
         
            -
                    The color map
         
     | 
| 17 | 
         
            -
                """
         
     | 
| 18 | 
         
            -
                n = num_cls
         
     | 
| 19 | 
         
            -
                palette = [0] * (n * 3)
         
     | 
| 20 | 
         
            -
                for j in range(0, n):
         
     | 
| 21 | 
         
            -
                    lab = j
         
     | 
| 22 | 
         
            -
                    palette[j * 3 + 0] = 0
         
     | 
| 23 | 
         
            -
                    palette[j * 3 + 1] = 0
         
     | 
| 24 | 
         
            -
                    palette[j * 3 + 2] = 0
         
     | 
| 25 | 
         
            -
                    i = 0
         
     | 
| 26 | 
         
            -
                    while lab:
         
     | 
| 27 | 
         
            -
                        palette[j * 3 + 0] |= (((lab >> 0) & 1) << (7 - i))
         
     | 
| 28 | 
         
            -
                        palette[j * 3 + 1] |= (((lab >> 1) & 1) << (7 - i))
         
     | 
| 29 | 
         
            -
                        palette[j * 3 + 2] |= (((lab >> 2) & 1) << (7 - i))
         
     | 
| 30 | 
         
            -
                        i += 1
         
     | 
| 31 | 
         
            -
                        lab >>= 3
         
     | 
| 32 | 
         
            -
                return palette
         
     | 
| 33 | 
         
            -
             
     | 
| 34 | 
         
            -
            dataset_settings = {
         
     | 
| 35 | 
         
            -
                'lip': {
         
     | 
| 36 | 
         
            -
                    'input_size': [473, 473],
         
     | 
| 37 | 
         
            -
                    'num_classes': 20,
         
     | 
| 38 | 
         
            -
                    'label': ['Background', 'Hat', 'Hair', 'Glove', 'Sunglasses', 'Upper-clothes', 'Dress', 'Coat',
         
     | 
| 39 | 
         
            -
                              'Socks', 'Pants', 'Jumpsuits', 'Scarf', 'Skirt', 'Face', 'Left-arm', 'Right-arm',
         
     | 
| 40 | 
         
            -
                              'Left-leg', 'Right-leg', 'Left-shoe', 'Right-shoe']
         
     | 
| 41 | 
         
            -
                },
         
     | 
| 42 | 
         
            -
                'atr': {
         
     | 
| 43 | 
         
            -
                    'input_size': [512, 512],
         
     | 
| 44 | 
         
            -
                    'num_classes': 18,
         
     | 
| 45 | 
         
            -
                    'label': ['Background', 'Hat', 'Hair', 'Sunglasses', 'Upper-clothes', 'Skirt', 'Pants', 'Dress', 'Belt',
         
     | 
| 46 | 
         
            -
                              'Left-shoe', 'Right-shoe', 'Face', 'Left-leg', 'Right-leg', 'Left-arm', 'Right-arm', 'Bag', 'Scarf']
         
     | 
| 47 | 
         
            -
                },
         
     | 
| 48 | 
         
            -
                'pascal': {
         
     | 
| 49 | 
         
            -
                    'input_size': [512, 512],
         
     | 
| 50 | 
         
            -
                    'num_classes': 7,
         
     | 
| 51 | 
         
            -
                    'label': ['Background', 'Head', 'Torso', 'Upper Arms', 'Lower Arms', 'Upper Legs', 'Lower Legs'],
         
     | 
| 52 | 
         
            -
                }
         
     | 
| 53 | 
         
            -
            }
         
     | 
| 54 | 
         
            -
             
     | 
| 55 | 
         
            -
            class SCHP:
         
     | 
| 56 | 
         
            -
                def __init__(self, ckpt_path, device):
         
     | 
| 57 | 
         
            -
                    dataset_type = None
         
     | 
| 58 | 
         
            -
                    if 'lip' in ckpt_path:
         
     | 
| 59 | 
         
            -
                        dataset_type = 'lip'
         
     | 
| 60 | 
         
            -
                    elif 'atr' in ckpt_path:
         
     | 
| 61 | 
         
            -
                        dataset_type = 'atr'
         
     | 
| 62 | 
         
            -
                    elif 'pascal' in ckpt_path:
         
     | 
| 63 | 
         
            -
                        dataset_type = 'pascal'
         
     | 
| 64 | 
         
            -
                    assert dataset_type is not None, 'Dataset type not found in checkpoint path'
         
     | 
| 65 | 
         
            -
                    self.device = device
         
     | 
| 66 | 
         
            -
                    self.num_classes = dataset_settings[dataset_type]['num_classes']
         
     | 
| 67 | 
         
            -
                    self.input_size = dataset_settings[dataset_type]['input_size']
         
     | 
| 68 | 
         
            -
                    self.aspect_ratio = self.input_size[1] * 1.0 / self.input_size[0]
         
     | 
| 69 | 
         
            -
                    self.palette = get_palette(self.num_classes)
         
     | 
| 70 | 
         
            -
             
     | 
| 71 | 
         
            -
                    self.label = dataset_settings[dataset_type]['label']
         
     | 
| 72 | 
         
            -
                    self.model = networks.init_model('resnet101', num_classes=self.num_classes, pretrained=None).to(device)
         
     | 
| 73 | 
         
            -
                    self.load_ckpt(ckpt_path)
         
     | 
| 74 | 
         
            -
                    self.model.eval()
         
     | 
| 75 | 
         
            -
                    
         
     | 
| 76 | 
         
            -
                    self.transform = transforms.Compose([
         
     | 
| 77 | 
         
            -
                        transforms.ToTensor(),
         
     | 
| 78 | 
         
            -
                        transforms.Normalize(mean=[0.406, 0.456, 0.485], std=[0.225, 0.224, 0.229])
         
     | 
| 79 | 
         
            -
                    ])
         
     | 
| 80 | 
         
            -
                    self.upsample = torch.nn.Upsample(size=self.input_size, mode='bilinear', align_corners=True)
         
     | 
| 81 | 
         
            -
             
     | 
| 82 | 
         
            -
             
     | 
| 83 | 
         
            -
                def load_ckpt(self, ckpt_path):
         
     | 
| 84 | 
         
            -
                    state_dict = torch.load(ckpt_path, map_location='cpu')['state_dict']
         
     | 
| 85 | 
         
            -
                    new_state_dict = OrderedDict()
         
     | 
| 86 | 
         
            -
                    for k, v in state_dict.items():
         
     | 
| 87 | 
         
            -
                        name = k[7:]  # remove `module.`
         
     | 
| 88 | 
         
            -
                        new_state_dict[name] = v
         
     | 
| 89 | 
         
            -
                    self.model.load_state_dict(new_state_dict)
         
     | 
| 90 | 
         
            -
             
     | 
| 91 | 
         
            -
                def _box2cs(self, box):
         
     | 
| 92 | 
         
            -
                    x, y, w, h = box[:4]
         
     | 
| 93 | 
         
            -
                    return self._xywh2cs(x, y, w, h)
         
     | 
| 94 | 
         
            -
             
     | 
| 95 | 
         
            -
                def _xywh2cs(self, x, y, w, h):
         
     | 
| 96 | 
         
            -
                    center = np.zeros((2), dtype=np.float32)
         
     | 
| 97 | 
         
            -
                    center[0] = x + w * 0.5
         
     | 
| 98 | 
         
            -
                    center[1] = y + h * 0.5
         
     | 
| 99 | 
         
            -
                    if w > self.aspect_ratio * h:
         
     | 
| 100 | 
         
            -
                        h = w * 1.0 / self.aspect_ratio
         
     | 
| 101 | 
         
            -
                    elif w < self.aspect_ratio * h:
         
     | 
| 102 | 
         
            -
                        w = h * self.aspect_ratio
         
     | 
| 103 | 
         
            -
                    scale = np.array([w, h], dtype=np.float32)
         
     | 
| 104 | 
         
            -
                    return center, scale
         
     | 
| 105 | 
         
            -
             
     | 
| 106 | 
         
            -
                def preprocess(self, image):
         
     | 
| 107 | 
         
            -
                    if isinstance(image, str):
         
     | 
| 108 | 
         
            -
                        img = cv2.imread(image, cv2.IMREAD_COLOR)
         
     | 
| 109 | 
         
            -
                    elif isinstance(image, Image.Image):
         
     | 
| 110 | 
         
            -
                        # to cv2 format
         
     | 
| 111 | 
         
            -
                        img = np.array(image)
         
     | 
| 112 | 
         
            -
                
         
     | 
| 113 | 
         
            -
                    h, w, _ = img.shape
         
     | 
| 114 | 
         
            -
                    # Get person center and scale
         
     | 
| 115 | 
         
            -
                    person_center, s = self._box2cs([0, 0, w - 1, h - 1])
         
     | 
| 116 | 
         
            -
                    r = 0
         
     | 
| 117 | 
         
            -
                    trans = get_affine_transform(person_center, s, r, self.input_size)
         
     | 
| 118 | 
         
            -
                    input = cv2.warpAffine(
         
     | 
| 119 | 
         
            -
                        img,
         
     | 
| 120 | 
         
            -
                        trans,
         
     | 
| 121 | 
         
            -
                        (int(self.input_size[1]), int(self.input_size[0])),
         
     | 
| 122 | 
         
            -
                        flags=cv2.INTER_LINEAR,
         
     | 
| 123 | 
         
            -
                        borderMode=cv2.BORDER_CONSTANT,
         
     | 
| 124 | 
         
            -
                        borderValue=(0, 0, 0))
         
     | 
| 125 | 
         
            -
             
     | 
| 126 | 
         
            -
                    input = self.transform(input).to(self.device).unsqueeze(0)
         
     | 
| 127 | 
         
            -
                    meta = {
         
     | 
| 128 | 
         
            -
                            'center': person_center,
         
     | 
| 129 | 
         
            -
                            'height': h,
         
     | 
| 130 | 
         
            -
                            'width': w,
         
     | 
| 131 | 
         
            -
                            'scale': s,
         
     | 
| 132 | 
         
            -
                            'rotation': r
         
     | 
| 133 | 
         
            -
                    }
         
     | 
| 134 | 
         
            -
                    return input, meta
         
     | 
| 135 | 
         
            -
             
     | 
| 136 | 
         
            -
             
     | 
| 137 | 
         
            -
                def __call__(self, image_or_path):
         
     | 
| 138 | 
         
            -
                    if isinstance(image_or_path, list):
         
     | 
| 139 | 
         
            -
                        image_list = []
         
     | 
| 140 | 
         
            -
                        meta_list = []
         
     | 
| 141 | 
         
            -
                        for image in image_or_path:
         
     | 
| 142 | 
         
            -
                            image, meta = self.preprocess(image)
         
     | 
| 143 | 
         
            -
                            image_list.append(image)
         
     | 
| 144 | 
         
            -
                            meta_list.append(meta)
         
     | 
| 145 | 
         
            -
                        image = torch.cat(image_list, dim=0)
         
     | 
| 146 | 
         
            -
                    else:
         
     | 
| 147 | 
         
            -
                        image, meta = self.preprocess(image_or_path)
         
     | 
| 148 | 
         
            -
                        meta_list = [meta]
         
     | 
| 149 | 
         
            -
                            
         
     | 
| 150 | 
         
            -
                    output = self.model(image)
         
     | 
| 151 | 
         
            -
                    upsample_outputs = self.upsample(output[0][-1])
         
     | 
| 152 | 
         
            -
                    upsample_outputs = upsample_outputs.permute(0, 2, 3, 1)  # BCHW -> BHWC
         
     | 
| 153 | 
         
            -
             
     | 
| 154 | 
         
            -
                    output_img_list = []
         
     | 
| 155 | 
         
            -
                    for upsample_output, meta in zip(upsample_outputs, meta_list):
         
     | 
| 156 | 
         
            -
                        c, s, w, h = meta['center'], meta['scale'], meta['width'], meta['height']
         
     | 
| 157 | 
         
            -
                        logits_result = transform_logits(upsample_output.data.cpu().numpy(), c, s, w, h, input_size=self.input_size)
         
     | 
| 158 | 
         
            -
                        parsing_result = np.argmax(logits_result, axis=2)
         
     | 
| 159 | 
         
            -
                        output_img = Image.fromarray(np.asarray(parsing_result, dtype=np.uint8))
         
     | 
| 160 | 
         
            -
                        output_img.putpalette(self.palette)
         
     | 
| 161 | 
         
            -
                        output_img_list.append(output_img)
         
     | 
| 162 | 
         
            -
             
     | 
| 163 | 
         
            -
                    return output_img_list[0] if len(output_img_list) == 1 else output_img_list
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        model/SCHP/__pycache__/__init__.cpython-310.pyc
    DELETED
    
    | 
         Binary file (4.95 kB) 
     | 
| 
         | 
    	
        model/SCHP/__pycache__/__init__.cpython-39.pyc
    DELETED
    
    | 
         Binary file (4.96 kB) 
     | 
| 
         | 
    	
        model/SCHP/datasets/__init__.py
    DELETED
    
    | 
         
            File without changes
         
     | 
    	
        model/SCHP/datasets/__pycache__/__init__.cpython-39.pyc
    DELETED
    
    | 
         Binary file (170 Bytes) 
     | 
| 
         | 
    	
        model/SCHP/datasets/__pycache__/simple_extractor_dataset.cpython-39.pyc
    DELETED
    
    | 
         Binary file (2.79 kB) 
     | 
| 
         | 
    	
        model/SCHP/datasets/datasets.py
    DELETED
    
    | 
         @@ -1,205 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            #!/usr/bin/env python
         
     | 
| 2 | 
         
            -
            # -*- encoding: utf-8 -*-
         
     | 
| 3 | 
         
            -
             
     | 
| 4 | 
         
            -
            """
         
     | 
| 5 | 
         
            -
            @Author  :   Peike Li
         
     | 
| 6 | 
         
            -
            @Contact :   [email protected]
         
     | 
| 7 | 
         
            -
            @File    :   datasets.py
         
     | 
| 8 | 
         
            -
            @Time    :   8/4/19 3:35 PM
         
     | 
| 9 | 
         
            -
            @Desc    :
         
     | 
| 10 | 
         
            -
            @License :   This source code is licensed under the license found in the
         
     | 
| 11 | 
         
            -
                         LICENSE file in the root directory of this source tree.
         
     | 
| 12 | 
         
            -
            """
         
     | 
| 13 | 
         
            -
             
     | 
| 14 | 
         
            -
            import os
         
     | 
| 15 | 
         
            -
            import numpy as np
         
     | 
| 16 | 
         
            -
            import random
         
     | 
| 17 | 
         
            -
            import torch
         
     | 
| 18 | 
         
            -
            import cv2
         
     | 
| 19 | 
         
            -
            from torch.utils import data
         
     | 
| 20 | 
         
            -
            from utils.transforms import get_affine_transform
         
     | 
| 21 | 
         
            -
             
     | 
| 22 | 
         
            -
             
     | 
| 23 | 
         
            -
            class LIPDataSet(data.Dataset):
         
     | 
| 24 | 
         
            -
                def __init__(self, root, dataset, crop_size=[473, 473], scale_factor=0.25,
         
     | 
| 25 | 
         
            -
                             rotation_factor=30, ignore_label=255, transform=None):
         
     | 
| 26 | 
         
            -
                    self.root = root
         
     | 
| 27 | 
         
            -
                    self.aspect_ratio = crop_size[1] * 1.0 / crop_size[0]
         
     | 
| 28 | 
         
            -
                    self.crop_size = np.asarray(crop_size)
         
     | 
| 29 | 
         
            -
                    self.ignore_label = ignore_label
         
     | 
| 30 | 
         
            -
                    self.scale_factor = scale_factor
         
     | 
| 31 | 
         
            -
                    self.rotation_factor = rotation_factor
         
     | 
| 32 | 
         
            -
                    self.flip_prob = 0.5
         
     | 
| 33 | 
         
            -
                    self.transform = transform
         
     | 
| 34 | 
         
            -
                    self.dataset = dataset
         
     | 
| 35 | 
         
            -
             
     | 
| 36 | 
         
            -
                    list_path = os.path.join(self.root, self.dataset + '_id.txt')
         
     | 
| 37 | 
         
            -
                    train_list = [i_id.strip() for i_id in open(list_path)]
         
     | 
| 38 | 
         
            -
             
     | 
| 39 | 
         
            -
                    self.train_list = train_list
         
     | 
| 40 | 
         
            -
                    self.number_samples = len(self.train_list)
         
     | 
| 41 | 
         
            -
             
     | 
| 42 | 
         
            -
                def __len__(self):
         
     | 
| 43 | 
         
            -
                    return self.number_samples
         
     | 
| 44 | 
         
            -
             
     | 
| 45 | 
         
            -
                def _box2cs(self, box):
         
     | 
| 46 | 
         
            -
                    x, y, w, h = box[:4]
         
     | 
| 47 | 
         
            -
                    return self._xywh2cs(x, y, w, h)
         
     | 
| 48 | 
         
            -
             
     | 
| 49 | 
         
            -
                def _xywh2cs(self, x, y, w, h):
         
     | 
| 50 | 
         
            -
                    center = np.zeros((2), dtype=np.float32)
         
     | 
| 51 | 
         
            -
                    center[0] = x + w * 0.5
         
     | 
| 52 | 
         
            -
                    center[1] = y + h * 0.5
         
     | 
| 53 | 
         
            -
                    if w > self.aspect_ratio * h:
         
     | 
| 54 | 
         
            -
                        h = w * 1.0 / self.aspect_ratio
         
     | 
| 55 | 
         
            -
                    elif w < self.aspect_ratio * h:
         
     | 
| 56 | 
         
            -
                        w = h * self.aspect_ratio
         
     | 
| 57 | 
         
            -
                    scale = np.array([w * 1.0, h * 1.0], dtype=np.float32)
         
     | 
| 58 | 
         
            -
                    return center, scale
         
     | 
| 59 | 
         
            -
             
     | 
| 60 | 
         
            -
                def __getitem__(self, index):
         
     | 
| 61 | 
         
            -
                    train_item = self.train_list[index]
         
     | 
| 62 | 
         
            -
             
     | 
| 63 | 
         
            -
                    im_path = os.path.join(self.root, self.dataset + '_images', train_item + '.jpg')
         
     | 
| 64 | 
         
            -
                    parsing_anno_path = os.path.join(self.root, self.dataset + '_segmentations', train_item + '.png')
         
     | 
| 65 | 
         
            -
             
     | 
| 66 | 
         
            -
                    im = cv2.imread(im_path, cv2.IMREAD_COLOR)
         
     | 
| 67 | 
         
            -
                    h, w, _ = im.shape
         
     | 
| 68 | 
         
            -
                    parsing_anno = np.zeros((h, w), dtype=np.long)
         
     | 
| 69 | 
         
            -
             
     | 
| 70 | 
         
            -
                    # Get person center and scale
         
     | 
| 71 | 
         
            -
                    person_center, s = self._box2cs([0, 0, w - 1, h - 1])
         
     | 
| 72 | 
         
            -
                    r = 0
         
     | 
| 73 | 
         
            -
             
     | 
| 74 | 
         
            -
                    if self.dataset != 'test':
         
     | 
| 75 | 
         
            -
                        # Get pose annotation
         
     | 
| 76 | 
         
            -
                        parsing_anno = cv2.imread(parsing_anno_path, cv2.IMREAD_GRAYSCALE)
         
     | 
| 77 | 
         
            -
                        if self.dataset == 'train' or self.dataset == 'trainval':
         
     | 
| 78 | 
         
            -
                            sf = self.scale_factor
         
     | 
| 79 | 
         
            -
                            rf = self.rotation_factor
         
     | 
| 80 | 
         
            -
                            s = s * np.clip(np.random.randn() * sf + 1, 1 - sf, 1 + sf)
         
     | 
| 81 | 
         
            -
                            r = np.clip(np.random.randn() * rf, -rf * 2, rf * 2) if random.random() <= 0.6 else 0
         
     | 
| 82 | 
         
            -
             
     | 
| 83 | 
         
            -
                            if random.random() <= self.flip_prob:
         
     | 
| 84 | 
         
            -
                                im = im[:, ::-1, :]
         
     | 
| 85 | 
         
            -
                                parsing_anno = parsing_anno[:, ::-1]
         
     | 
| 86 | 
         
            -
                                person_center[0] = im.shape[1] - person_center[0] - 1
         
     | 
| 87 | 
         
            -
                                right_idx = [15, 17, 19]
         
     | 
| 88 | 
         
            -
                                left_idx = [14, 16, 18]
         
     | 
| 89 | 
         
            -
                                for i in range(0, 3):
         
     | 
| 90 | 
         
            -
                                    right_pos = np.where(parsing_anno == right_idx[i])
         
     | 
| 91 | 
         
            -
                                    left_pos = np.where(parsing_anno == left_idx[i])
         
     | 
| 92 | 
         
            -
                                    parsing_anno[right_pos[0], right_pos[1]] = left_idx[i]
         
     | 
| 93 | 
         
            -
                                    parsing_anno[left_pos[0], left_pos[1]] = right_idx[i]
         
     | 
| 94 | 
         
            -
             
     | 
| 95 | 
         
            -
                    trans = get_affine_transform(person_center, s, r, self.crop_size)
         
     | 
| 96 | 
         
            -
                    input = cv2.warpAffine(
         
     | 
| 97 | 
         
            -
                        im,
         
     | 
| 98 | 
         
            -
                        trans,
         
     | 
| 99 | 
         
            -
                        (int(self.crop_size[1]), int(self.crop_size[0])),
         
     | 
| 100 | 
         
            -
                        flags=cv2.INTER_LINEAR,
         
     | 
| 101 | 
         
            -
                        borderMode=cv2.BORDER_CONSTANT,
         
     | 
| 102 | 
         
            -
                        borderValue=(0, 0, 0))
         
     | 
| 103 | 
         
            -
             
     | 
| 104 | 
         
            -
                    if self.transform:
         
     | 
| 105 | 
         
            -
                        input = self.transform(input)
         
     | 
| 106 | 
         
            -
             
     | 
| 107 | 
         
            -
                    meta = {
         
     | 
| 108 | 
         
            -
                        'name': train_item,
         
     | 
| 109 | 
         
            -
                        'center': person_center,
         
     | 
| 110 | 
         
            -
                        'height': h,
         
     | 
| 111 | 
         
            -
                        'width': w,
         
     | 
| 112 | 
         
            -
                        'scale': s,
         
     | 
| 113 | 
         
            -
                        'rotation': r
         
     | 
| 114 | 
         
            -
                    }
         
     | 
| 115 | 
         
            -
             
     | 
| 116 | 
         
            -
                    if self.dataset == 'val' or self.dataset == 'test':
         
     | 
| 117 | 
         
            -
                        return input, meta
         
     | 
| 118 | 
         
            -
                    else:
         
     | 
| 119 | 
         
            -
                        label_parsing = cv2.warpAffine(
         
     | 
| 120 | 
         
            -
                            parsing_anno,
         
     | 
| 121 | 
         
            -
                            trans,
         
     | 
| 122 | 
         
            -
                            (int(self.crop_size[1]), int(self.crop_size[0])),
         
     | 
| 123 | 
         
            -
                            flags=cv2.INTER_NEAREST,
         
     | 
| 124 | 
         
            -
                            borderMode=cv2.BORDER_CONSTANT,
         
     | 
| 125 | 
         
            -
                            borderValue=(255))
         
     | 
| 126 | 
         
            -
             
     | 
| 127 | 
         
            -
                        label_parsing = torch.from_numpy(label_parsing)
         
     | 
| 128 | 
         
            -
             
     | 
| 129 | 
         
            -
                        return input, label_parsing, meta
         
     | 
| 130 | 
         
            -
             
     | 
| 131 | 
         
            -
             
     | 
| 132 | 
         
            -
            class LIPDataValSet(data.Dataset):
         
     | 
| 133 | 
         
            -
                def __init__(self, root, dataset='val', crop_size=[473, 473], transform=None, flip=False):
         
     | 
| 134 | 
         
            -
                    self.root = root
         
     | 
| 135 | 
         
            -
                    self.crop_size = crop_size
         
     | 
| 136 | 
         
            -
                    self.transform = transform
         
     | 
| 137 | 
         
            -
                    self.flip = flip
         
     | 
| 138 | 
         
            -
                    self.dataset = dataset
         
     | 
| 139 | 
         
            -
                    self.root = root
         
     | 
| 140 | 
         
            -
                    self.aspect_ratio = crop_size[1] * 1.0 / crop_size[0]
         
     | 
| 141 | 
         
            -
                    self.crop_size = np.asarray(crop_size)
         
     | 
| 142 | 
         
            -
             
     | 
| 143 | 
         
            -
                    val_list=[]
         
     | 
| 144 | 
         
            -
                    for root, dirs, files in os.walk("/home/chongzheng_p23/data/Datasets/UniFashion/YOOX/YOOX-Images"):
         
     | 
| 145 | 
         
            -
                        for file in files:
         
     | 
| 146 | 
         
            -
                            if file.endswith(".jpg"):
         
     | 
| 147 | 
         
            -
                                source_file_path = os.path.join(root, file)
         
     | 
| 148 | 
         
            -
                                val_list.append(source_file_path)
         
     | 
| 149 | 
         
            -
             
     | 
| 150 | 
         
            -
                    self.val_list = val_list
         
     | 
| 151 | 
         
            -
                    self.number_samples = len(self.val_list)
         
     | 
| 152 | 
         
            -
             
     | 
| 153 | 
         
            -
                def __len__(self):
         
     | 
| 154 | 
         
            -
                    return len(self.val_list)
         
     | 
| 155 | 
         
            -
             
     | 
| 156 | 
         
            -
                def _box2cs(self, box):
         
     | 
| 157 | 
         
            -
                    x, y, w, h = box[:4]
         
     | 
| 158 | 
         
            -
                    return self._xywh2cs(x, y, w, h)
         
     | 
| 159 | 
         
            -
             
     | 
| 160 | 
         
            -
                def _xywh2cs(self, x, y, w, h):
         
     | 
| 161 | 
         
            -
                    center = np.zeros((2), dtype=np.float32)
         
     | 
| 162 | 
         
            -
                    center[0] = x + w * 0.5
         
     | 
| 163 | 
         
            -
                    center[1] = y + h * 0.5
         
     | 
| 164 | 
         
            -
                    if w > self.aspect_ratio * h:
         
     | 
| 165 | 
         
            -
                        h = w * 1.0 / self.aspect_ratio
         
     | 
| 166 | 
         
            -
                    elif w < self.aspect_ratio * h:
         
     | 
| 167 | 
         
            -
                        w = h * self.aspect_ratio
         
     | 
| 168 | 
         
            -
                    scale = np.array([w * 1.0, h * 1.0], dtype=np.float32)
         
     | 
| 169 | 
         
            -
             
     | 
| 170 | 
         
            -
                    return center, scale
         
     | 
| 171 | 
         
            -
             
     | 
| 172 | 
         
            -
                def __getitem__(self, index):
         
     | 
| 173 | 
         
            -
                    val_item = self.val_list[index]
         
     | 
| 174 | 
         
            -
                    # Load training image
         
     | 
| 175 | 
         
            -
                    im_path = val_item
         
     | 
| 176 | 
         
            -
                    im = cv2.imread(im_path, cv2.IMREAD_COLOR)
         
     | 
| 177 | 
         
            -
                    h, w, _ = im.shape
         
     | 
| 178 | 
         
            -
                    # Get person center and scale
         
     | 
| 179 | 
         
            -
                    person_center, s = self._box2cs([0, 0, w - 1, h - 1])
         
     | 
| 180 | 
         
            -
                    r = 0
         
     | 
| 181 | 
         
            -
                    trans = get_affine_transform(person_center, s, r, self.crop_size)
         
     | 
| 182 | 
         
            -
                    input = cv2.warpAffine(
         
     | 
| 183 | 
         
            -
                        im,
         
     | 
| 184 | 
         
            -
                        trans,
         
     | 
| 185 | 
         
            -
                        (int(self.crop_size[1]), int(self.crop_size[0])),
         
     | 
| 186 | 
         
            -
                        flags=cv2.INTER_LINEAR,
         
     | 
| 187 | 
         
            -
                        borderMode=cv2.BORDER_CONSTANT,
         
     | 
| 188 | 
         
            -
                        borderValue=(0, 0, 0))
         
     | 
| 189 | 
         
            -
                    input = self.transform(input)
         
     | 
| 190 | 
         
            -
                    flip_input = input.flip(dims=[-1])
         
     | 
| 191 | 
         
            -
                    if self.flip:
         
     | 
| 192 | 
         
            -
                        batch_input_im = torch.stack([input, flip_input])
         
     | 
| 193 | 
         
            -
                    else:
         
     | 
| 194 | 
         
            -
                        batch_input_im = input
         
     | 
| 195 | 
         
            -
             
     | 
| 196 | 
         
            -
                    meta = {
         
     | 
| 197 | 
         
            -
                        'name': val_item, #root
         
     | 
| 198 | 
         
            -
                        'center': person_center,
         
     | 
| 199 | 
         
            -
                        'height': h,
         
     | 
| 200 | 
         
            -
                        'width': w,
         
     | 
| 201 | 
         
            -
                        'scale': s,
         
     | 
| 202 | 
         
            -
                        'rotation': r
         
     | 
| 203 | 
         
            -
                    }
         
     | 
| 204 | 
         
            -
             
     | 
| 205 | 
         
            -
                    return batch_input_im, meta
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        model/SCHP/datasets/simple_extractor_dataset.py
    DELETED
    
    | 
         @@ -1,92 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            #!/usr/bin/env python
         
     | 
| 2 | 
         
            -
            # -*- encoding: utf-8 -*-
         
     | 
| 3 | 
         
            -
             
     | 
| 4 | 
         
            -
            """
         
     | 
| 5 | 
         
            -
            @Author  :   Peike Li
         
     | 
| 6 | 
         
            -
            @Contact :   [email protected]
         
     | 
| 7 | 
         
            -
            @File    :   dataset.py
         
     | 
| 8 | 
         
            -
            @Time    :   8/30/19 9:12 PM
         
     | 
| 9 | 
         
            -
            @Desc    :   Dataset Definition
         
     | 
| 10 | 
         
            -
            @License :   This source code is licensed under the license found in the
         
     | 
| 11 | 
         
            -
                         LICENSE file in the root directory of this source tree.
         
     | 
| 12 | 
         
            -
            """
         
     | 
| 13 | 
         
            -
             
     | 
| 14 | 
         
            -
            import os
         
     | 
| 15 | 
         
            -
            import cv2
         
     | 
| 16 | 
         
            -
            import numpy as np
         
     | 
| 17 | 
         
            -
             
     | 
| 18 | 
         
            -
            from torch.utils import data
         
     | 
| 19 | 
         
            -
            from utils.transforms import get_affine_transform
         
     | 
| 20 | 
         
            -
             
     | 
| 21 | 
         
            -
             
     | 
| 22 | 
         
            -
            class SimpleFolderDataset(data.Dataset):
         
     | 
| 23 | 
         
            -
                def __init__(self, root, input_size=[512, 512], transform=None):
         
     | 
| 24 | 
         
            -
                    self.root = root
         
     | 
| 25 | 
         
            -
                    self.input_size = input_size
         
     | 
| 26 | 
         
            -
                    self.transform = transform
         
     | 
| 27 | 
         
            -
                    self.aspect_ratio = input_size[1] * 1.0 / input_size[0]
         
     | 
| 28 | 
         
            -
                    self.input_size = np.asarray(input_size)
         
     | 
| 29 | 
         
            -
             
     | 
| 30 | 
         
            -
                    self.file_list=[]
         
     | 
| 31 | 
         
            -
                    self.root_list=[]
         
     | 
| 32 | 
         
            -
                    for root, dirs, files in os.walk(root):
         
     | 
| 33 | 
         
            -
                        for file in files:
         
     | 
| 34 | 
         
            -
                            if file.endswith(".jpg"):
         
     | 
| 35 | 
         
            -
                                source_file_path = os.path.join(root, file)
         
     | 
| 36 | 
         
            -
                                self.file_list.append(source_file_path)
         
     | 
| 37 | 
         
            -
                                self.root_list.append(root)
         
     | 
| 38 | 
         
            -
             
     | 
| 39 | 
         
            -
                def __len__(self):
         
     | 
| 40 | 
         
            -
                    return len(self.file_list)
         
     | 
| 41 | 
         
            -
             
     | 
| 42 | 
         
            -
                def _box2cs(self, box):
         
     | 
| 43 | 
         
            -
                    x, y, w, h = box[:4]
         
     | 
| 44 | 
         
            -
                    return self._xywh2cs(x, y, w, h)
         
     | 
| 45 | 
         
            -
             
     | 
| 46 | 
         
            -
                def _xywh2cs(self, x, y, w, h):
         
     | 
| 47 | 
         
            -
                    center = np.zeros((2), dtype=np.float32)
         
     | 
| 48 | 
         
            -
                    center[0] = x + w * 0.5
         
     | 
| 49 | 
         
            -
                    center[1] = y + h * 0.5
         
     | 
| 50 | 
         
            -
                    if w > self.aspect_ratio * h:
         
     | 
| 51 | 
         
            -
                        h = w * 1.0 / self.aspect_ratio
         
     | 
| 52 | 
         
            -
                    elif w < self.aspect_ratio * h:
         
     | 
| 53 | 
         
            -
                        w = h * self.aspect_ratio
         
     | 
| 54 | 
         
            -
                    scale = np.array([w, h], dtype=np.float32)
         
     | 
| 55 | 
         
            -
                    return center, scale
         
     | 
| 56 | 
         
            -
             
     | 
| 57 | 
         
            -
                def __getitem__(self, index):
         
     | 
| 58 | 
         
            -
                    img_path = self.file_list[index]
         
     | 
| 59 | 
         
            -
                    root = self.root_list[index]
         
     | 
| 60 | 
         
            -
                    img_name = img_path.split("/")[-1].split(".")[0]
         
     | 
| 61 | 
         
            -
                    img = cv2.imread(img_path, cv2.IMREAD_COLOR)
         
     | 
| 62 | 
         
            -
                    
         
     | 
| 63 | 
         
            -
                    if img is None:
         
     | 
| 64 | 
         
            -
                        return self.__getitem__(index+1)
         
     | 
| 65 | 
         
            -
                    else:
         
     | 
| 66 | 
         
            -
                        h, w, _ = img.shape
         
     | 
| 67 | 
         
            -
             
     | 
| 68 | 
         
            -
                        # Get person center and scale
         
     | 
| 69 | 
         
            -
                        person_center, s = self._box2cs([0, 0, w - 1, h - 1])
         
     | 
| 70 | 
         
            -
                        r = 0
         
     | 
| 71 | 
         
            -
                        trans = get_affine_transform(person_center, s, r, self.input_size)
         
     | 
| 72 | 
         
            -
                        input = cv2.warpAffine(
         
     | 
| 73 | 
         
            -
                            img,
         
     | 
| 74 | 
         
            -
                            trans,
         
     | 
| 75 | 
         
            -
                            (int(self.input_size[1]), int(self.input_size[0])),
         
     | 
| 76 | 
         
            -
                            flags=cv2.INTER_LINEAR,
         
     | 
| 77 | 
         
            -
                            borderMode=cv2.BORDER_CONSTANT,
         
     | 
| 78 | 
         
            -
                            borderValue=(0, 0, 0))
         
     | 
| 79 | 
         
            -
             
     | 
| 80 | 
         
            -
                        input = self.transform(input)
         
     | 
| 81 | 
         
            -
                        meta = {
         
     | 
| 82 | 
         
            -
                            'img_path': img_path,
         
     | 
| 83 | 
         
            -
                            'name': img_name,
         
     | 
| 84 | 
         
            -
                            'root': root,
         
     | 
| 85 | 
         
            -
                            'center': person_center,
         
     | 
| 86 | 
         
            -
                            'height': h,
         
     | 
| 87 | 
         
            -
                            'width': w,
         
     | 
| 88 | 
         
            -
                            'scale': s,
         
     | 
| 89 | 
         
            -
                            'rotation': r
         
     | 
| 90 | 
         
            -
                        }
         
     | 
| 91 | 
         
            -
             
     | 
| 92 | 
         
            -
                        return input, meta
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        model/SCHP/datasets/target_generation.py
    DELETED
    
    | 
         @@ -1,40 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            import torch
         
     | 
| 2 | 
         
            -
            from torch.nn import functional as F
         
     | 
| 3 | 
         
            -
             
     | 
| 4 | 
         
            -
             
     | 
| 5 | 
         
            -
            def generate_edge_tensor(label, edge_width=3):
         
     | 
| 6 | 
         
            -
                # label = label.type(torch.cuda.FloatTensor)
         
     | 
| 7 | 
         
            -
                if len(label.shape) == 2:
         
     | 
| 8 | 
         
            -
                    label = label.unsqueeze(0)
         
     | 
| 9 | 
         
            -
                n, h, w = label.shape
         
     | 
| 10 | 
         
            -
                edge = torch.zeros(label.shape, dtype=torch.float)#.cuda()
         
     | 
| 11 | 
         
            -
                # right
         
     | 
| 12 | 
         
            -
                edge_right = edge[:, 1:h, :]
         
     | 
| 13 | 
         
            -
                edge_right[(label[:, 1:h, :] != label[:, :h - 1, :]) & (label[:, 1:h, :] != 255)
         
     | 
| 14 | 
         
            -
                           & (label[:, :h - 1, :] != 255)] = 1
         
     | 
| 15 | 
         
            -
             
     | 
| 16 | 
         
            -
                # up
         
     | 
| 17 | 
         
            -
                edge_up = edge[:, :, :w - 1]
         
     | 
| 18 | 
         
            -
                edge_up[(label[:, :, :w - 1] != label[:, :, 1:w])
         
     | 
| 19 | 
         
            -
                        & (label[:, :, :w - 1] != 255)
         
     | 
| 20 | 
         
            -
                        & (label[:, :, 1:w] != 255)] = 1
         
     | 
| 21 | 
         
            -
             
     | 
| 22 | 
         
            -
                # upright
         
     | 
| 23 | 
         
            -
                edge_upright = edge[:, :h - 1, :w - 1]
         
     | 
| 24 | 
         
            -
                edge_upright[(label[:, :h - 1, :w - 1] != label[:, 1:h, 1:w])
         
     | 
| 25 | 
         
            -
                             & (label[:, :h - 1, :w - 1] != 255)
         
     | 
| 26 | 
         
            -
                             & (label[:, 1:h, 1:w] != 255)] = 1
         
     | 
| 27 | 
         
            -
             
     | 
| 28 | 
         
            -
                # bottomright
         
     | 
| 29 | 
         
            -
                edge_bottomright = edge[:, :h - 1, 1:w]
         
     | 
| 30 | 
         
            -
                edge_bottomright[(label[:, :h - 1, 1:w] != label[:, 1:h, :w - 1])
         
     | 
| 31 | 
         
            -
                                 & (label[:, :h - 1, 1:w] != 255)
         
     | 
| 32 | 
         
            -
                                 & (label[:, 1:h, :w - 1] != 255)] = 1
         
     | 
| 33 | 
         
            -
             
     | 
| 34 | 
         
            -
                kernel = torch.ones((1, 1, edge_width, edge_width), dtype=torch.float)#.cuda()
         
     | 
| 35 | 
         
            -
                with torch.no_grad():
         
     | 
| 36 | 
         
            -
                    edge = edge.unsqueeze(1)
         
     | 
| 37 | 
         
            -
                    edge = F.conv2d(edge, kernel, stride=1, padding=1)
         
     | 
| 38 | 
         
            -
                edge[edge!=0] = 1
         
     | 
| 39 | 
         
            -
                edge = edge.squeeze()
         
     | 
| 40 | 
         
            -
                return edge
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        model/SCHP/environment.yaml
    DELETED
    
    | 
         @@ -1,49 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            name: schp
         
     | 
| 2 | 
         
            -
            channels:
         
     | 
| 3 | 
         
            -
              - pytorch
         
     | 
| 4 | 
         
            -
              - defaults
         
     | 
| 5 | 
         
            -
            dependencies:
         
     | 
| 6 | 
         
            -
              - _libgcc_mutex=0.1=main
         
     | 
| 7 | 
         
            -
              - blas=1.0=mkl
         
     | 
| 8 | 
         
            -
              - ca-certificates=2020.12.8=h06a4308_0
         
     | 
| 9 | 
         
            -
              - certifi=2020.12.5=py38h06a4308_0
         
     | 
| 10 | 
         
            -
              - cudatoolkit=10.1.243=h6bb024c_0
         
     | 
| 11 | 
         
            -
              - freetype=2.10.4=h5ab3b9f_0
         
     | 
| 12 | 
         
            -
              - intel-openmp=2020.2=254
         
     | 
| 13 | 
         
            -
              - jpeg=9b=h024ee3a_2
         
     | 
| 14 | 
         
            -
              - lcms2=2.11=h396b838_0
         
     | 
| 15 | 
         
            -
              - ld_impl_linux-64=2.33.1=h53a641e_7
         
     | 
| 16 | 
         
            -
              - libedit=3.1.20191231=h14c3975_1
         
     | 
| 17 | 
         
            -
              - libffi=3.3=he6710b0_2
         
     | 
| 18 | 
         
            -
              - libgcc-ng=9.1.0=hdf63c60_0
         
     | 
| 19 | 
         
            -
              - libpng=1.6.37=hbc83047_0
         
     | 
| 20 | 
         
            -
              - libstdcxx-ng=9.1.0=hdf63c60_0
         
     | 
| 21 | 
         
            -
              - libtiff=4.1.0=h2733197_1
         
     | 
| 22 | 
         
            -
              - lz4-c=1.9.2=heb0550a_3
         
     | 
| 23 | 
         
            -
              - mkl=2020.2=256
         
     | 
| 24 | 
         
            -
              - mkl-service=2.3.0=py38he904b0f_0
         
     | 
| 25 | 
         
            -
              - mkl_fft=1.2.0=py38h23d657b_0
         
     | 
| 26 | 
         
            -
              - mkl_random=1.1.1=py38h0573a6f_0
         
     | 
| 27 | 
         
            -
              - ncurses=6.2=he6710b0_1
         
     | 
| 28 | 
         
            -
              - ninja=1.10.2=py38hff7bd54_0
         
     | 
| 29 | 
         
            -
              - numpy=1.19.2=py38h54aff64_0
         
     | 
| 30 | 
         
            -
              - numpy-base=1.19.2=py38hfa32c7d_0
         
     | 
| 31 | 
         
            -
              - olefile=0.46=py_0
         
     | 
| 32 | 
         
            -
              - openssl=1.1.1i=h27cfd23_0
         
     | 
| 33 | 
         
            -
              - pillow=8.0.1=py38he98fc37_0
         
     | 
| 34 | 
         
            -
              - pip=20.3.3=py38h06a4308_0
         
     | 
| 35 | 
         
            -
              - python=3.8.5=h7579374_1
         
     | 
| 36 | 
         
            -
              - readline=8.0=h7b6447c_0
         
     | 
| 37 | 
         
            -
              - setuptools=51.0.0=py38h06a4308_2
         
     | 
| 38 | 
         
            -
              - six=1.15.0=py38h06a4308_0
         
     | 
| 39 | 
         
            -
              - sqlite=3.33.0=h62c20be_0
         
     | 
| 40 | 
         
            -
              - tk=8.6.10=hbc83047_0
         
     | 
| 41 | 
         
            -
              - tqdm=4.55.0=pyhd3eb1b0_0
         
     | 
| 42 | 
         
            -
              - wheel=0.36.2=pyhd3eb1b0_0
         
     | 
| 43 | 
         
            -
              - xz=5.2.5=h7b6447c_0
         
     | 
| 44 | 
         
            -
              - zlib=1.2.11=h7b6447c_3
         
     | 
| 45 | 
         
            -
              - zstd=1.4.5=h9ceee32_0
         
     | 
| 46 | 
         
            -
              - pytorch=1.5.1=py3.8_cuda10.1.243_cudnn7.6.3_0
         
     | 
| 47 | 
         
            -
              - torchvision=0.6.1=py38_cu101
         
     | 
| 48 | 
         
            -
            prefix: /home/peike/opt/anaconda3/envs/schp
         
     | 
| 49 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        model/SCHP/evaluate.py
    DELETED
    
    | 
         @@ -1,210 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            #!/usr/bin/env python
         
     | 
| 2 | 
         
            -
            # -*- encoding: utf-8 -*-
         
     | 
| 3 | 
         
            -
             
     | 
| 4 | 
         
            -
            """
         
     | 
| 5 | 
         
            -
            @Author  :   Peike Li
         
     | 
| 6 | 
         
            -
            @Contact :   [email protected]
         
     | 
| 7 | 
         
            -
            @File    :   evaluate.py
         
     | 
| 8 | 
         
            -
            @Time    :   8/4/19 3:36 PM
         
     | 
| 9 | 
         
            -
            @Desc    :
         
     | 
| 10 | 
         
            -
            @License :   This source code is licensed under the license found in the
         
     | 
| 11 | 
         
            -
                         LICENSE file in the root directory of this source tree.
         
     | 
| 12 | 
         
            -
            """
         
     | 
| 13 | 
         
            -
             
     | 
| 14 | 
         
            -
            import os
         
     | 
| 15 | 
         
            -
            import argparse
         
     | 
| 16 | 
         
            -
            import numpy as np
         
     | 
| 17 | 
         
            -
            import torch
         
     | 
| 18 | 
         
            -
             
     | 
| 19 | 
         
            -
            from torch.utils import data
         
     | 
| 20 | 
         
            -
            from tqdm import tqdm
         
     | 
| 21 | 
         
            -
            from PIL import Image as PILImage
         
     | 
| 22 | 
         
            -
            import torchvision.transforms as transforms
         
     | 
| 23 | 
         
            -
            import torch.backends.cudnn as cudnn
         
     | 
| 24 | 
         
            -
             
     | 
| 25 | 
         
            -
            import networks
         
     | 
| 26 | 
         
            -
            from datasets.datasets import LIPDataValSet
         
     | 
| 27 | 
         
            -
            from utils.miou import compute_mean_ioU
         
     | 
| 28 | 
         
            -
            from utils.transforms import BGR2RGB_transform
         
     | 
| 29 | 
         
            -
            from utils.transforms import transform_parsing
         
     | 
| 30 | 
         
            -
             
     | 
| 31 | 
         
            -
             
     | 
| 32 | 
         
            -
            def get_arguments():
         
     | 
| 33 | 
         
            -
                """Parse all the arguments provided from the CLI.
         
     | 
| 34 | 
         
            -
             
     | 
| 35 | 
         
            -
                Returns:
         
     | 
| 36 | 
         
            -
                  A list of parsed arguments.
         
     | 
| 37 | 
         
            -
                """
         
     | 
| 38 | 
         
            -
                parser = argparse.ArgumentParser(description="Self Correction for Human Parsing")
         
     | 
| 39 | 
         
            -
             
     | 
| 40 | 
         
            -
                # Network Structure
         
     | 
| 41 | 
         
            -
                parser.add_argument("--arch", type=str, default='resnet101')
         
     | 
| 42 | 
         
            -
                # Data Preference
         
     | 
| 43 | 
         
            -
                parser.add_argument("--data-dir", type=str, default='./data/LIP')
         
     | 
| 44 | 
         
            -
                parser.add_argument("--batch-size", type=int, default=1)
         
     | 
| 45 | 
         
            -
                parser.add_argument("--input-size", type=str, default='473,473')
         
     | 
| 46 | 
         
            -
                parser.add_argument("--num-classes", type=int, default=20)
         
     | 
| 47 | 
         
            -
                parser.add_argument("--ignore-label", type=int, default=255)
         
     | 
| 48 | 
         
            -
                parser.add_argument("--random-mirror", action="store_true")
         
     | 
| 49 | 
         
            -
                parser.add_argument("--random-scale", action="store_true")
         
     | 
| 50 | 
         
            -
                # Evaluation Preference
         
     | 
| 51 | 
         
            -
                parser.add_argument("--log-dir", type=str, default='./log')
         
     | 
| 52 | 
         
            -
                parser.add_argument("--model-restore", type=str, 
         
     | 
| 53 | 
         
            -
                                    default='/data1/chongzheng/zhangwq/Self-Correction-Human-Parsing-master/exp-schp-201908301523-atr.pth')
         
     | 
| 54 | 
         
            -
                parser.add_argument("--gpu", type=str, default='0', help="choose gpu device.")
         
     | 
| 55 | 
         
            -
                parser.add_argument("--save-results", action="store_true", help="whether to save the results.")
         
     | 
| 56 | 
         
            -
                parser.add_argument("--flip", action="store_true", help="random flip during the test.")
         
     | 
| 57 | 
         
            -
                parser.add_argument("--multi-scales", type=str, default='1', help="multiple scales during the test")
         
     | 
| 58 | 
         
            -
                return parser.parse_args()
         
     | 
| 59 | 
         
            -
             
     | 
| 60 | 
         
            -
             
     | 
| 61 | 
         
            -
            def get_palette(num_cls):
         
     | 
| 62 | 
         
            -
                """ Returns the color map for visualizing the segmentation mask.
         
     | 
| 63 | 
         
            -
                Args:
         
     | 
| 64 | 
         
            -
                    num_cls: Number of classes
         
     | 
| 65 | 
         
            -
                Returns:
         
     | 
| 66 | 
         
            -
                    The color map
         
     | 
| 67 | 
         
            -
                """
         
     | 
| 68 | 
         
            -
                n = num_cls
         
     | 
| 69 | 
         
            -
                palette = [0] * (n * 3)
         
     | 
| 70 | 
         
            -
                for j in range(0, n):
         
     | 
| 71 | 
         
            -
                    lab = j
         
     | 
| 72 | 
         
            -
                    palette[j * 3 + 0] = 0
         
     | 
| 73 | 
         
            -
                    palette[j * 3 + 1] = 0
         
     | 
| 74 | 
         
            -
                    palette[j * 3 + 2] = 0
         
     | 
| 75 | 
         
            -
                    i = 0
         
     | 
| 76 | 
         
            -
                    while lab:
         
     | 
| 77 | 
         
            -
                        palette[j * 3 + 0] |= (((lab >> 0) & 1) << (7 - i))
         
     | 
| 78 | 
         
            -
                        palette[j * 3 + 1] |= (((lab >> 1) & 1) << (7 - i))
         
     | 
| 79 | 
         
            -
                        palette[j * 3 + 2] |= (((lab >> 2) & 1) << (7 - i))
         
     | 
| 80 | 
         
            -
                        i += 1
         
     | 
| 81 | 
         
            -
                        lab >>= 3
         
     | 
| 82 | 
         
            -
                return palette
         
     | 
| 83 | 
         
            -
             
     | 
| 84 | 
         
            -
             
     | 
| 85 | 
         
            -
            def multi_scale_testing(model, batch_input_im, crop_size=[473, 473], flip=True, multi_scales=[1]):
         
     | 
| 86 | 
         
            -
                flipped_idx = (15, 14, 17, 16, 19, 18)
         
     | 
| 87 | 
         
            -
                if len(batch_input_im.shape) > 4:
         
     | 
| 88 | 
         
            -
                    batch_input_im = batch_input_im.squeeze()
         
     | 
| 89 | 
         
            -
                if len(batch_input_im.shape) == 3:
         
     | 
| 90 | 
         
            -
                    batch_input_im = batch_input_im.unsqueeze(0)
         
     | 
| 91 | 
         
            -
             
     | 
| 92 | 
         
            -
                interp = torch.nn.Upsample(size=crop_size, mode='bilinear', align_corners=True)
         
     | 
| 93 | 
         
            -
                ms_outputs = []
         
     | 
| 94 | 
         
            -
                for s in multi_scales:
         
     | 
| 95 | 
         
            -
                    interp_im = torch.nn.Upsample(scale_factor=s, mode='bilinear', align_corners=True)
         
     | 
| 96 | 
         
            -
                    scaled_im = interp_im(batch_input_im)
         
     | 
| 97 | 
         
            -
                    parsing_output = model(scaled_im)
         
     | 
| 98 | 
         
            -
                    parsing_output = parsing_output[0][-1]
         
     | 
| 99 | 
         
            -
                    output = parsing_output[0]
         
     | 
| 100 | 
         
            -
                    if flip:
         
     | 
| 101 | 
         
            -
                        flipped_output = parsing_output[1]
         
     | 
| 102 | 
         
            -
                        flipped_output[14:20, :, :] = flipped_output[flipped_idx, :, :]
         
     | 
| 103 | 
         
            -
                        output += flipped_output.flip(dims=[-1])
         
     | 
| 104 | 
         
            -
                        output *= 0.5
         
     | 
| 105 | 
         
            -
                    output = interp(output.unsqueeze(0))
         
     | 
| 106 | 
         
            -
                    ms_outputs.append(output[0])
         
     | 
| 107 | 
         
            -
                ms_fused_parsing_output = torch.stack(ms_outputs)
         
     | 
| 108 | 
         
            -
                ms_fused_parsing_output = ms_fused_parsing_output.mean(0)
         
     | 
| 109 | 
         
            -
                ms_fused_parsing_output = ms_fused_parsing_output.permute(1, 2, 0)  # HWC
         
     | 
| 110 | 
         
            -
                parsing = torch.argmax(ms_fused_parsing_output, dim=2)
         
     | 
| 111 | 
         
            -
                parsing = parsing.data.cpu().numpy()
         
     | 
| 112 | 
         
            -
                ms_fused_parsing_output = ms_fused_parsing_output.data.cpu().numpy()
         
     | 
| 113 | 
         
            -
                return parsing, ms_fused_parsing_output
         
     | 
| 114 | 
         
            -
             
     | 
| 115 | 
         
            -
             
     | 
| 116 | 
         
            -
            def main():
         
     | 
| 117 | 
         
            -
                """Create the model and start the evaluation process."""
         
     | 
| 118 | 
         
            -
                args = get_arguments()
         
     | 
| 119 | 
         
            -
                multi_scales = [float(i) for i in args.multi_scales.split(',')]
         
     | 
| 120 | 
         
            -
                gpus = [int(i) for i in args.gpu.split(',')]
         
     | 
| 121 | 
         
            -
                assert len(gpus) == 1
         
     | 
| 122 | 
         
            -
                if not args.gpu == 'None':
         
     | 
| 123 | 
         
            -
                    os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
         
     | 
| 124 | 
         
            -
             
     | 
| 125 | 
         
            -
                cudnn.benchmark = True
         
     | 
| 126 | 
         
            -
                cudnn.enabled = True
         
     | 
| 127 | 
         
            -
             
     | 
| 128 | 
         
            -
                h, w = map(int, args.input_size.split(','))
         
     | 
| 129 | 
         
            -
                input_size = [h, w]
         
     | 
| 130 | 
         
            -
             
     | 
| 131 | 
         
            -
                model = networks.init_model(args.arch, num_classes=args.num_classes, pretrained=None)
         
     | 
| 132 | 
         
            -
             
     | 
| 133 | 
         
            -
                IMAGE_MEAN = model.mean
         
     | 
| 134 | 
         
            -
                IMAGE_STD = model.std
         
     | 
| 135 | 
         
            -
                INPUT_SPACE = model.input_space
         
     | 
| 136 | 
         
            -
                print('image mean: {}'.format(IMAGE_MEAN))
         
     | 
| 137 | 
         
            -
                print('image std: {}'.format(IMAGE_STD))
         
     | 
| 138 | 
         
            -
                print('input space:{}'.format(INPUT_SPACE))
         
     | 
| 139 | 
         
            -
                if INPUT_SPACE == 'BGR':
         
     | 
| 140 | 
         
            -
                    print('BGR Transformation')
         
     | 
| 141 | 
         
            -
                    transform = transforms.Compose([
         
     | 
| 142 | 
         
            -
                        transforms.ToTensor(),
         
     | 
| 143 | 
         
            -
                        transforms.Normalize(mean=IMAGE_MEAN,
         
     | 
| 144 | 
         
            -
                                             std=IMAGE_STD),
         
     | 
| 145 | 
         
            -
             
     | 
| 146 | 
         
            -
                    ])
         
     | 
| 147 | 
         
            -
                if INPUT_SPACE == 'RGB':
         
     | 
| 148 | 
         
            -
                    print('RGB Transformation')
         
     | 
| 149 | 
         
            -
                    transform = transforms.Compose([
         
     | 
| 150 | 
         
            -
                        transforms.ToTensor(),
         
     | 
| 151 | 
         
            -
                        BGR2RGB_transform(),
         
     | 
| 152 | 
         
            -
                        transforms.Normalize(mean=IMAGE_MEAN,
         
     | 
| 153 | 
         
            -
                                             std=IMAGE_STD),
         
     | 
| 154 | 
         
            -
                    ])
         
     | 
| 155 | 
         
            -
             
     | 
| 156 | 
         
            -
                # Data loader
         
     | 
| 157 | 
         
            -
                lip_test_dataset = LIPDataValSet(args.data_dir, 'val', crop_size=input_size, transform=transform, flip=args.flip)
         
     | 
| 158 | 
         
            -
                num_samples = len(lip_test_dataset)
         
     | 
| 159 | 
         
            -
                print('Totoal testing sample numbers: {}'.format(num_samples))
         
     | 
| 160 | 
         
            -
                testloader = data.DataLoader(lip_test_dataset, batch_size=args.batch_size, shuffle=False, pin_memory=True)
         
     | 
| 161 | 
         
            -
             
     | 
| 162 | 
         
            -
                # Load model weight
         
     | 
| 163 | 
         
            -
                state_dict = torch.load(args.model_restore)['state_dict']
         
     | 
| 164 | 
         
            -
                from collections import OrderedDict
         
     | 
| 165 | 
         
            -
                new_state_dict = OrderedDict()
         
     | 
| 166 | 
         
            -
                for k, v in state_dict.items():
         
     | 
| 167 | 
         
            -
                    name = k[7:]  # remove `module.`
         
     | 
| 168 | 
         
            -
                    new_state_dict[name] = v
         
     | 
| 169 | 
         
            -
                model.load_state_dict(new_state_dict)
         
     | 
| 170 | 
         
            -
                model.cuda()
         
     | 
| 171 | 
         
            -
                model.eval()
         
     | 
| 172 | 
         
            -
             
     | 
| 173 | 
         
            -
                sp_results_dir = os.path.join(args.log_dir, 'sp_results')
         
     | 
| 174 | 
         
            -
                if not os.path.exists(sp_results_dir):
         
     | 
| 175 | 
         
            -
                    os.makedirs(sp_results_dir)
         
     | 
| 176 | 
         
            -
             
     | 
| 177 | 
         
            -
                palette = get_palette(20)
         
     | 
| 178 | 
         
            -
                parsing_preds = []
         
     | 
| 179 | 
         
            -
                scales = np.zeros((num_samples, 2), dtype=np.float32)
         
     | 
| 180 | 
         
            -
                centers = np.zeros((num_samples, 2), dtype=np.int32)
         
     | 
| 181 | 
         
            -
                with torch.no_grad():
         
     | 
| 182 | 
         
            -
                    for idx, batch in enumerate(tqdm(testloader)):
         
     | 
| 183 | 
         
            -
                        image, meta = batch
         
     | 
| 184 | 
         
            -
                        if (len(image.shape) > 4):
         
     | 
| 185 | 
         
            -
                            image = image.squeeze()
         
     | 
| 186 | 
         
            -
                        im_name = meta['name'][0]
         
     | 
| 187 | 
         
            -
                        c = meta['center'].numpy()[0]
         
     | 
| 188 | 
         
            -
                        s = meta['scale'].numpy()[0]
         
     | 
| 189 | 
         
            -
                        w = meta['width'].numpy()[0]
         
     | 
| 190 | 
         
            -
                        h = meta['height'].numpy()[0]
         
     | 
| 191 | 
         
            -
                        scales[idx, :] = s
         
     | 
| 192 | 
         
            -
                        centers[idx, :] = c
         
     | 
| 193 | 
         
            -
                        parsing, logits = multi_scale_testing(model, image.cuda(), crop_size=input_size, flip=args.flip,
         
     | 
| 194 | 
         
            -
                                                              multi_scales=multi_scales)
         
     | 
| 195 | 
         
            -
                        if args.save_results:
         
     | 
| 196 | 
         
            -
                            parsing_result = transform_parsing(parsing, c, s, w, h, input_size)
         
     | 
| 197 | 
         
            -
                            parsing_result_path = os.path.join(sp_results_dir, im_name + '.png')
         
     | 
| 198 | 
         
            -
                            output_im = PILImage.fromarray(np.asarray(parsing_result, dtype=np.uint8))
         
     | 
| 199 | 
         
            -
                            output_im.putpalette(palette)
         
     | 
| 200 | 
         
            -
                            output_im.save(parsing_result_path)
         
     | 
| 201 | 
         
            -
             
     | 
| 202 | 
         
            -
                        parsing_preds.append(parsing)
         
     | 
| 203 | 
         
            -
                assert len(parsing_preds) == num_samples
         
     | 
| 204 | 
         
            -
                mIoU = compute_mean_ioU(parsing_preds, scales, centers, args.num_classes, args.data_dir, input_size)
         
     | 
| 205 | 
         
            -
                print(mIoU)
         
     | 
| 206 | 
         
            -
                return
         
     | 
| 207 | 
         
            -
             
     | 
| 208 | 
         
            -
             
     | 
| 209 | 
         
            -
            if __name__ == '__main__':
         
     | 
| 210 | 
         
            -
                main()
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        model/SCHP/file_list.txt
    DELETED
    
    | 
         The diff for this file is too large to render. 
		See raw diff 
     | 
| 
         | 
    	
        model/SCHP/mhp_extension/.ipynb_checkpoints/demo-checkpoint.ipynb
    DELETED
    
    | 
         The diff for this file is too large to render. 
		See raw diff 
     | 
| 
         | 
    	
        model/SCHP/mhp_extension/README.md
    DELETED
    
    | 
         @@ -1,38 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            # Self Correction for Human Parsing
         
     | 
| 2 | 
         
            -
             
     | 
| 3 | 
         
            -
            We propose a simple yet effective multiple human parsing framework by extending our self-correction network.
         
     | 
| 4 | 
         
            -
             
     | 
| 5 | 
         
            -
            Here we show an example usage jupyter notebook in [demo.ipynb](./demo.ipynb).
         
     | 
| 6 | 
         
            -
             
     | 
| 7 | 
         
            -
            ## Requirements
         
     | 
| 8 | 
         
            -
             
     | 
| 9 | 
         
            -
            Please see [INSTALL.md](https://github.com/facebookresearch/detectron2/blob/master/INSTALL.md) for further requirements.
         
     | 
| 10 | 
         
            -
             
     | 
| 11 | 
         
            -
            ## Citation
         
     | 
| 12 | 
         
            -
             
     | 
| 13 | 
         
            -
            Please cite our work if you find this repo useful in your research.
         
     | 
| 14 | 
         
            -
             
     | 
| 15 | 
         
            -
            ```latex
         
     | 
| 16 | 
         
            -
            @article{li2019self,
         
     | 
| 17 | 
         
            -
              title={Self-Correction for Human Parsing},
         
     | 
| 18 | 
         
            -
              author={Li, Peike and Xu, Yunqiu and Wei, Yunchao and Yang, Yi},
         
     | 
| 19 | 
         
            -
              journal={arXiv preprint arXiv:1910.09777},
         
     | 
| 20 | 
         
            -
              year={2019}
         
     | 
| 21 | 
         
            -
            }
         
     | 
| 22 | 
         
            -
            ```
         
     | 
| 23 | 
         
            -
             
     | 
| 24 | 
         
            -
            ## Visualization
         
     | 
| 25 | 
         
            -
             
     | 
| 26 | 
         
            -
            * Source Image.
         
     | 
| 27 | 
         
            -
            
         
     | 
| 28 | 
         
            -
            * Instance Human Mask.
         
     | 
| 29 | 
         
            -
            
         
     | 
| 30 | 
         
            -
            * Global Human Parsing Result.
         
     | 
| 31 | 
         
            -
            
         
     | 
| 32 | 
         
            -
            * Multiple Human Parsing Result.
         
     | 
| 33 | 
         
            -
            
         
     | 
| 34 | 
         
            -
             
     | 
| 35 | 
         
            -
            ## Related
         
     | 
| 36 | 
         
            -
             
     | 
| 37 | 
         
            -
            Our implementation is based on the [Detectron2](https://github.com/facebookresearch/detectron2).
         
     | 
| 38 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        model/SCHP/mhp_extension/coco_style_annotation_creator/__pycache__/pycococreatortools.cpython-37.pyc
    DELETED
    
    | 
         Binary file (3.6 kB) 
     | 
| 
         | 
    	
        model/SCHP/mhp_extension/coco_style_annotation_creator/human_to_coco.py
    DELETED
    
    | 
         @@ -1,166 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            import argparse
         
     | 
| 2 | 
         
            -
            import datetime
         
     | 
| 3 | 
         
            -
            import json
         
     | 
| 4 | 
         
            -
            import os
         
     | 
| 5 | 
         
            -
            from PIL import Image
         
     | 
| 6 | 
         
            -
            import numpy as np
         
     | 
| 7 | 
         
            -
             
     | 
| 8 | 
         
            -
            import pycococreatortools
         
     | 
| 9 | 
         
            -
             
     | 
| 10 | 
         
            -
             
     | 
| 11 | 
         
            -
            def get_arguments():
         
     | 
| 12 | 
         
            -
                parser = argparse.ArgumentParser(description="transform mask annotation to coco annotation")
         
     | 
| 13 | 
         
            -
                parser.add_argument("--dataset", type=str, default='CIHP', help="name of dataset (CIHP, MHPv2 or VIP)")
         
     | 
| 14 | 
         
            -
                parser.add_argument("--json_save_dir", type=str, default='../data/msrcnn_finetune_annotations',
         
     | 
| 15 | 
         
            -
                                    help="path to save coco-style annotation json file")
         
     | 
| 16 | 
         
            -
                parser.add_argument("--use_val", type=bool, default=False,
         
     | 
| 17 | 
         
            -
                                    help="use train+val set for finetuning or not")
         
     | 
| 18 | 
         
            -
                parser.add_argument("--train_img_dir", type=str, default='../data/instance-level_human_parsing/Training/Images',
         
     | 
| 19 | 
         
            -
                                    help="train image path")
         
     | 
| 20 | 
         
            -
                parser.add_argument("--train_anno_dir", type=str,
         
     | 
| 21 | 
         
            -
                                    default='../data/instance-level_human_parsing/Training/Human_ids',
         
     | 
| 22 | 
         
            -
                                    help="train human mask path")
         
     | 
| 23 | 
         
            -
                parser.add_argument("--val_img_dir", type=str, default='../data/instance-level_human_parsing/Validation/Images',
         
     | 
| 24 | 
         
            -
                                    help="val image path")
         
     | 
| 25 | 
         
            -
                parser.add_argument("--val_anno_dir", type=str,
         
     | 
| 26 | 
         
            -
                                    default='../data/instance-level_human_parsing/Validation/Human_ids',
         
     | 
| 27 | 
         
            -
                                    help="val human mask path")
         
     | 
| 28 | 
         
            -
                return parser.parse_args()
         
     | 
| 29 | 
         
            -
             
     | 
| 30 | 
         
            -
             
     | 
| 31 | 
         
            -
            def main(args):
         
     | 
| 32 | 
         
            -
                INFO = {
         
     | 
| 33 | 
         
            -
                    "description": args.split_name + " Dataset",
         
     | 
| 34 | 
         
            -
                    "url": "",
         
     | 
| 35 | 
         
            -
                    "version": "",
         
     | 
| 36 | 
         
            -
                    "year": 2019,
         
     | 
| 37 | 
         
            -
                    "contributor": "xyq",
         
     | 
| 38 | 
         
            -
                    "date_created": datetime.datetime.utcnow().isoformat(' ')
         
     | 
| 39 | 
         
            -
                }
         
     | 
| 40 | 
         
            -
             
     | 
| 41 | 
         
            -
                LICENSES = [
         
     | 
| 42 | 
         
            -
                    {
         
     | 
| 43 | 
         
            -
                        "id": 1,
         
     | 
| 44 | 
         
            -
                        "name": "",
         
     | 
| 45 | 
         
            -
                        "url": ""
         
     | 
| 46 | 
         
            -
                    }
         
     | 
| 47 | 
         
            -
                ]
         
     | 
| 48 | 
         
            -
             
     | 
| 49 | 
         
            -
                CATEGORIES = [
         
     | 
| 50 | 
         
            -
                    {
         
     | 
| 51 | 
         
            -
                        'id': 1,
         
     | 
| 52 | 
         
            -
                        'name': 'person',
         
     | 
| 53 | 
         
            -
                        'supercategory': 'person',
         
     | 
| 54 | 
         
            -
                    },
         
     | 
| 55 | 
         
            -
                ]
         
     | 
| 56 | 
         
            -
             
     | 
| 57 | 
         
            -
                coco_output = {
         
     | 
| 58 | 
         
            -
                    "info": INFO,
         
     | 
| 59 | 
         
            -
                    "licenses": LICENSES,
         
     | 
| 60 | 
         
            -
                    "categories": CATEGORIES,
         
     | 
| 61 | 
         
            -
                    "images": [],
         
     | 
| 62 | 
         
            -
                    "annotations": []
         
     | 
| 63 | 
         
            -
                }
         
     | 
| 64 | 
         
            -
             
     | 
| 65 | 
         
            -
                image_id = 1
         
     | 
| 66 | 
         
            -
                segmentation_id = 1
         
     | 
| 67 | 
         
            -
             
     | 
| 68 | 
         
            -
                for image_name in os.listdir(args.train_img_dir):
         
     | 
| 69 | 
         
            -
                    image = Image.open(os.path.join(args.train_img_dir, image_name))
         
     | 
| 70 | 
         
            -
                    image_info = pycococreatortools.create_image_info(
         
     | 
| 71 | 
         
            -
                        image_id, image_name, image.size
         
     | 
| 72 | 
         
            -
                    )
         
     | 
| 73 | 
         
            -
                    coco_output["images"].append(image_info)
         
     | 
| 74 | 
         
            -
             
     | 
| 75 | 
         
            -
                    human_mask_name = os.path.splitext(image_name)[0] + '.png'
         
     | 
| 76 | 
         
            -
                    human_mask = np.asarray(Image.open(os.path.join(args.train_anno_dir, human_mask_name)))
         
     | 
| 77 | 
         
            -
                    human_gt_labels = np.unique(human_mask)
         
     | 
| 78 | 
         
            -
             
     | 
| 79 | 
         
            -
                    for i in range(1, len(human_gt_labels)):
         
     | 
| 80 | 
         
            -
                        category_info = {'id': 1, 'is_crowd': 0}
         
     | 
| 81 | 
         
            -
                        binary_mask = np.uint8(human_mask == i)
         
     | 
| 82 | 
         
            -
                        annotation_info = pycococreatortools.create_annotation_info(
         
     | 
| 83 | 
         
            -
                            segmentation_id, image_id, category_info, binary_mask,
         
     | 
| 84 | 
         
            -
                            image.size, tolerance=10
         
     | 
| 85 | 
         
            -
                        )
         
     | 
| 86 | 
         
            -
                        if annotation_info is not None:
         
     | 
| 87 | 
         
            -
                            coco_output["annotations"].append(annotation_info)
         
     | 
| 88 | 
         
            -
             
     | 
| 89 | 
         
            -
                        segmentation_id += 1
         
     | 
| 90 | 
         
            -
                    image_id += 1
         
     | 
| 91 | 
         
            -
             
     | 
| 92 | 
         
            -
                if not os.path.exists(args.json_save_dir):
         
     | 
| 93 | 
         
            -
                    os.makedirs(args.json_save_dir)
         
     | 
| 94 | 
         
            -
                if not args.use_val:
         
     | 
| 95 | 
         
            -
                    with open('{}/{}_train.json'.format(args.json_save_dir, args.split_name), 'w') as output_json_file:
         
     | 
| 96 | 
         
            -
                        json.dump(coco_output, output_json_file)
         
     | 
| 97 | 
         
            -
                else:
         
     | 
| 98 | 
         
            -
                    for image_name in os.listdir(args.val_img_dir):
         
     | 
| 99 | 
         
            -
                        image = Image.open(os.path.join(args.val_img_dir, image_name))
         
     | 
| 100 | 
         
            -
                        image_info = pycococreatortools.create_image_info(
         
     | 
| 101 | 
         
            -
                            image_id, image_name, image.size
         
     | 
| 102 | 
         
            -
                        )
         
     | 
| 103 | 
         
            -
                        coco_output["images"].append(image_info)
         
     | 
| 104 | 
         
            -
             
     | 
| 105 | 
         
            -
                        human_mask_name = os.path.splitext(image_name)[0] + '.png'
         
     | 
| 106 | 
         
            -
                        human_mask = np.asarray(Image.open(os.path.join(args.val_anno_dir, human_mask_name)))
         
     | 
| 107 | 
         
            -
                        human_gt_labels = np.unique(human_mask)
         
     | 
| 108 | 
         
            -
             
     | 
| 109 | 
         
            -
                        for i in range(1, len(human_gt_labels)):
         
     | 
| 110 | 
         
            -
                            category_info = {'id': 1, 'is_crowd': 0}
         
     | 
| 111 | 
         
            -
                            binary_mask = np.uint8(human_mask == i)
         
     | 
| 112 | 
         
            -
                            annotation_info = pycococreatortools.create_annotation_info(
         
     | 
| 113 | 
         
            -
                                segmentation_id, image_id, category_info, binary_mask,
         
     | 
| 114 | 
         
            -
                                image.size, tolerance=10
         
     | 
| 115 | 
         
            -
                            )
         
     | 
| 116 | 
         
            -
                            if annotation_info is not None:
         
     | 
| 117 | 
         
            -
                                coco_output["annotations"].append(annotation_info)
         
     | 
| 118 | 
         
            -
             
     | 
| 119 | 
         
            -
                            segmentation_id += 1
         
     | 
| 120 | 
         
            -
                        image_id += 1
         
     | 
| 121 | 
         
            -
             
     | 
| 122 | 
         
            -
                    with open('{}/{}_trainval.json'.format(args.json_save_dir, args.split_name), 'w') as output_json_file:
         
     | 
| 123 | 
         
            -
                        json.dump(coco_output, output_json_file)
         
     | 
| 124 | 
         
            -
             
     | 
| 125 | 
         
            -
                coco_output_val = {
         
     | 
| 126 | 
         
            -
                    "info": INFO,
         
     | 
| 127 | 
         
            -
                    "licenses": LICENSES,
         
     | 
| 128 | 
         
            -
                    "categories": CATEGORIES,
         
     | 
| 129 | 
         
            -
                    "images": [],
         
     | 
| 130 | 
         
            -
                    "annotations": []
         
     | 
| 131 | 
         
            -
                }
         
     | 
| 132 | 
         
            -
             
     | 
| 133 | 
         
            -
                image_id_val = 1
         
     | 
| 134 | 
         
            -
                segmentation_id_val = 1
         
     | 
| 135 | 
         
            -
             
     | 
| 136 | 
         
            -
                for image_name in os.listdir(args.val_img_dir):
         
     | 
| 137 | 
         
            -
                    image = Image.open(os.path.join(args.val_img_dir, image_name))
         
     | 
| 138 | 
         
            -
                    image_info = pycococreatortools.create_image_info(
         
     | 
| 139 | 
         
            -
                        image_id_val, image_name, image.size
         
     | 
| 140 | 
         
            -
                    )
         
     | 
| 141 | 
         
            -
                    coco_output_val["images"].append(image_info)
         
     | 
| 142 | 
         
            -
             
     | 
| 143 | 
         
            -
                    human_mask_name = os.path.splitext(image_name)[0] + '.png'
         
     | 
| 144 | 
         
            -
                    human_mask = np.asarray(Image.open(os.path.join(args.val_anno_dir, human_mask_name)))
         
     | 
| 145 | 
         
            -
                    human_gt_labels = np.unique(human_mask)
         
     | 
| 146 | 
         
            -
             
     | 
| 147 | 
         
            -
                    for i in range(1, len(human_gt_labels)):
         
     | 
| 148 | 
         
            -
                        category_info = {'id': 1, 'is_crowd': 0}
         
     | 
| 149 | 
         
            -
                        binary_mask = np.uint8(human_mask == i)
         
     | 
| 150 | 
         
            -
                        annotation_info = pycococreatortools.create_annotation_info(
         
     | 
| 151 | 
         
            -
                            segmentation_id_val, image_id_val, category_info, binary_mask,
         
     | 
| 152 | 
         
            -
                            image.size, tolerance=10
         
     | 
| 153 | 
         
            -
                        )
         
     | 
| 154 | 
         
            -
                        if annotation_info is not None:
         
     | 
| 155 | 
         
            -
                            coco_output_val["annotations"].append(annotation_info)
         
     | 
| 156 | 
         
            -
             
     | 
| 157 | 
         
            -
                        segmentation_id_val += 1
         
     | 
| 158 | 
         
            -
                    image_id_val += 1
         
     | 
| 159 | 
         
            -
             
     | 
| 160 | 
         
            -
                with open('{}/{}_val.json'.format(args.json_save_dir, args.split_name), 'w') as output_json_file_val:
         
     | 
| 161 | 
         
            -
                    json.dump(coco_output_val, output_json_file_val)
         
     | 
| 162 | 
         
            -
             
     | 
| 163 | 
         
            -
             
     | 
| 164 | 
         
            -
            if __name__ == "__main__":
         
     | 
| 165 | 
         
            -
                args = get_arguments()
         
     | 
| 166 | 
         
            -
                main(args)
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        model/SCHP/mhp_extension/coco_style_annotation_creator/pycococreatortools.py
    DELETED
    
    | 
         @@ -1,114 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            import re
         
     | 
| 2 | 
         
            -
            import datetime
         
     | 
| 3 | 
         
            -
            import numpy as np
         
     | 
| 4 | 
         
            -
            from itertools import groupby
         
     | 
| 5 | 
         
            -
            from skimage import measure
         
     | 
| 6 | 
         
            -
            from PIL import Image
         
     | 
| 7 | 
         
            -
            from pycocotools import mask
         
     | 
| 8 | 
         
            -
             
     | 
| 9 | 
         
            -
            convert = lambda text: int(text) if text.isdigit() else text.lower()
         
     | 
| 10 | 
         
            -
            natrual_key = lambda key: [convert(c) for c in re.split('([0-9]+)', key)]
         
     | 
| 11 | 
         
            -
             
     | 
| 12 | 
         
            -
             
     | 
| 13 | 
         
            -
            def resize_binary_mask(array, new_size):
         
     | 
| 14 | 
         
            -
                image = Image.fromarray(array.astype(np.uint8) * 255)
         
     | 
| 15 | 
         
            -
                image = image.resize(new_size)
         
     | 
| 16 | 
         
            -
                return np.asarray(image).astype(np.bool_)
         
     | 
| 17 | 
         
            -
             
     | 
| 18 | 
         
            -
             
     | 
| 19 | 
         
            -
            def close_contour(contour):
         
     | 
| 20 | 
         
            -
                if not np.array_equal(contour[0], contour[-1]):
         
     | 
| 21 | 
         
            -
                    contour = np.vstack((contour, contour[0]))
         
     | 
| 22 | 
         
            -
                return contour
         
     | 
| 23 | 
         
            -
             
     | 
| 24 | 
         
            -
             
     | 
| 25 | 
         
            -
            def binary_mask_to_rle(binary_mask):
         
     | 
| 26 | 
         
            -
                rle = {'counts': [], 'size': list(binary_mask.shape)}
         
     | 
| 27 | 
         
            -
                counts = rle.get('counts')
         
     | 
| 28 | 
         
            -
                for i, (value, elements) in enumerate(groupby(binary_mask.ravel(order='F'))):
         
     | 
| 29 | 
         
            -
                    if i == 0 and value == 1:
         
     | 
| 30 | 
         
            -
                        counts.append(0)
         
     | 
| 31 | 
         
            -
                    counts.append(len(list(elements)))
         
     | 
| 32 | 
         
            -
             
     | 
| 33 | 
         
            -
                return rle
         
     | 
| 34 | 
         
            -
             
     | 
| 35 | 
         
            -
             
     | 
| 36 | 
         
            -
            def binary_mask_to_polygon(binary_mask, tolerance=0):
         
     | 
| 37 | 
         
            -
                """Converts a binary mask to COCO polygon representation
         
     | 
| 38 | 
         
            -
                Args:
         
     | 
| 39 | 
         
            -
                    binary_mask: a 2D binary numpy array where '1's represent the object
         
     | 
| 40 | 
         
            -
                    tolerance: Maximum distance from original points of polygon to approximated
         
     | 
| 41 | 
         
            -
                        polygonal chain. If tolerance is 0, the original coordinate array is returned.
         
     | 
| 42 | 
         
            -
                """
         
     | 
| 43 | 
         
            -
                polygons = []
         
     | 
| 44 | 
         
            -
                # pad mask to close contours of shapes which start and end at an edge
         
     | 
| 45 | 
         
            -
                padded_binary_mask = np.pad(binary_mask, pad_width=1, mode='constant', constant_values=0)
         
     | 
| 46 | 
         
            -
                contours = measure.find_contours(padded_binary_mask, 0.5)
         
     | 
| 47 | 
         
            -
                contours = np.subtract(contours, 1)
         
     | 
| 48 | 
         
            -
                for contour in contours:
         
     | 
| 49 | 
         
            -
                    contour = close_contour(contour)
         
     | 
| 50 | 
         
            -
                    contour = measure.approximate_polygon(contour, tolerance)
         
     | 
| 51 | 
         
            -
                    if len(contour) < 3:
         
     | 
| 52 | 
         
            -
                        continue
         
     | 
| 53 | 
         
            -
                    contour = np.flip(contour, axis=1)
         
     | 
| 54 | 
         
            -
                    segmentation = contour.ravel().tolist()
         
     | 
| 55 | 
         
            -
                    # after padding and subtracting 1 we may get -0.5 points in our segmentation 
         
     | 
| 56 | 
         
            -
                    segmentation = [0 if i < 0 else i for i in segmentation]
         
     | 
| 57 | 
         
            -
                    polygons.append(segmentation)
         
     | 
| 58 | 
         
            -
             
     | 
| 59 | 
         
            -
                return polygons
         
     | 
| 60 | 
         
            -
             
     | 
| 61 | 
         
            -
             
     | 
| 62 | 
         
            -
            def create_image_info(image_id, file_name, image_size,
         
     | 
| 63 | 
         
            -
                                  date_captured=datetime.datetime.utcnow().isoformat(' '),
         
     | 
| 64 | 
         
            -
                                  license_id=1, coco_url="", flickr_url=""):
         
     | 
| 65 | 
         
            -
                image_info = {
         
     | 
| 66 | 
         
            -
                    "id": image_id,
         
     | 
| 67 | 
         
            -
                    "file_name": file_name,
         
     | 
| 68 | 
         
            -
                    "width": image_size[0],
         
     | 
| 69 | 
         
            -
                    "height": image_size[1],
         
     | 
| 70 | 
         
            -
                    "date_captured": date_captured,
         
     | 
| 71 | 
         
            -
                    "license": license_id,
         
     | 
| 72 | 
         
            -
                    "coco_url": coco_url,
         
     | 
| 73 | 
         
            -
                    "flickr_url": flickr_url
         
     | 
| 74 | 
         
            -
                }
         
     | 
| 75 | 
         
            -
             
     | 
| 76 | 
         
            -
                return image_info
         
     | 
| 77 | 
         
            -
             
     | 
| 78 | 
         
            -
             
     | 
| 79 | 
         
            -
            def create_annotation_info(annotation_id, image_id, category_info, binary_mask,
         
     | 
| 80 | 
         
            -
                                       image_size=None, tolerance=2, bounding_box=None):
         
     | 
| 81 | 
         
            -
                if image_size is not None:
         
     | 
| 82 | 
         
            -
                    binary_mask = resize_binary_mask(binary_mask, image_size)
         
     | 
| 83 | 
         
            -
             
     | 
| 84 | 
         
            -
                binary_mask_encoded = mask.encode(np.asfortranarray(binary_mask.astype(np.uint8)))
         
     | 
| 85 | 
         
            -
             
     | 
| 86 | 
         
            -
                area = mask.area(binary_mask_encoded)
         
     | 
| 87 | 
         
            -
                if area < 1:
         
     | 
| 88 | 
         
            -
                    return None
         
     | 
| 89 | 
         
            -
             
     | 
| 90 | 
         
            -
                if bounding_box is None:
         
     | 
| 91 | 
         
            -
                    bounding_box = mask.toBbox(binary_mask_encoded)
         
     | 
| 92 | 
         
            -
             
     | 
| 93 | 
         
            -
                if category_info["is_crowd"]:
         
     | 
| 94 | 
         
            -
                    is_crowd = 1
         
     | 
| 95 | 
         
            -
                    segmentation = binary_mask_to_rle(binary_mask)
         
     | 
| 96 | 
         
            -
                else:
         
     | 
| 97 | 
         
            -
                    is_crowd = 0
         
     | 
| 98 | 
         
            -
                    segmentation = binary_mask_to_polygon(binary_mask, tolerance)
         
     | 
| 99 | 
         
            -
                    if not segmentation:
         
     | 
| 100 | 
         
            -
                        return None
         
     | 
| 101 | 
         
            -
             
     | 
| 102 | 
         
            -
                annotation_info = {
         
     | 
| 103 | 
         
            -
                    "id": annotation_id,
         
     | 
| 104 | 
         
            -
                    "image_id": image_id,
         
     | 
| 105 | 
         
            -
                    "category_id": category_info["id"],
         
     | 
| 106 | 
         
            -
                    "iscrowd": is_crowd,
         
     | 
| 107 | 
         
            -
                    "area": area.tolist(),
         
     | 
| 108 | 
         
            -
                    "bbox": bounding_box.tolist(),
         
     | 
| 109 | 
         
            -
                    "segmentation": segmentation,
         
     | 
| 110 | 
         
            -
                    "width": binary_mask.shape[1],
         
     | 
| 111 | 
         
            -
                    "height": binary_mask.shape[0],
         
     | 
| 112 | 
         
            -
                }
         
     | 
| 113 | 
         
            -
             
     | 
| 114 | 
         
            -
                return annotation_info
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        model/SCHP/mhp_extension/coco_style_annotation_creator/test_human2coco_format.py
    DELETED
    
    | 
         @@ -1,74 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            import argparse
         
     | 
| 2 | 
         
            -
            import datetime
         
     | 
| 3 | 
         
            -
            import json
         
     | 
| 4 | 
         
            -
            import os
         
     | 
| 5 | 
         
            -
            from PIL import Image
         
     | 
| 6 | 
         
            -
             
     | 
| 7 | 
         
            -
            import pycococreatortools
         
     | 
| 8 | 
         
            -
             
     | 
| 9 | 
         
            -
             
     | 
| 10 | 
         
            -
            def get_arguments():
         
     | 
| 11 | 
         
            -
                parser = argparse.ArgumentParser(description="transform mask annotation to coco annotation")
         
     | 
| 12 | 
         
            -
                parser.add_argument("--dataset", type=str, default='CIHP', help="name of dataset (CIHP, MHPv2 or VIP)")
         
     | 
| 13 | 
         
            -
                parser.add_argument("--json_save_dir", type=str, default='../data/CIHP/annotations',
         
     | 
| 14 | 
         
            -
                                    help="path to save coco-style annotation json file")
         
     | 
| 15 | 
         
            -
                parser.add_argument("--test_img_dir", type=str, default='../data/CIHP/Testing/Images',
         
     | 
| 16 | 
         
            -
                                    help="test image path")
         
     | 
| 17 | 
         
            -
                return parser.parse_args()
         
     | 
| 18 | 
         
            -
             
     | 
| 19 | 
         
            -
            args = get_arguments()
         
     | 
| 20 | 
         
            -
             
     | 
| 21 | 
         
            -
            INFO = {
         
     | 
| 22 | 
         
            -
                "description": args.dataset + "Dataset",
         
     | 
| 23 | 
         
            -
                "url": "",
         
     | 
| 24 | 
         
            -
                "version": "",
         
     | 
| 25 | 
         
            -
                "year": 2020,
         
     | 
| 26 | 
         
            -
                "contributor": "yunqiuxu",
         
     | 
| 27 | 
         
            -
                "date_created": datetime.datetime.utcnow().isoformat(' ')
         
     | 
| 28 | 
         
            -
            }
         
     | 
| 29 | 
         
            -
             
     | 
| 30 | 
         
            -
            LICENSES = [
         
     | 
| 31 | 
         
            -
                {
         
     | 
| 32 | 
         
            -
                    "id": 1,
         
     | 
| 33 | 
         
            -
                    "name": "",
         
     | 
| 34 | 
         
            -
                    "url": ""
         
     | 
| 35 | 
         
            -
                }
         
     | 
| 36 | 
         
            -
            ]
         
     | 
| 37 | 
         
            -
             
     | 
| 38 | 
         
            -
            CATEGORIES = [
         
     | 
| 39 | 
         
            -
                {
         
     | 
| 40 | 
         
            -
                    'id': 1,
         
     | 
| 41 | 
         
            -
                    'name': 'person',
         
     | 
| 42 | 
         
            -
                    'supercategory': 'person',
         
     | 
| 43 | 
         
            -
                },
         
     | 
| 44 | 
         
            -
            ]
         
     | 
| 45 | 
         
            -
             
     | 
| 46 | 
         
            -
             
     | 
| 47 | 
         
            -
            def main(args):
         
     | 
| 48 | 
         
            -
                coco_output = {
         
     | 
| 49 | 
         
            -
                    "info": INFO,
         
     | 
| 50 | 
         
            -
                    "licenses": LICENSES,
         
     | 
| 51 | 
         
            -
                    "categories": CATEGORIES,
         
     | 
| 52 | 
         
            -
                    "images": [],
         
     | 
| 53 | 
         
            -
                    "annotations": []
         
     | 
| 54 | 
         
            -
                }
         
     | 
| 55 | 
         
            -
             
     | 
| 56 | 
         
            -
                image_id = 1
         
     | 
| 57 | 
         
            -
             
     | 
| 58 | 
         
            -
                for image_name in os.listdir(args.test_img_dir):
         
     | 
| 59 | 
         
            -
                    image = Image.open(os.path.join(args.test_img_dir, image_name))
         
     | 
| 60 | 
         
            -
                    image_info = pycococreatortools.create_image_info(
         
     | 
| 61 | 
         
            -
                        image_id, image_name, image.size
         
     | 
| 62 | 
         
            -
                    )
         
     | 
| 63 | 
         
            -
                    coco_output["images"].append(image_info)
         
     | 
| 64 | 
         
            -
                    image_id += 1
         
     | 
| 65 | 
         
            -
             
     | 
| 66 | 
         
            -
                if not os.path.exists(os.path.join(args.json_save_dir)):
         
     | 
| 67 | 
         
            -
                    os.mkdir(os.path.join(args.json_save_dir))
         
     | 
| 68 | 
         
            -
             
     | 
| 69 | 
         
            -
                with open('{}/{}.json'.format(args.json_save_dir, args.dataset), 'w') as output_json_file:
         
     | 
| 70 | 
         
            -
                    json.dump(coco_output, output_json_file)
         
     | 
| 71 | 
         
            -
             
     | 
| 72 | 
         
            -
             
     | 
| 73 | 
         
            -
            if __name__ == "__main__":
         
     | 
| 74 | 
         
            -
                main(args)
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        model/SCHP/mhp_extension/data/DemoDataset/global_pic/demo.jpg
    DELETED
    
    | 
         Binary file (139 kB) 
     | 
| 
         | 
    	
        model/SCHP/mhp_extension/demo.ipynb
    DELETED
    
    | 
         The diff for this file is too large to render. 
		See raw diff 
     | 
| 
         | 
    	
        model/SCHP/mhp_extension/demo/demo.jpg
    DELETED
    
    | 
         Binary file (139 kB) 
     | 
| 
         | 
    	
        model/SCHP/mhp_extension/demo/demo_global_human_parsing.png
    DELETED
    
    | 
         Binary file (16.8 kB) 
     | 
| 
         | 
    	
        model/SCHP/mhp_extension/demo/demo_instance_human_mask.png
    DELETED
    
    | 
         Binary file (15.5 kB) 
     | 
| 
         | 
    	
        model/SCHP/mhp_extension/demo/demo_multiple_human_parsing.png
    DELETED
    
    | 
         Binary file (17.1 kB) 
     | 
| 
         | 
    	
        model/SCHP/mhp_extension/detectron2/.circleci/config.yml
    DELETED
    
    | 
         @@ -1,179 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            # Python CircleCI 2.0 configuration file
         
     | 
| 2 | 
         
            -
            #
         
     | 
| 3 | 
         
            -
            # Check https://circleci.com/docs/2.0/language-python/ for more details
         
     | 
| 4 | 
         
            -
            #
         
     | 
| 5 | 
         
            -
            version: 2
         
     | 
| 6 | 
         
            -
             
     | 
| 7 | 
         
            -
            # -------------------------------------------------------------------------------------
         
     | 
| 8 | 
         
            -
            # Environments to run the jobs in
         
     | 
| 9 | 
         
            -
            # -------------------------------------------------------------------------------------
         
     | 
| 10 | 
         
            -
            cpu: &cpu
         
     | 
| 11 | 
         
            -
              docker:
         
     | 
| 12 | 
         
            -
                - image: circleci/python:3.6.8-stretch
         
     | 
| 13 | 
         
            -
              resource_class: medium
         
     | 
| 14 | 
         
            -
             
     | 
| 15 | 
         
            -
            gpu: &gpu
         
     | 
| 16 | 
         
            -
              machine:
         
     | 
| 17 | 
         
            -
                image: ubuntu-1604:201903-01
         
     | 
| 18 | 
         
            -
                docker_layer_caching: true
         
     | 
| 19 | 
         
            -
              resource_class: gpu.small
         
     | 
| 20 | 
         
            -
             
     | 
| 21 | 
         
            -
            # -------------------------------------------------------------------------------------
         
     | 
| 22 | 
         
            -
            # Re-usable commands
         
     | 
| 23 | 
         
            -
            # -------------------------------------------------------------------------------------
         
     | 
| 24 | 
         
            -
            install_python: &install_python
         
     | 
| 25 | 
         
            -
              - run:
         
     | 
| 26 | 
         
            -
                  name: Install Python
         
     | 
| 27 | 
         
            -
                  working_directory: ~/
         
     | 
| 28 | 
         
            -
                  command: |
         
     | 
| 29 | 
         
            -
                    pyenv install 3.6.1
         
     | 
| 30 | 
         
            -
                    pyenv global 3.6.1
         
     | 
| 31 | 
         
            -
             
     | 
| 32 | 
         
            -
            setup_venv: &setup_venv
         
     | 
| 33 | 
         
            -
              - run:
         
     | 
| 34 | 
         
            -
                  name: Setup Virtual Env
         
     | 
| 35 | 
         
            -
                  working_directory: ~/
         
     | 
| 36 | 
         
            -
                  command: |
         
     | 
| 37 | 
         
            -
                    python -m venv ~/venv
         
     | 
| 38 | 
         
            -
                    echo ". ~/venv/bin/activate" >> $BASH_ENV
         
     | 
| 39 | 
         
            -
                    . ~/venv/bin/activate
         
     | 
| 40 | 
         
            -
                    python --version
         
     | 
| 41 | 
         
            -
                    which python
         
     | 
| 42 | 
         
            -
                    which pip
         
     | 
| 43 | 
         
            -
                    pip install --upgrade pip
         
     | 
| 44 | 
         
            -
             
     | 
| 45 | 
         
            -
            install_dep: &install_dep
         
     | 
| 46 | 
         
            -
              - run:
         
     | 
| 47 | 
         
            -
                  name: Install Dependencies
         
     | 
| 48 | 
         
            -
                  command: |
         
     | 
| 49 | 
         
            -
                    pip install --progress-bar off -U 'git+https://github.com/facebookresearch/fvcore'
         
     | 
| 50 | 
         
            -
                    pip install --progress-bar off cython opencv-python
         
     | 
| 51 | 
         
            -
                    pip install --progress-bar off 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'
         
     | 
| 52 | 
         
            -
                    pip install --progress-bar off torch torchvision
         
     | 
| 53 | 
         
            -
             
     | 
| 54 | 
         
            -
            install_detectron2: &install_detectron2
         
     | 
| 55 | 
         
            -
              - run:
         
     | 
| 56 | 
         
            -
                  name: Install Detectron2
         
     | 
| 57 | 
         
            -
                  command: |
         
     | 
| 58 | 
         
            -
                    gcc --version
         
     | 
| 59 | 
         
            -
                    pip install -U --progress-bar off -e .[dev]
         
     | 
| 60 | 
         
            -
                    python -m detectron2.utils.collect_env
         
     | 
| 61 | 
         
            -
             
     | 
| 62 | 
         
            -
            install_nvidia_driver: &install_nvidia_driver
         
     | 
| 63 | 
         
            -
              - run:
         
     | 
| 64 | 
         
            -
                  name: Install nvidia driver
         
     | 
| 65 | 
         
            -
                  working_directory: ~/
         
     | 
| 66 | 
         
            -
                  command: |
         
     | 
| 67 | 
         
            -
                    wget -q 'https://s3.amazonaws.com/ossci-linux/nvidia_driver/NVIDIA-Linux-x86_64-430.40.run'
         
     | 
| 68 | 
         
            -
                    sudo /bin/bash ./NVIDIA-Linux-x86_64-430.40.run -s --no-drm
         
     | 
| 69 | 
         
            -
                    nvidia-smi
         
     | 
| 70 | 
         
            -
             
     | 
| 71 | 
         
            -
            run_unittests: &run_unittests
         
     | 
| 72 | 
         
            -
              - run:
         
     | 
| 73 | 
         
            -
                  name: Run Unit Tests
         
     | 
| 74 | 
         
            -
                  command: |
         
     | 
| 75 | 
         
            -
                    python -m unittest discover -v -s tests
         
     | 
| 76 | 
         
            -
             
     | 
| 77 | 
         
            -
            # -------------------------------------------------------------------------------------
         
     | 
| 78 | 
         
            -
            # Jobs to run
         
     | 
| 79 | 
         
            -
            # -------------------------------------------------------------------------------------
         
     | 
| 80 | 
         
            -
            jobs:
         
     | 
| 81 | 
         
            -
              cpu_tests:
         
     | 
| 82 | 
         
            -
                <<: *cpu
         
     | 
| 83 | 
         
            -
             
     | 
| 84 | 
         
            -
                working_directory: ~/detectron2
         
     | 
| 85 | 
         
            -
             
     | 
| 86 | 
         
            -
                steps:
         
     | 
| 87 | 
         
            -
                  - checkout
         
     | 
| 88 | 
         
            -
                  - <<: *setup_venv
         
     | 
| 89 | 
         
            -
             
     | 
| 90 | 
         
            -
                  # Cache the venv directory that contains dependencies
         
     | 
| 91 | 
         
            -
                  - restore_cache:
         
     | 
| 92 | 
         
            -
                      keys:
         
     | 
| 93 | 
         
            -
                        - cache-key-{{ .Branch }}-ID-20200425
         
     | 
| 94 | 
         
            -
             
     | 
| 95 | 
         
            -
                  - <<: *install_dep
         
     | 
| 96 | 
         
            -
             
     | 
| 97 | 
         
            -
                  - save_cache:
         
     | 
| 98 | 
         
            -
                      paths:
         
     | 
| 99 | 
         
            -
                        - ~/venv
         
     | 
| 100 | 
         
            -
                      key: cache-key-{{ .Branch }}-ID-20200425
         
     | 
| 101 | 
         
            -
             
     | 
| 102 | 
         
            -
                  - <<: *install_detectron2
         
     | 
| 103 | 
         
            -
             
     | 
| 104 | 
         
            -
                  - run:
         
     | 
| 105 | 
         
            -
                      name: isort
         
     | 
| 106 | 
         
            -
                      command: |
         
     | 
| 107 | 
         
            -
                        isort -c -sp .
         
     | 
| 108 | 
         
            -
                  - run:
         
     | 
| 109 | 
         
            -
                      name: black
         
     | 
| 110 | 
         
            -
                      command: |
         
     | 
| 111 | 
         
            -
                        black --check -l 100 .
         
     | 
| 112 | 
         
            -
                  - run:
         
     | 
| 113 | 
         
            -
                      name: flake8
         
     | 
| 114 | 
         
            -
                      command: |
         
     | 
| 115 | 
         
            -
                        flake8 .
         
     | 
| 116 | 
         
            -
             
     | 
| 117 | 
         
            -
                  - <<: *run_unittests
         
     | 
| 118 | 
         
            -
             
     | 
| 119 | 
         
            -
              gpu_tests:
         
     | 
| 120 | 
         
            -
                <<: *gpu
         
     | 
| 121 | 
         
            -
             
     | 
| 122 | 
         
            -
                working_directory: ~/detectron2
         
     | 
| 123 | 
         
            -
             
     | 
| 124 | 
         
            -
                steps:
         
     | 
| 125 | 
         
            -
                  - checkout
         
     | 
| 126 | 
         
            -
                  - <<: *install_nvidia_driver
         
     | 
| 127 | 
         
            -
             
     | 
| 128 | 
         
            -
                  - run:
         
     | 
| 129 | 
         
            -
                      name: Install nvidia-docker
         
     | 
| 130 | 
         
            -
                      working_directory: ~/
         
     | 
| 131 | 
         
            -
                      command: |
         
     | 
| 132 | 
         
            -
                        curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
         
     | 
| 133 | 
         
            -
                        distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
         
     | 
| 134 | 
         
            -
                        curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | \
         
     | 
| 135 | 
         
            -
                        sudo tee /etc/apt/sources.list.d/nvidia-docker.list
         
     | 
| 136 | 
         
            -
                        sudo apt-get update && sudo apt-get install -y nvidia-docker2
         
     | 
| 137 | 
         
            -
                        # reload the docker daemon configuration
         
     | 
| 138 | 
         
            -
                        sudo pkill -SIGHUP dockerd
         
     | 
| 139 | 
         
            -
             
     | 
| 140 | 
         
            -
                  - run:
         
     | 
| 141 | 
         
            -
                      name: Launch docker
         
     | 
| 142 | 
         
            -
                      working_directory: ~/detectron2/docker
         
     | 
| 143 | 
         
            -
                      command: |
         
     | 
| 144 | 
         
            -
                        nvidia-docker build -t detectron2:v0 -f Dockerfile-circleci .
         
     | 
| 145 | 
         
            -
                        nvidia-docker run -itd --name d2 detectron2:v0
         
     | 
| 146 | 
         
            -
                        docker exec -it d2 nvidia-smi
         
     | 
| 147 | 
         
            -
             
     | 
| 148 | 
         
            -
                  - run:
         
     | 
| 149 | 
         
            -
                      name: Build Detectron2
         
     | 
| 150 | 
         
            -
                      command: |
         
     | 
| 151 | 
         
            -
                        docker exec -it d2 pip install 'git+https://github.com/facebookresearch/fvcore'
         
     | 
| 152 | 
         
            -
                        docker cp ~/detectron2 d2:/detectron2
         
     | 
| 153 | 
         
            -
                        # This will build d2 for the target GPU arch only
         
     | 
| 154 | 
         
            -
                        docker exec -it d2 pip install -e /detectron2
         
     | 
| 155 | 
         
            -
                        docker exec -it d2 python3 -m detectron2.utils.collect_env
         
     | 
| 156 | 
         
            -
                        docker exec -it d2 python3 -c 'import torch; assert(torch.cuda.is_available())'
         
     | 
| 157 | 
         
            -
             
     | 
| 158 | 
         
            -
                  - run:
         
     | 
| 159 | 
         
            -
                      name: Run Unit Tests
         
     | 
| 160 | 
         
            -
                      command: |
         
     | 
| 161 | 
         
            -
                        docker exec -e CIRCLECI=true -it d2 python3 -m unittest discover -v -s /detectron2/tests
         
     | 
| 162 | 
         
            -
             
     | 
| 163 | 
         
            -
            workflows:
         
     | 
| 164 | 
         
            -
              version: 2
         
     | 
| 165 | 
         
            -
              regular_test:
         
     | 
| 166 | 
         
            -
                jobs:
         
     | 
| 167 | 
         
            -
                  - cpu_tests
         
     | 
| 168 | 
         
            -
                  - gpu_tests
         
     | 
| 169 | 
         
            -
             
     | 
| 170 | 
         
            -
              #nightly_test:
         
     | 
| 171 | 
         
            -
                #jobs:
         
     | 
| 172 | 
         
            -
                  #- gpu_tests
         
     | 
| 173 | 
         
            -
                #triggers:
         
     | 
| 174 | 
         
            -
                  #- schedule:
         
     | 
| 175 | 
         
            -
                      #cron: "0 0 * * *"
         
     | 
| 176 | 
         
            -
                      #filters:
         
     | 
| 177 | 
         
            -
                        #branches:
         
     | 
| 178 | 
         
            -
                          #only:
         
     | 
| 179 | 
         
            -
                            #- master
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        model/SCHP/mhp_extension/detectron2/.clang-format
    DELETED
    
    | 
         @@ -1,85 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            AccessModifierOffset: -1
         
     | 
| 2 | 
         
            -
            AlignAfterOpenBracket: AlwaysBreak
         
     | 
| 3 | 
         
            -
            AlignConsecutiveAssignments: false
         
     | 
| 4 | 
         
            -
            AlignConsecutiveDeclarations: false
         
     | 
| 5 | 
         
            -
            AlignEscapedNewlinesLeft: true
         
     | 
| 6 | 
         
            -
            AlignOperands:   false
         
     | 
| 7 | 
         
            -
            AlignTrailingComments: false
         
     | 
| 8 | 
         
            -
            AllowAllParametersOfDeclarationOnNextLine: false
         
     | 
| 9 | 
         
            -
            AllowShortBlocksOnASingleLine: false
         
     | 
| 10 | 
         
            -
            AllowShortCaseLabelsOnASingleLine: false
         
     | 
| 11 | 
         
            -
            AllowShortFunctionsOnASingleLine: Empty
         
     | 
| 12 | 
         
            -
            AllowShortIfStatementsOnASingleLine: false
         
     | 
| 13 | 
         
            -
            AllowShortLoopsOnASingleLine: false
         
     | 
| 14 | 
         
            -
            AlwaysBreakAfterReturnType: None
         
     | 
| 15 | 
         
            -
            AlwaysBreakBeforeMultilineStrings: true
         
     | 
| 16 | 
         
            -
            AlwaysBreakTemplateDeclarations: true
         
     | 
| 17 | 
         
            -
            BinPackArguments: false
         
     | 
| 18 | 
         
            -
            BinPackParameters: false
         
     | 
| 19 | 
         
            -
            BraceWrapping:
         
     | 
| 20 | 
         
            -
              AfterClass:      false
         
     | 
| 21 | 
         
            -
              AfterControlStatement: false
         
     | 
| 22 | 
         
            -
              AfterEnum:       false
         
     | 
| 23 | 
         
            -
              AfterFunction:   false
         
     | 
| 24 | 
         
            -
              AfterNamespace:  false
         
     | 
| 25 | 
         
            -
              AfterObjCDeclaration: false
         
     | 
| 26 | 
         
            -
              AfterStruct:     false
         
     | 
| 27 | 
         
            -
              AfterUnion:      false
         
     | 
| 28 | 
         
            -
              BeforeCatch:     false
         
     | 
| 29 | 
         
            -
              BeforeElse:      false
         
     | 
| 30 | 
         
            -
              IndentBraces:    false
         
     | 
| 31 | 
         
            -
            BreakBeforeBinaryOperators: None
         
     | 
| 32 | 
         
            -
            BreakBeforeBraces: Attach
         
     | 
| 33 | 
         
            -
            BreakBeforeTernaryOperators: true
         
     | 
| 34 | 
         
            -
            BreakConstructorInitializersBeforeComma: false
         
     | 
| 35 | 
         
            -
            BreakAfterJavaFieldAnnotations: false
         
     | 
| 36 | 
         
            -
            BreakStringLiterals: false
         
     | 
| 37 | 
         
            -
            ColumnLimit:     80
         
     | 
| 38 | 
         
            -
            CommentPragmas:  '^ IWYU pragma:'
         
     | 
| 39 | 
         
            -
            ConstructorInitializerAllOnOneLineOrOnePerLine: true
         
     | 
| 40 | 
         
            -
            ConstructorInitializerIndentWidth: 4
         
     | 
| 41 | 
         
            -
            ContinuationIndentWidth: 4
         
     | 
| 42 | 
         
            -
            Cpp11BracedListStyle: true
         
     | 
| 43 | 
         
            -
            DerivePointerAlignment: false
         
     | 
| 44 | 
         
            -
            DisableFormat:   false
         
     | 
| 45 | 
         
            -
            ForEachMacros:   [ FOR_EACH, FOR_EACH_ENUMERATE, FOR_EACH_KV, FOR_EACH_R, FOR_EACH_RANGE, ]
         
     | 
| 46 | 
         
            -
            IncludeCategories:
         
     | 
| 47 | 
         
            -
              - Regex:           '^<.*\.h(pp)?>'
         
     | 
| 48 | 
         
            -
                Priority:        1
         
     | 
| 49 | 
         
            -
              - Regex:           '^<.*'
         
     | 
| 50 | 
         
            -
                Priority:        2
         
     | 
| 51 | 
         
            -
              - Regex:           '.*'
         
     | 
| 52 | 
         
            -
                Priority:        3
         
     | 
| 53 | 
         
            -
            IndentCaseLabels: true
         
     | 
| 54 | 
         
            -
            IndentWidth:     2
         
     | 
| 55 | 
         
            -
            IndentWrappedFunctionNames: false
         
     | 
| 56 | 
         
            -
            KeepEmptyLinesAtTheStartOfBlocks: false
         
     | 
| 57 | 
         
            -
            MacroBlockBegin: ''
         
     | 
| 58 | 
         
            -
            MacroBlockEnd:   ''
         
     | 
| 59 | 
         
            -
            MaxEmptyLinesToKeep: 1
         
     | 
| 60 | 
         
            -
            NamespaceIndentation: None
         
     | 
| 61 | 
         
            -
            ObjCBlockIndentWidth: 2
         
     | 
| 62 | 
         
            -
            ObjCSpaceAfterProperty: false
         
     | 
| 63 | 
         
            -
            ObjCSpaceBeforeProtocolList: false
         
     | 
| 64 | 
         
            -
            PenaltyBreakBeforeFirstCallParameter: 1
         
     | 
| 65 | 
         
            -
            PenaltyBreakComment: 300
         
     | 
| 66 | 
         
            -
            PenaltyBreakFirstLessLess: 120
         
     | 
| 67 | 
         
            -
            PenaltyBreakString: 1000
         
     | 
| 68 | 
         
            -
            PenaltyExcessCharacter: 1000000
         
     | 
| 69 | 
         
            -
            PenaltyReturnTypeOnItsOwnLine: 200
         
     | 
| 70 | 
         
            -
            PointerAlignment: Left
         
     | 
| 71 | 
         
            -
            ReflowComments:  true
         
     | 
| 72 | 
         
            -
            SortIncludes:    true
         
     | 
| 73 | 
         
            -
            SpaceAfterCStyleCast: false
         
     | 
| 74 | 
         
            -
            SpaceBeforeAssignmentOperators: true
         
     | 
| 75 | 
         
            -
            SpaceBeforeParens: ControlStatements
         
     | 
| 76 | 
         
            -
            SpaceInEmptyParentheses: false
         
     | 
| 77 | 
         
            -
            SpacesBeforeTrailingComments: 1
         
     | 
| 78 | 
         
            -
            SpacesInAngles:  false
         
     | 
| 79 | 
         
            -
            SpacesInContainerLiterals: true
         
     | 
| 80 | 
         
            -
            SpacesInCStyleCastParentheses: false
         
     | 
| 81 | 
         
            -
            SpacesInParentheses: false
         
     | 
| 82 | 
         
            -
            SpacesInSquareBrackets: false
         
     | 
| 83 | 
         
            -
            Standard:        Cpp11
         
     | 
| 84 | 
         
            -
            TabWidth:        8
         
     | 
| 85 | 
         
            -
            UseTab:          Never
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        model/SCHP/mhp_extension/detectron2/.flake8
    DELETED
    
    | 
         @@ -1,9 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            # This is an example .flake8 config, used when developing *Black* itself.
         
     | 
| 2 | 
         
            -
            # Keep in sync with setup.cfg which is used for source packages.
         
     | 
| 3 | 
         
            -
             
     | 
| 4 | 
         
            -
            [flake8]
         
     | 
| 5 | 
         
            -
            ignore = W503, E203, E221, C901, C408, E741
         
     | 
| 6 | 
         
            -
            max-line-length = 100
         
     | 
| 7 | 
         
            -
            max-complexity = 18
         
     | 
| 8 | 
         
            -
            select = B,C,E,F,W,T4,B9
         
     | 
| 9 | 
         
            -
            exclude = build,__init__.py
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        model/SCHP/mhp_extension/detectron2/.github/CODE_OF_CONDUCT.md
    DELETED
    
    | 
         @@ -1,5 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            # Code of Conduct
         
     | 
| 2 | 
         
            -
             
     | 
| 3 | 
         
            -
            Facebook has adopted a Code of Conduct that we expect project participants to adhere to.
         
     | 
| 4 | 
         
            -
            Please read the [full text](https://code.fb.com/codeofconduct/)
         
     | 
| 5 | 
         
            -
            so that you can understand what actions will and will not be tolerated.
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        model/SCHP/mhp_extension/detectron2/.github/CONTRIBUTING.md
    DELETED
    
    | 
         @@ -1,49 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            # Contributing to detectron2
         
     | 
| 2 | 
         
            -
             
     | 
| 3 | 
         
            -
            ## Issues
         
     | 
| 4 | 
         
            -
            We use GitHub issues to track public bugs and questions.
         
     | 
| 5 | 
         
            -
            Please make sure to follow one of the
         
     | 
| 6 | 
         
            -
            [issue templates](https://github.com/facebookresearch/detectron2/issues/new/choose)
         
     | 
| 7 | 
         
            -
            when reporting any issues.
         
     | 
| 8 | 
         
            -
             
     | 
| 9 | 
         
            -
            Facebook has a [bounty program](https://www.facebook.com/whitehat/) for the safe
         
     | 
| 10 | 
         
            -
            disclosure of security bugs. In those cases, please go through the process
         
     | 
| 11 | 
         
            -
            outlined on that page and do not file a public issue.
         
     | 
| 12 | 
         
            -
             
     | 
| 13 | 
         
            -
            ## Pull Requests
         
     | 
| 14 | 
         
            -
            We actively welcome your pull requests.
         
     | 
| 15 | 
         
            -
             
     | 
| 16 | 
         
            -
            However, if you're adding any significant features (e.g. > 50 lines), please
         
     | 
| 17 | 
         
            -
            make sure to have a corresponding issue to discuss your motivation and proposals,
         
     | 
| 18 | 
         
            -
            before sending a PR. We do not always accept new features, and we take the following
         
     | 
| 19 | 
         
            -
            factors into consideration:
         
     | 
| 20 | 
         
            -
             
     | 
| 21 | 
         
            -
            1. Whether the same feature can be achieved without modifying detectron2.
         
     | 
| 22 | 
         
            -
            Detectron2 is designed so that you can implement many extensions from the outside, e.g.
         
     | 
| 23 | 
         
            -
            those in [projects](https://github.com/facebookresearch/detectron2/tree/master/projects).
         
     | 
| 24 | 
         
            -
            If some part is not as extensible, you can also bring up the issue to make it more extensible.
         
     | 
| 25 | 
         
            -
            2. Whether the feature is potentially useful to a large audience, or only to a small portion of users.
         
     | 
| 26 | 
         
            -
            3. Whether the proposed solution has a good design / interface.
         
     | 
| 27 | 
         
            -
            4. Whether the proposed solution adds extra mental/practical overhead to users who don't
         
     | 
| 28 | 
         
            -
               need such feature.
         
     | 
| 29 | 
         
            -
            5. Whether the proposed solution breaks existing APIs.
         
     | 
| 30 | 
         
            -
             
     | 
| 31 | 
         
            -
            When sending a PR, please do:
         
     | 
| 32 | 
         
            -
             
     | 
| 33 | 
         
            -
            1. If a PR contains multiple orthogonal changes, split it to several PRs.
         
     | 
| 34 | 
         
            -
            2. If you've added code that should be tested, add tests.
         
     | 
| 35 | 
         
            -
            3. For PRs that need experiments (e.g. adding a new model or new methods),
         
     | 
| 36 | 
         
            -
            	 you don't need to update model zoo, but do provide experiment results in the description of the PR.
         
     | 
| 37 | 
         
            -
            4. If APIs are changed, update the documentation.
         
     | 
| 38 | 
         
            -
            5. Make sure your code lints with `./dev/linter.sh`.
         
     | 
| 39 | 
         
            -
             
     | 
| 40 | 
         
            -
             
     | 
| 41 | 
         
            -
            ## Contributor License Agreement ("CLA")
         
     | 
| 42 | 
         
            -
            In order to accept your pull request, we need you to submit a CLA. You only need
         
     | 
| 43 | 
         
            -
            to do this once to work on any of Facebook's open source projects.
         
     | 
| 44 | 
         
            -
             
     | 
| 45 | 
         
            -
            Complete your CLA here: <https://code.facebook.com/cla>
         
     | 
| 46 | 
         
            -
             
     | 
| 47 | 
         
            -
            ## License
         
     | 
| 48 | 
         
            -
            By contributing to detectron2, you agree that your contributions will be licensed
         
     | 
| 49 | 
         
            -
            under the LICENSE file in the root directory of this source tree.
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        model/SCHP/mhp_extension/detectron2/.github/Detectron2-Logo-Horz.svg
    DELETED
    
    
    	
        model/SCHP/mhp_extension/detectron2/.github/ISSUE_TEMPLATE.md
    DELETED
    
    | 
         @@ -1,5 +0,0 @@ 
     | 
|
| 1 | 
         
            -
             
     | 
| 2 | 
         
            -
            Please select an issue template from
         
     | 
| 3 | 
         
            -
            https://github.com/facebookresearch/detectron2/issues/new/choose .
         
     | 
| 4 | 
         
            -
             
     | 
| 5 | 
         
            -
            Otherwise your issue will be closed.
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        model/SCHP/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/bugs.md
    DELETED
    
    | 
         @@ -1,36 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            ---
         
     | 
| 2 | 
         
            -
            name: "🐛 Bugs"
         
     | 
| 3 | 
         
            -
            about: Report bugs in detectron2
         
     | 
| 4 | 
         
            -
            title: Please read & provide the following
         
     | 
| 5 | 
         
            -
             
     | 
| 6 | 
         
            -
            ---
         
     | 
| 7 | 
         
            -
             
     | 
| 8 | 
         
            -
            ## Instructions To Reproduce the 🐛 Bug:
         
     | 
| 9 | 
         
            -
             
     | 
| 10 | 
         
            -
            1. what changes you made (`git diff`) or what code you wrote
         
     | 
| 11 | 
         
            -
            ```
         
     | 
| 12 | 
         
            -
            <put diff or code here>
         
     | 
| 13 | 
         
            -
            ```
         
     | 
| 14 | 
         
            -
            2. what exact command you run:
         
     | 
| 15 | 
         
            -
            3. what you observed (including __full logs__):
         
     | 
| 16 | 
         
            -
            ```
         
     | 
| 17 | 
         
            -
            <put logs here>
         
     | 
| 18 | 
         
            -
            ```
         
     | 
| 19 | 
         
            -
            4. please simplify the steps as much as possible so they do not require additional resources to
         
     | 
| 20 | 
         
            -
            	 run, such as a private dataset.
         
     | 
| 21 | 
         
            -
             
     | 
| 22 | 
         
            -
            ## Expected behavior:
         
     | 
| 23 | 
         
            -
             
     | 
| 24 | 
         
            -
            If there are no obvious error in "what you observed" provided above,
         
     | 
| 25 | 
         
            -
            please tell us the expected behavior.
         
     | 
| 26 | 
         
            -
             
     | 
| 27 | 
         
            -
            ## Environment:
         
     | 
| 28 | 
         
            -
             
     | 
| 29 | 
         
            -
            Provide your environment information using the following command:
         
     | 
| 30 | 
         
            -
            ```
         
     | 
| 31 | 
         
            -
            wget -nc -q https://github.com/facebookresearch/detectron2/raw/master/detectron2/utils/collect_env.py && python collect_env.py
         
     | 
| 32 | 
         
            -
            ```
         
     | 
| 33 | 
         
            -
             
     | 
| 34 | 
         
            -
            If your issue looks like an installation issue / environment issue,
         
     | 
| 35 | 
         
            -
            please first try to solve it yourself with the instructions in
         
     | 
| 36 | 
         
            -
            https://detectron2.readthedocs.io/tutorials/install.html#common-installation-issues
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        model/SCHP/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/config.yml
    DELETED
    
    | 
         @@ -1,9 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            # require an issue template to be chosen
         
     | 
| 2 | 
         
            -
            blank_issues_enabled: false
         
     | 
| 3 | 
         
            -
             
     | 
| 4 | 
         
            -
            # Unexpected behaviors & bugs are split to two templates.
         
     | 
| 5 | 
         
            -
            # When they are one template, users think "it's not a bug" and don't choose the template.
         
     | 
| 6 | 
         
            -
            #
         
     | 
| 7 | 
         
            -
            # But the file name is still "unexpected-problems-bugs.md" so that old references
         
     | 
| 8 | 
         
            -
            # to this issue template still works.
         
     | 
| 9 | 
         
            -
            # It's ok since this template should be a superset of "bugs.md" (unexpected behaviors is a superset of bugs)
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        model/SCHP/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/feature-request.md
    DELETED
    
    | 
         @@ -1,31 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            ---
         
     | 
| 2 | 
         
            -
            name: "\U0001F680Feature Request"
         
     | 
| 3 | 
         
            -
            about: Submit a proposal/request for a new detectron2 feature
         
     | 
| 4 | 
         
            -
             
     | 
| 5 | 
         
            -
            ---
         
     | 
| 6 | 
         
            -
             
     | 
| 7 | 
         
            -
            ## 🚀 Feature
         
     | 
| 8 | 
         
            -
            A clear and concise description of the feature proposal.
         
     | 
| 9 | 
         
            -
             
     | 
| 10 | 
         
            -
             
     | 
| 11 | 
         
            -
            ## Motivation & Examples
         
     | 
| 12 | 
         
            -
             
     | 
| 13 | 
         
            -
            Tell us why the feature is useful.
         
     | 
| 14 | 
         
            -
             
     | 
| 15 | 
         
            -
            Describe what the feature would look like, if it is implemented.
         
     | 
| 16 | 
         
            -
            Best demonstrated using **code examples** in addition to words.
         
     | 
| 17 | 
         
            -
             
     | 
| 18 | 
         
            -
            ## Note
         
     | 
| 19 | 
         
            -
             
     | 
| 20 | 
         
            -
            We only consider adding new features if they are relevant to many users.
         
     | 
| 21 | 
         
            -
             
     | 
| 22 | 
         
            -
            If you request implementation of research papers --
         
     | 
| 23 | 
         
            -
            we only consider papers that have enough significance and prevalance in the object detection field.
         
     | 
| 24 | 
         
            -
             
     | 
| 25 | 
         
            -
            We do not take requests for most projects in the `projects/` directory,
         
     | 
| 26 | 
         
            -
            because they are research code release that is mainly for other researchers to reproduce results.
         
     | 
| 27 | 
         
            -
             
     | 
| 28 | 
         
            -
            Instead of adding features inside detectron2,
         
     | 
| 29 | 
         
            -
            you can implement many features by [extending detectron2](https://detectron2.readthedocs.io/tutorials/extend.html).
         
     | 
| 30 | 
         
            -
            The [projects/](https://github.com/facebookresearch/detectron2/tree/master/projects/) directory contains many of such examples.
         
     | 
| 31 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        model/SCHP/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/questions-help-support.md
    DELETED
    
    | 
         @@ -1,26 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            ---
         
     | 
| 2 | 
         
            -
            name: "❓How to do something?"
         
     | 
| 3 | 
         
            -
            about: How to do something using detectron2? What does an API do?
         
     | 
| 4 | 
         
            -
             
     | 
| 5 | 
         
            -
            ---
         
     | 
| 6 | 
         
            -
             
     | 
| 7 | 
         
            -
            ## ❓ How to do something using detectron2
         
     | 
| 8 | 
         
            -
             
     | 
| 9 | 
         
            -
            Describe what you want to do, including:
         
     | 
| 10 | 
         
            -
            1. what inputs you will provide, if any:
         
     | 
| 11 | 
         
            -
            2. what outputs you are expecting:
         
     | 
| 12 | 
         
            -
             
     | 
| 13 | 
         
            -
            ## ❓ What does an API do and how to use it?
         
     | 
| 14 | 
         
            -
            Please link to which API or documentation you're asking about from
         
     | 
| 15 | 
         
            -
            https://detectron2.readthedocs.io/
         
     | 
| 16 | 
         
            -
             
     | 
| 17 | 
         
            -
             
     | 
| 18 | 
         
            -
            NOTE:
         
     | 
| 19 | 
         
            -
             
     | 
| 20 | 
         
            -
            1. Only general answers are provided.
         
     | 
| 21 | 
         
            -
               If you want to ask about "why X did not work", please use the
         
     | 
| 22 | 
         
            -
               [Unexpected behaviors](https://github.com/facebookresearch/detectron2/issues/new/choose) issue template.
         
     | 
| 23 | 
         
            -
             
     | 
| 24 | 
         
            -
            2. About how to implement new models / new dataloader / new training logic, etc., check documentation first.
         
     | 
| 25 | 
         
            -
             
     | 
| 26 | 
         
            -
            3. We do not answer general machine learning / computer vision questions that are not specific to detectron2, such as how a model works, how to improve your training/make it converge, or what algorithm/methods can be used to achieve X.
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        model/SCHP/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/unexpected-problems-bugs.md
    DELETED
    
    | 
         @@ -1,45 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            ---
         
     | 
| 2 | 
         
            -
            name: "Unexpected behaviors"
         
     | 
| 3 | 
         
            -
            about: Run into unexpected behaviors when using detectron2
         
     | 
| 4 | 
         
            -
            title: Please read & provide the following
         
     | 
| 5 | 
         
            -
             
     | 
| 6 | 
         
            -
            ---
         
     | 
| 7 | 
         
            -
             
     | 
| 8 | 
         
            -
            If you do not know the root cause of the problem, and wish someone to help you, please
         
     | 
| 9 | 
         
            -
            post according to this template:
         
     | 
| 10 | 
         
            -
             
     | 
| 11 | 
         
            -
            ## Instructions To Reproduce the Issue:
         
     | 
| 12 | 
         
            -
             
     | 
| 13 | 
         
            -
            1. what changes you made (`git diff`) or what code you wrote
         
     | 
| 14 | 
         
            -
            ```
         
     | 
| 15 | 
         
            -
            <put diff or code here>
         
     | 
| 16 | 
         
            -
            ```
         
     | 
| 17 | 
         
            -
            2. what exact command you run:
         
     | 
| 18 | 
         
            -
            3. what you observed (including __full logs__):
         
     | 
| 19 | 
         
            -
            ```
         
     | 
| 20 | 
         
            -
            <put logs here>
         
     | 
| 21 | 
         
            -
            ```
         
     | 
| 22 | 
         
            -
            4. please simplify the steps as much as possible so they do not require additional resources to
         
     | 
| 23 | 
         
            -
            	 run, such as a private dataset.
         
     | 
| 24 | 
         
            -
             
     | 
| 25 | 
         
            -
            ## Expected behavior:
         
     | 
| 26 | 
         
            -
             
     | 
| 27 | 
         
            -
            If there are no obvious error in "what you observed" provided above,
         
     | 
| 28 | 
         
            -
            please tell us the expected behavior.
         
     | 
| 29 | 
         
            -
             
     | 
| 30 | 
         
            -
            If you expect the model to converge / work better, note that we do not give suggestions
         
     | 
| 31 | 
         
            -
            on how to train a new model.
         
     | 
| 32 | 
         
            -
            Only in one of the two conditions we will help with it:
         
     | 
| 33 | 
         
            -
            (1) You're unable to reproduce the results in detectron2 model zoo.
         
     | 
| 34 | 
         
            -
            (2) It indicates a detectron2 bug.
         
     | 
| 35 | 
         
            -
             
     | 
| 36 | 
         
            -
            ## Environment:
         
     | 
| 37 | 
         
            -
             
     | 
| 38 | 
         
            -
            Provide your environment information using the following command:
         
     | 
| 39 | 
         
            -
            ```
         
     | 
| 40 | 
         
            -
            wget -nc -q https://github.com/facebookresearch/detectron2/raw/master/detectron2/utils/collect_env.py && python collect_env.py
         
     | 
| 41 | 
         
            -
            ```
         
     | 
| 42 | 
         
            -
             
     | 
| 43 | 
         
            -
            If your issue looks like an installation issue / environment issue,
         
     | 
| 44 | 
         
            -
            please first try to solve it yourself with the instructions in
         
     | 
| 45 | 
         
            -
            https://detectron2.readthedocs.io/tutorials/install.html#common-installation-issues
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        model/SCHP/mhp_extension/detectron2/.github/pull_request_template.md
    DELETED
    
    | 
         @@ -1,9 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            Thanks for your contribution!
         
     | 
| 2 | 
         
            -
             
     | 
| 3 | 
         
            -
            If you're sending a large PR (e.g., >50 lines),
         
     | 
| 4 | 
         
            -
            please open an issue first about the feature / bug, and indicate how you want to contribute.
         
     | 
| 5 | 
         
            -
             
     | 
| 6 | 
         
            -
            Before submitting a PR, please run `dev/linter.sh` to lint the code.
         
     | 
| 7 | 
         
            -
             
     | 
| 8 | 
         
            -
            See https://detectron2.readthedocs.io/notes/contributing.html#pull-requests
         
     | 
| 9 | 
         
            -
            about how we handle PRs.
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        model/SCHP/mhp_extension/detectron2/.gitignore
    DELETED
    
    | 
         @@ -1,46 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            # output dir
         
     | 
| 2 | 
         
            -
            output
         
     | 
| 3 | 
         
            -
            instant_test_output
         
     | 
| 4 | 
         
            -
            inference_test_output
         
     | 
| 5 | 
         
            -
             
     | 
| 6 | 
         
            -
             
     | 
| 7 | 
         
            -
            *.jpg
         
     | 
| 8 | 
         
            -
            *.png
         
     | 
| 9 | 
         
            -
            *.txt
         
     | 
| 10 | 
         
            -
            *.json
         
     | 
| 11 | 
         
            -
            *.diff
         
     | 
| 12 | 
         
            -
             
     | 
| 13 | 
         
            -
            # compilation and distribution
         
     | 
| 14 | 
         
            -
            __pycache__
         
     | 
| 15 | 
         
            -
            _ext
         
     | 
| 16 | 
         
            -
            *.pyc
         
     | 
| 17 | 
         
            -
            *.so
         
     | 
| 18 | 
         
            -
            detectron2.egg-info/
         
     | 
| 19 | 
         
            -
            build/
         
     | 
| 20 | 
         
            -
            dist/
         
     | 
| 21 | 
         
            -
            wheels/
         
     | 
| 22 | 
         
            -
             
     | 
| 23 | 
         
            -
            # pytorch/python/numpy formats
         
     | 
| 24 | 
         
            -
            *.pth
         
     | 
| 25 | 
         
            -
            *.pkl
         
     | 
| 26 | 
         
            -
            *.npy
         
     | 
| 27 | 
         
            -
             
     | 
| 28 | 
         
            -
            # ipython/jupyter notebooks
         
     | 
| 29 | 
         
            -
            *.ipynb
         
     | 
| 30 | 
         
            -
            **/.ipynb_checkpoints/
         
     | 
| 31 | 
         
            -
             
     | 
| 32 | 
         
            -
            # Editor temporaries
         
     | 
| 33 | 
         
            -
            *.swn
         
     | 
| 34 | 
         
            -
            *.swo
         
     | 
| 35 | 
         
            -
            *.swp
         
     | 
| 36 | 
         
            -
            *~
         
     | 
| 37 | 
         
            -
             
     | 
| 38 | 
         
            -
            # editor settings
         
     | 
| 39 | 
         
            -
            .idea
         
     | 
| 40 | 
         
            -
            .vscode
         
     | 
| 41 | 
         
            -
             
     | 
| 42 | 
         
            -
            # project dirs
         
     | 
| 43 | 
         
            -
            /detectron2/model_zoo/configs
         
     | 
| 44 | 
         
            -
            /datasets
         
     | 
| 45 | 
         
            -
            /projects/*/datasets
         
     | 
| 46 | 
         
            -
            /models
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        model/SCHP/mhp_extension/detectron2/GETTING_STARTED.md
    DELETED
    
    | 
         @@ -1,79 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            ## Getting Started with Detectron2
         
     | 
| 2 | 
         
            -
             
     | 
| 3 | 
         
            -
            This document provides a brief intro of the usage of builtin command-line tools in detectron2.
         
     | 
| 4 | 
         
            -
             
     | 
| 5 | 
         
            -
            For a tutorial that involves actual coding with the API,
         
     | 
| 6 | 
         
            -
            see our [Colab Notebook](https://colab.research.google.com/drive/16jcaJoc6bCFAQ96jDe2HwtXj7BMD_-m5)
         
     | 
| 7 | 
         
            -
            which covers how to run inference with an
         
     | 
| 8 | 
         
            -
            existing model, and how to train a builtin model on a custom dataset.
         
     | 
| 9 | 
         
            -
             
     | 
| 10 | 
         
            -
            For more advanced tutorials, refer to our [documentation](https://detectron2.readthedocs.io/tutorials/extend.html).
         
     | 
| 11 | 
         
            -
             
     | 
| 12 | 
         
            -
             
     | 
| 13 | 
         
            -
            ### Inference Demo with Pre-trained Models
         
     | 
| 14 | 
         
            -
             
     | 
| 15 | 
         
            -
            1. Pick a model and its config file from
         
     | 
| 16 | 
         
            -
            	[model zoo](MODEL_ZOO.md),
         
     | 
| 17 | 
         
            -
            	for example, `mask_rcnn_R_50_FPN_3x.yaml`.
         
     | 
| 18 | 
         
            -
            2. We provide `demo.py` that is able to run builtin standard models. Run it with:
         
     | 
| 19 | 
         
            -
            ```
         
     | 
| 20 | 
         
            -
            cd demo/
         
     | 
| 21 | 
         
            -
            python demo.py --config-file ../configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml \
         
     | 
| 22 | 
         
            -
              --input input1.jpg input2.jpg \
         
     | 
| 23 | 
         
            -
              [--other-options]
         
     | 
| 24 | 
         
            -
              --opts MODEL.WEIGHTS detectron2://COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/model_final_f10217.pkl
         
     | 
| 25 | 
         
            -
            ```
         
     | 
| 26 | 
         
            -
            The configs are made for training, therefore we need to specify `MODEL.WEIGHTS` to a model from model zoo for evaluation.
         
     | 
| 27 | 
         
            -
            This command will run the inference and show visualizations in an OpenCV window.
         
     | 
| 28 | 
         
            -
             
     | 
| 29 | 
         
            -
            For details of the command line arguments, see `demo.py -h` or look at its source code
         
     | 
| 30 | 
         
            -
            to understand its behavior. Some common arguments are:
         
     | 
| 31 | 
         
            -
            * To run __on your webcam__, replace `--input files` with `--webcam`.
         
     | 
| 32 | 
         
            -
            * To run __on a video__, replace `--input files` with `--video-input video.mp4`.
         
     | 
| 33 | 
         
            -
            * To run __on cpu__, add `MODEL.DEVICE cpu` after `--opts`.
         
     | 
| 34 | 
         
            -
            * To save outputs to a directory (for images) or a file (for webcam or video), use `--output`.
         
     | 
| 35 | 
         
            -
             
     | 
| 36 | 
         
            -
             
     | 
| 37 | 
         
            -
            ### Training & Evaluation in Command Line
         
     | 
| 38 | 
         
            -
             
     | 
| 39 | 
         
            -
            We provide a script in "tools/{,plain_}train_net.py", that is made to train
         
     | 
| 40 | 
         
            -
            all the configs provided in detectron2.
         
     | 
| 41 | 
         
            -
            You may want to use it as a reference to write your own training script.
         
     | 
| 42 | 
         
            -
             
     | 
| 43 | 
         
            -
            To train a model with "train_net.py", first
         
     | 
| 44 | 
         
            -
            setup the corresponding datasets following
         
     | 
| 45 | 
         
            -
            [datasets/README.md](./datasets/README.md),
         
     | 
| 46 | 
         
            -
            then run:
         
     | 
| 47 | 
         
            -
            ```
         
     | 
| 48 | 
         
            -
            cd tools/
         
     | 
| 49 | 
         
            -
            ./train_net.py --num-gpus 8 \
         
     | 
| 50 | 
         
            -
            	--config-file ../configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml
         
     | 
| 51 | 
         
            -
            ```
         
     | 
| 52 | 
         
            -
             
     | 
| 53 | 
         
            -
            The configs are made for 8-GPU training.
         
     | 
| 54 | 
         
            -
            To train on 1 GPU, you may need to [change some parameters](https://arxiv.org/abs/1706.02677), e.g.:
         
     | 
| 55 | 
         
            -
            ```
         
     | 
| 56 | 
         
            -
            ./train_net.py \
         
     | 
| 57 | 
         
            -
            	--config-file ../configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml \
         
     | 
| 58 | 
         
            -
            	--num-gpus 1 SOLVER.IMS_PER_BATCH 2 SOLVER.BASE_LR 0.0025
         
     | 
| 59 | 
         
            -
            ```
         
     | 
| 60 | 
         
            -
             
     | 
| 61 | 
         
            -
            For most models, CPU training is not supported.
         
     | 
| 62 | 
         
            -
             
     | 
| 63 | 
         
            -
            To evaluate a model's performance, use
         
     | 
| 64 | 
         
            -
            ```
         
     | 
| 65 | 
         
            -
            ./train_net.py \
         
     | 
| 66 | 
         
            -
            	--config-file ../configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml \
         
     | 
| 67 | 
         
            -
            	--eval-only MODEL.WEIGHTS /path/to/checkpoint_file
         
     | 
| 68 | 
         
            -
            ```
         
     | 
| 69 | 
         
            -
            For more options, see `./train_net.py -h`.
         
     | 
| 70 | 
         
            -
             
     | 
| 71 | 
         
            -
            ### Use Detectron2 APIs in Your Code
         
     | 
| 72 | 
         
            -
             
     | 
| 73 | 
         
            -
            See our [Colab Notebook](https://colab.research.google.com/drive/16jcaJoc6bCFAQ96jDe2HwtXj7BMD_-m5)
         
     | 
| 74 | 
         
            -
            to learn how to use detectron2 APIs to:
         
     | 
| 75 | 
         
            -
            1. run inference with an existing model
         
     | 
| 76 | 
         
            -
            2. train a builtin model on a custom dataset
         
     | 
| 77 | 
         
            -
             
     | 
| 78 | 
         
            -
            See [detectron2/projects](https://github.com/facebookresearch/detectron2/tree/master/projects)
         
     | 
| 79 | 
         
            -
            for more ways to build your project on detectron2.
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        model/SCHP/mhp_extension/detectron2/INSTALL.md
    DELETED
    
    | 
         @@ -1,184 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            ## Installation
         
     | 
| 2 | 
         
            -
             
     | 
| 3 | 
         
            -
            Our [Colab Notebook](https://colab.research.google.com/drive/16jcaJoc6bCFAQ96jDe2HwtXj7BMD_-m5)
         
     | 
| 4 | 
         
            -
            has step-by-step instructions that install detectron2.
         
     | 
| 5 | 
         
            -
            The [Dockerfile](docker)
         
     | 
| 6 | 
         
            -
            also installs detectron2 with a few simple commands.
         
     | 
| 7 | 
         
            -
             
     | 
| 8 | 
         
            -
            ### Requirements
         
     | 
| 9 | 
         
            -
            - Linux or macOS with Python ≥ 3.6
         
     | 
| 10 | 
         
            -
            - PyTorch ≥ 1.4
         
     | 
| 11 | 
         
            -
            - [torchvision](https://github.com/pytorch/vision/) that matches the PyTorch installation.
         
     | 
| 12 | 
         
            -
            	You can install them together at [pytorch.org](https://pytorch.org) to make sure of this.
         
     | 
| 13 | 
         
            -
            - OpenCV, optional, needed by demo and visualization
         
     | 
| 14 | 
         
            -
            - pycocotools: `pip install cython; pip install -U 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'`
         
     | 
| 15 | 
         
            -
             
     | 
| 16 | 
         
            -
             
     | 
| 17 | 
         
            -
            ### Build Detectron2 from Source
         
     | 
| 18 | 
         
            -
             
     | 
| 19 | 
         
            -
            gcc & g++ ≥ 5 are required. [ninja](https://ninja-build.org/) is recommended for faster build.
         
     | 
| 20 | 
         
            -
            After having them, run:
         
     | 
| 21 | 
         
            -
            ```
         
     | 
| 22 | 
         
            -
            python -m pip install 'git+https://github.com/facebookresearch/detectron2.git'
         
     | 
| 23 | 
         
            -
            # (add --user if you don't have permission)
         
     | 
| 24 | 
         
            -
             
     | 
| 25 | 
         
            -
            # Or, to install it from a local clone:
         
     | 
| 26 | 
         
            -
            git clone https://github.com/facebookresearch/detectron2.git
         
     | 
| 27 | 
         
            -
            python -m pip install -e detectron2
         
     | 
| 28 | 
         
            -
             
     | 
| 29 | 
         
            -
            # Or if you are on macOS
         
     | 
| 30 | 
         
            -
            # CC=clang CXX=clang++ python -m pip install -e .
         
     | 
| 31 | 
         
            -
            ```
         
     | 
| 32 | 
         
            -
             
     | 
| 33 | 
         
            -
            To __rebuild__ detectron2 that's built from a local clone, use `rm -rf build/ **/*.so` to clean the
         
     | 
| 34 | 
         
            -
            old build first. You often need to rebuild detectron2 after reinstalling PyTorch.
         
     | 
| 35 | 
         
            -
             
     | 
| 36 | 
         
            -
            ### Install Pre-Built Detectron2 (Linux only)
         
     | 
| 37 | 
         
            -
            ```
         
     | 
| 38 | 
         
            -
            # for CUDA 10.1:
         
     | 
| 39 | 
         
            -
            python -m pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu101/index.html
         
     | 
| 40 | 
         
            -
            ```
         
     | 
| 41 | 
         
            -
            You can replace cu101 with "cu{100,92}" or "cpu".
         
     | 
| 42 | 
         
            -
             
     | 
| 43 | 
         
            -
            Note that:
         
     | 
| 44 | 
         
            -
            1. Such installation has to be used with certain version of official PyTorch release.
         
     | 
| 45 | 
         
            -
               See [releases](https://github.com/facebookresearch/detectron2/releases) for requirements.
         
     | 
| 46 | 
         
            -
               It will not work with a different version of PyTorch or a non-official build of PyTorch.
         
     | 
| 47 | 
         
            -
            2. Such installation is out-of-date w.r.t. master branch of detectron2. It may not be
         
     | 
| 48 | 
         
            -
            	 compatible with the master branch of a research project that uses detectron2 (e.g. those in
         
     | 
| 49 | 
         
            -
            	 [projects](projects) or [meshrcnn](https://github.com/facebookresearch/meshrcnn/)).
         
     | 
| 50 | 
         
            -
             
     | 
| 51 | 
         
            -
            ### Common Installation Issues
         
     | 
| 52 | 
         
            -
             
     | 
| 53 | 
         
            -
            If you met issues using the pre-built detectron2, please uninstall it and try building it from source.
         
     | 
| 54 | 
         
            -
             
     | 
| 55 | 
         
            -
            Click each issue for its solutions:
         
     | 
| 56 | 
         
            -
             
     | 
| 57 | 
         
            -
            <details>
         
     | 
| 58 | 
         
            -
            <summary>
         
     | 
| 59 | 
         
            -
            Undefined torch/aten/caffe2 symbols, or segmentation fault immediately when running the library.
         
     | 
| 60 | 
         
            -
            </summary>
         
     | 
| 61 | 
         
            -
            <br/>
         
     | 
| 62 | 
         
            -
             
     | 
| 63 | 
         
            -
            This usually happens when detectron2 or torchvision is not
         
     | 
| 64 | 
         
            -
            compiled with the version of PyTorch you're running.
         
     | 
| 65 | 
         
            -
             
     | 
| 66 | 
         
            -
            Pre-built torchvision or detectron2 has to work with the corresponding official release of pytorch.
         
     | 
| 67 | 
         
            -
            If the error comes from a pre-built torchvision, uninstall torchvision and pytorch and reinstall them
         
     | 
| 68 | 
         
            -
            following [pytorch.org](http://pytorch.org). So the versions will match.
         
     | 
| 69 | 
         
            -
             
     | 
| 70 | 
         
            -
            If the error comes from a pre-built detectron2, check [release notes](https://github.com/facebookresearch/detectron2/releases)
         
     | 
| 71 | 
         
            -
            to see the corresponding pytorch version required for each pre-built detectron2.
         
     | 
| 72 | 
         
            -
             
     | 
| 73 | 
         
            -
            If the error comes from detectron2 or torchvision that you built manually from source,
         
     | 
| 74 | 
         
            -
            remove files you built (`build/`, `**/*.so`) and rebuild it so it can pick up the version of pytorch currently in your environment.
         
     | 
| 75 | 
         
            -
             
     | 
| 76 | 
         
            -
            If you cannot resolve this problem, please include the output of `gdb -ex "r" -ex "bt" -ex "quit" --args python -m detectron2.utils.collect_env`
         
     | 
| 77 | 
         
            -
            in your issue.
         
     | 
| 78 | 
         
            -
            </details>
         
     | 
| 79 | 
         
            -
             
     | 
| 80 | 
         
            -
            <details>
         
     | 
| 81 | 
         
            -
            <summary>
         
     | 
| 82 | 
         
            -
            Undefined C++ symbols (e.g. `GLIBCXX`) or C++ symbols not found.
         
     | 
| 83 | 
         
            -
            </summary>
         
     | 
| 84 | 
         
            -
            <br/>
         
     | 
| 85 | 
         
            -
            Usually it's because the library is compiled with a newer C++ compiler but run with an old C++ runtime.
         
     | 
| 86 | 
         
            -
             
     | 
| 87 | 
         
            -
            This often happens with old anaconda.
         
     | 
| 88 | 
         
            -
            Try `conda update libgcc`. Then rebuild detectron2.
         
     | 
| 89 | 
         
            -
             
     | 
| 90 | 
         
            -
            The fundamental solution is to run the code with proper C++ runtime.
         
     | 
| 91 | 
         
            -
            One way is to use `LD_PRELOAD=/path/to/libstdc++.so`.
         
     | 
| 92 | 
         
            -
             
     | 
| 93 | 
         
            -
            </details>
         
     | 
| 94 | 
         
            -
             
     | 
| 95 | 
         
            -
            <details>
         
     | 
| 96 | 
         
            -
            <summary>
         
     | 
| 97 | 
         
            -
            "Not compiled with GPU support" or "Detectron2 CUDA Compiler: not available".
         
     | 
| 98 | 
         
            -
            </summary>
         
     | 
| 99 | 
         
            -
            <br/>
         
     | 
| 100 | 
         
            -
            CUDA is not found when building detectron2.
         
     | 
| 101 | 
         
            -
            You should make sure
         
     | 
| 102 | 
         
            -
             
     | 
| 103 | 
         
            -
            ```
         
     | 
| 104 | 
         
            -
            python -c 'import torch; from torch.utils.cpp_extension import CUDA_HOME; print(torch.cuda.is_available(), CUDA_HOME)'
         
     | 
| 105 | 
         
            -
            ```
         
     | 
| 106 | 
         
            -
             
     | 
| 107 | 
         
            -
            print valid outputs at the time you build detectron2.
         
     | 
| 108 | 
         
            -
             
     | 
| 109 | 
         
            -
            Most models can run inference (but not training) without GPU support. To use CPUs, set `MODEL.DEVICE='cpu'` in the config.
         
     | 
| 110 | 
         
            -
            </details>
         
     | 
| 111 | 
         
            -
             
     | 
| 112 | 
         
            -
            <details>
         
     | 
| 113 | 
         
            -
            <summary>
         
     | 
| 114 | 
         
            -
            "invalid device function" or "no kernel image is available for execution".
         
     | 
| 115 | 
         
            -
            </summary>
         
     | 
| 116 | 
         
            -
            <br/>
         
     | 
| 117 | 
         
            -
            Two possibilities:
         
     | 
| 118 | 
         
            -
             
     | 
| 119 | 
         
            -
            * You build detectron2 with one version of CUDA but run it with a different version.
         
     | 
| 120 | 
         
            -
             
     | 
| 121 | 
         
            -
              To check whether it is the case,
         
     | 
| 122 | 
         
            -
              use `python -m detectron2.utils.collect_env` to find out inconsistent CUDA versions.
         
     | 
| 123 | 
         
            -
            	In the output of this command, you should expect "Detectron2 CUDA Compiler", "CUDA_HOME", "PyTorch built with - CUDA"
         
     | 
| 124 | 
         
            -
            	to contain cuda libraries of the same version.
         
     | 
| 125 | 
         
            -
             
     | 
| 126 | 
         
            -
            	When they are inconsistent,
         
     | 
| 127 | 
         
            -
            	you need to either install a different build of PyTorch (or build by yourself)
         
     | 
| 128 | 
         
            -
            	to match your local CUDA installation, or install a different version of CUDA to match PyTorch.
         
     | 
| 129 | 
         
            -
             
     | 
| 130 | 
         
            -
            * Detectron2 or PyTorch/torchvision is not built for the correct GPU architecture (compute compatibility).
         
     | 
| 131 | 
         
            -
             
     | 
| 132 | 
         
            -
            	The GPU architecture for PyTorch/detectron2/torchvision is available in the "architecture flags" in
         
     | 
| 133 | 
         
            -
            	`python -m detectron2.utils.collect_env`.
         
     | 
| 134 | 
         
            -
             
     | 
| 135 | 
         
            -
            	The GPU architecture flags of detectron2/torchvision by default matches the GPU model detected
         
     | 
| 136 | 
         
            -
            	during compilation. This means the compiled code may not work on a different GPU model.
         
     | 
| 137 | 
         
            -
            	To overwrite the GPU architecture for detectron2/torchvision, use `TORCH_CUDA_ARCH_LIST` environment variable during compilation.
         
     | 
| 138 | 
         
            -
             
     | 
| 139 | 
         
            -
            	For example, `export TORCH_CUDA_ARCH_LIST=6.0,7.0` makes it compile for both P100s and V100s.
         
     | 
| 140 | 
         
            -
            	Visit [developer.nvidia.com/cuda-gpus](https://developer.nvidia.com/cuda-gpus) to find out
         
     | 
| 141 | 
         
            -
            	the correct compute compatibility number for your device.
         
     | 
| 142 | 
         
            -
             
     | 
| 143 | 
         
            -
            </details>
         
     | 
| 144 | 
         
            -
             
     | 
| 145 | 
         
            -
            <details>
         
     | 
| 146 | 
         
            -
            <summary>
         
     | 
| 147 | 
         
            -
            Undefined CUDA symbols; cannot open libcudart.so; other nvcc failures.
         
     | 
| 148 | 
         
            -
            </summary>
         
     | 
| 149 | 
         
            -
            <br/>
         
     | 
| 150 | 
         
            -
            The version of NVCC you use to build detectron2 or torchvision does
         
     | 
| 151 | 
         
            -
            not match the version of CUDA you are running with.
         
     | 
| 152 | 
         
            -
            This often happens when using anaconda's CUDA runtime.
         
     | 
| 153 | 
         
            -
             
     | 
| 154 | 
         
            -
            Use `python -m detectron2.utils.collect_env` to find out inconsistent CUDA versions.
         
     | 
| 155 | 
         
            -
            In the output of this command, you should expect "Detectron2 CUDA Compiler", "CUDA_HOME", "PyTorch built with - CUDA"
         
     | 
| 156 | 
         
            -
            to contain cuda libraries of the same version.
         
     | 
| 157 | 
         
            -
             
     | 
| 158 | 
         
            -
            When they are inconsistent,
         
     | 
| 159 | 
         
            -
            you need to either install a different build of PyTorch (or build by yourself)
         
     | 
| 160 | 
         
            -
            to match your local CUDA installation, or install a different version of CUDA to match PyTorch.
         
     | 
| 161 | 
         
            -
            </details>
         
     | 
| 162 | 
         
            -
             
     | 
| 163 | 
         
            -
             
     | 
| 164 | 
         
            -
            <details>
         
     | 
| 165 | 
         
            -
            <summary>
         
     | 
| 166 | 
         
            -
            "ImportError: cannot import name '_C'".
         
     | 
| 167 | 
         
            -
            </summary>
         
     | 
| 168 | 
         
            -
            <br/>
         
     | 
| 169 | 
         
            -
            Please build and install detectron2 following the instructions above.
         
     | 
| 170 | 
         
            -
             
     | 
| 171 | 
         
            -
            If you are running code from detectron2's root directory, `cd` to a different one.
         
     | 
| 172 | 
         
            -
            Otherwise you may not import the code that you installed.
         
     | 
| 173 | 
         
            -
            </details>
         
     | 
| 174 | 
         
            -
             
     | 
| 175 | 
         
            -
            <details>
         
     | 
| 176 | 
         
            -
            <summary>
         
     | 
| 177 | 
         
            -
            ONNX conversion segfault after some "TraceWarning".
         
     | 
| 178 | 
         
            -
            </summary>
         
     | 
| 179 | 
         
            -
            <br/>
         
     | 
| 180 | 
         
            -
            The ONNX package is compiled with too old compiler.
         
     | 
| 181 | 
         
            -
             
     | 
| 182 | 
         
            -
            Please build and install ONNX from its source code using a compiler
         
     | 
| 183 | 
         
            -
            whose version is closer to what's used by PyTorch (available in `torch.__config__.show()`).
         
     | 
| 184 | 
         
            -
            </details>
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        model/SCHP/mhp_extension/detectron2/LICENSE
    DELETED
    
    | 
         @@ -1,201 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            Apache License
         
     | 
| 2 | 
         
            -
            Version 2.0, January 2004
         
     | 
| 3 | 
         
            -
            http://www.apache.org/licenses/
         
     | 
| 4 | 
         
            -
             
     | 
| 5 | 
         
            -
            TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
         
     | 
| 6 | 
         
            -
             
     | 
| 7 | 
         
            -
            1. Definitions.
         
     | 
| 8 | 
         
            -
             
     | 
| 9 | 
         
            -
            "License" shall mean the terms and conditions for use, reproduction,
         
     | 
| 10 | 
         
            -
            and distribution as defined by Sections 1 through 9 of this document.
         
     | 
| 11 | 
         
            -
             
     | 
| 12 | 
         
            -
            "Licensor" shall mean the copyright owner or entity authorized by
         
     | 
| 13 | 
         
            -
            the copyright owner that is granting the License.
         
     | 
| 14 | 
         
            -
             
     | 
| 15 | 
         
            -
            "Legal Entity" shall mean the union of the acting entity and all
         
     | 
| 16 | 
         
            -
            other entities that control, are controlled by, or are under common
         
     | 
| 17 | 
         
            -
            control with that entity. For the purposes of this definition,
         
     | 
| 18 | 
         
            -
            "control" means (i) the power, direct or indirect, to cause the
         
     | 
| 19 | 
         
            -
            direction or management of such entity, whether by contract or
         
     | 
| 20 | 
         
            -
            otherwise, or (ii) ownership of fifty percent (50%) or more of the
         
     | 
| 21 | 
         
            -
            outstanding shares, or (iii) beneficial ownership of such entity.
         
     | 
| 22 | 
         
            -
             
     | 
| 23 | 
         
            -
            "You" (or "Your") shall mean an individual or Legal Entity
         
     | 
| 24 | 
         
            -
            exercising permissions granted by this License.
         
     | 
| 25 | 
         
            -
             
     | 
| 26 | 
         
            -
            "Source" form shall mean the preferred form for making modifications,
         
     | 
| 27 | 
         
            -
            including but not limited to software source code, documentation
         
     | 
| 28 | 
         
            -
            source, and configuration files.
         
     | 
| 29 | 
         
            -
             
     | 
| 30 | 
         
            -
            "Object" form shall mean any form resulting from mechanical
         
     | 
| 31 | 
         
            -
            transformation or translation of a Source form, including but
         
     | 
| 32 | 
         
            -
            not limited to compiled object code, generated documentation,
         
     | 
| 33 | 
         
            -
            and conversions to other media types.
         
     | 
| 34 | 
         
            -
             
     | 
| 35 | 
         
            -
            "Work" shall mean the work of authorship, whether in Source or
         
     | 
| 36 | 
         
            -
            Object form, made available under the License, as indicated by a
         
     | 
| 37 | 
         
            -
            copyright notice that is included in or attached to the work
         
     | 
| 38 | 
         
            -
            (an example is provided in the Appendix below).
         
     | 
| 39 | 
         
            -
             
     | 
| 40 | 
         
            -
            "Derivative Works" shall mean any work, whether in Source or Object
         
     | 
| 41 | 
         
            -
            form, that is based on (or derived from) the Work and for which the
         
     | 
| 42 | 
         
            -
            editorial revisions, annotations, elaborations, or other modifications
         
     | 
| 43 | 
         
            -
            represent, as a whole, an original work of authorship. For the purposes
         
     | 
| 44 | 
         
            -
            of this License, Derivative Works shall not include works that remain
         
     | 
| 45 | 
         
            -
            separable from, or merely link (or bind by name) to the interfaces of,
         
     | 
| 46 | 
         
            -
            the Work and Derivative Works thereof.
         
     | 
| 47 | 
         
            -
             
     | 
| 48 | 
         
            -
            "Contribution" shall mean any work of authorship, including
         
     | 
| 49 | 
         
            -
            the original version of the Work and any modifications or additions
         
     | 
| 50 | 
         
            -
            to that Work or Derivative Works thereof, that is intentionally
         
     | 
| 51 | 
         
            -
            submitted to Licensor for inclusion in the Work by the copyright owner
         
     | 
| 52 | 
         
            -
            or by an individual or Legal Entity authorized to submit on behalf of
         
     | 
| 53 | 
         
            -
            the copyright owner. For the purposes of this definition, "submitted"
         
     | 
| 54 | 
         
            -
            means any form of electronic, verbal, or written communication sent
         
     | 
| 55 | 
         
            -
            to the Licensor or its representatives, including but not limited to
         
     | 
| 56 | 
         
            -
            communication on electronic mailing lists, source code control systems,
         
     | 
| 57 | 
         
            -
            and issue tracking systems that are managed by, or on behalf of, the
         
     | 
| 58 | 
         
            -
            Licensor for the purpose of discussing and improving the Work, but
         
     | 
| 59 | 
         
            -
            excluding communication that is conspicuously marked or otherwise
         
     | 
| 60 | 
         
            -
            designated in writing by the copyright owner as "Not a Contribution."
         
     | 
| 61 | 
         
            -
             
     | 
| 62 | 
         
            -
            "Contributor" shall mean Licensor and any individual or Legal Entity
         
     | 
| 63 | 
         
            -
            on behalf of whom a Contribution has been received by Licensor and
         
     | 
| 64 | 
         
            -
            subsequently incorporated within the Work.
         
     | 
| 65 | 
         
            -
             
     | 
| 66 | 
         
            -
            2. Grant of Copyright License. Subject to the terms and conditions of
         
     | 
| 67 | 
         
            -
            this License, each Contributor hereby grants to You a perpetual,
         
     | 
| 68 | 
         
            -
            worldwide, non-exclusive, no-charge, royalty-free, irrevocable
         
     | 
| 69 | 
         
            -
            copyright license to reproduce, prepare Derivative Works of,
         
     | 
| 70 | 
         
            -
            publicly display, publicly perform, sublicense, and distribute the
         
     | 
| 71 | 
         
            -
            Work and such Derivative Works in Source or Object form.
         
     | 
| 72 | 
         
            -
             
     | 
| 73 | 
         
            -
            3. Grant of Patent License. Subject to the terms and conditions of
         
     | 
| 74 | 
         
            -
            this License, each Contributor hereby grants to You a perpetual,
         
     | 
| 75 | 
         
            -
            worldwide, non-exclusive, no-charge, royalty-free, irrevocable
         
     | 
| 76 | 
         
            -
            (except as stated in this section) patent license to make, have made,
         
     | 
| 77 | 
         
            -
            use, offer to sell, sell, import, and otherwise transfer the Work,
         
     | 
| 78 | 
         
            -
            where such license applies only to those patent claims licensable
         
     | 
| 79 | 
         
            -
            by such Contributor that are necessarily infringed by their
         
     | 
| 80 | 
         
            -
            Contribution(s) alone or by combination of their Contribution(s)
         
     | 
| 81 | 
         
            -
            with the Work to which such Contribution(s) was submitted. If You
         
     | 
| 82 | 
         
            -
            institute patent litigation against any entity (including a
         
     | 
| 83 | 
         
            -
            cross-claim or counterclaim in a lawsuit) alleging that the Work
         
     | 
| 84 | 
         
            -
            or a Contribution incorporated within the Work constitutes direct
         
     | 
| 85 | 
         
            -
            or contributory patent infringement, then any patent licenses
         
     | 
| 86 | 
         
            -
            granted to You under this License for that Work shall terminate
         
     | 
| 87 | 
         
            -
            as of the date such litigation is filed.
         
     | 
| 88 | 
         
            -
             
     | 
| 89 | 
         
            -
            4. Redistribution. You may reproduce and distribute copies of the
         
     | 
| 90 | 
         
            -
            Work or Derivative Works thereof in any medium, with or without
         
     | 
| 91 | 
         
            -
            modifications, and in Source or Object form, provided that You
         
     | 
| 92 | 
         
            -
            meet the following conditions:
         
     | 
| 93 | 
         
            -
             
     | 
| 94 | 
         
            -
            (a) You must give any other recipients of the Work or
         
     | 
| 95 | 
         
            -
            Derivative Works a copy of this License; and
         
     | 
| 96 | 
         
            -
             
     | 
| 97 | 
         
            -
            (b) You must cause any modified files to carry prominent notices
         
     | 
| 98 | 
         
            -
            stating that You changed the files; and
         
     | 
| 99 | 
         
            -
             
     | 
| 100 | 
         
            -
            (c) You must retain, in the Source form of any Derivative Works
         
     | 
| 101 | 
         
            -
            that You distribute, all copyright, patent, trademark, and
         
     | 
| 102 | 
         
            -
            attribution notices from the Source form of the Work,
         
     | 
| 103 | 
         
            -
            excluding those notices that do not pertain to any part of
         
     | 
| 104 | 
         
            -
            the Derivative Works; and
         
     | 
| 105 | 
         
            -
             
     | 
| 106 | 
         
            -
            (d) If the Work includes a "NOTICE" text file as part of its
         
     | 
| 107 | 
         
            -
            distribution, then any Derivative Works that You distribute must
         
     | 
| 108 | 
         
            -
            include a readable copy of the attribution notices contained
         
     | 
| 109 | 
         
            -
            within such NOTICE file, excluding those notices that do not
         
     | 
| 110 | 
         
            -
            pertain to any part of the Derivative Works, in at least one
         
     | 
| 111 | 
         
            -
            of the following places: within a NOTICE text file distributed
         
     | 
| 112 | 
         
            -
            as part of the Derivative Works; within the Source form or
         
     | 
| 113 | 
         
            -
            documentation, if provided along with the Derivative Works; or,
         
     | 
| 114 | 
         
            -
            within a display generated by the Derivative Works, if and
         
     | 
| 115 | 
         
            -
            wherever such third-party notices normally appear. The contents
         
     | 
| 116 | 
         
            -
            of the NOTICE file are for informational purposes only and
         
     | 
| 117 | 
         
            -
            do not modify the License. You may add Your own attribution
         
     | 
| 118 | 
         
            -
            notices within Derivative Works that You distribute, alongside
         
     | 
| 119 | 
         
            -
            or as an addendum to the NOTICE text from the Work, provided
         
     | 
| 120 | 
         
            -
            that such additional attribution notices cannot be construed
         
     | 
| 121 | 
         
            -
            as modifying the License.
         
     | 
| 122 | 
         
            -
             
     | 
| 123 | 
         
            -
            You may add Your own copyright statement to Your modifications and
         
     | 
| 124 | 
         
            -
            may provide additional or different license terms and conditions
         
     | 
| 125 | 
         
            -
            for use, reproduction, or distribution of Your modifications, or
         
     | 
| 126 | 
         
            -
            for any such Derivative Works as a whole, provided Your use,
         
     | 
| 127 | 
         
            -
            reproduction, and distribution of the Work otherwise complies with
         
     | 
| 128 | 
         
            -
            the conditions stated in this License.
         
     | 
| 129 | 
         
            -
             
     | 
| 130 | 
         
            -
            5. Submission of Contributions. Unless You explicitly state otherwise,
         
     | 
| 131 | 
         
            -
            any Contribution intentionally submitted for inclusion in the Work
         
     | 
| 132 | 
         
            -
            by You to the Licensor shall be under the terms and conditions of
         
     | 
| 133 | 
         
            -
            this License, without any additional terms or conditions.
         
     | 
| 134 | 
         
            -
            Notwithstanding the above, nothing herein shall supersede or modify
         
     | 
| 135 | 
         
            -
            the terms of any separate license agreement you may have executed
         
     | 
| 136 | 
         
            -
            with Licensor regarding such Contributions.
         
     | 
| 137 | 
         
            -
             
     | 
| 138 | 
         
            -
            6. Trademarks. This License does not grant permission to use the trade
         
     | 
| 139 | 
         
            -
            names, trademarks, service marks, or product names of the Licensor,
         
     | 
| 140 | 
         
            -
            except as required for reasonable and customary use in describing the
         
     | 
| 141 | 
         
            -
            origin of the Work and reproducing the content of the NOTICE file.
         
     | 
| 142 | 
         
            -
             
     | 
| 143 | 
         
            -
            7. Disclaimer of Warranty. Unless required by applicable law or
         
     | 
| 144 | 
         
            -
            agreed to in writing, Licensor provides the Work (and each
         
     | 
| 145 | 
         
            -
            Contributor provides its Contributions) on an "AS IS" BASIS,
         
     | 
| 146 | 
         
            -
            WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
         
     | 
| 147 | 
         
            -
            implied, including, without limitation, any warranties or conditions
         
     | 
| 148 | 
         
            -
            of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
         
     | 
| 149 | 
         
            -
            PARTICULAR PURPOSE. You are solely responsible for determining the
         
     | 
| 150 | 
         
            -
            appropriateness of using or redistributing the Work and assume any
         
     | 
| 151 | 
         
            -
            risks associated with Your exercise of permissions under this License.
         
     | 
| 152 | 
         
            -
             
     | 
| 153 | 
         
            -
            8. Limitation of Liability. In no event and under no legal theory,
         
     | 
| 154 | 
         
            -
            whether in tort (including negligence), contract, or otherwise,
         
     | 
| 155 | 
         
            -
            unless required by applicable law (such as deliberate and grossly
         
     | 
| 156 | 
         
            -
            negligent acts) or agreed to in writing, shall any Contributor be
         
     | 
| 157 | 
         
            -
            liable to You for damages, including any direct, indirect, special,
         
     | 
| 158 | 
         
            -
            incidental, or consequential damages of any character arising as a
         
     | 
| 159 | 
         
            -
            result of this License or out of the use or inability to use the
         
     | 
| 160 | 
         
            -
            Work (including but not limited to damages for loss of goodwill,
         
     | 
| 161 | 
         
            -
            work stoppage, computer failure or malfunction, or any and all
         
     | 
| 162 | 
         
            -
            other commercial damages or losses), even if such Contributor
         
     | 
| 163 | 
         
            -
            has been advised of the possibility of such damages.
         
     | 
| 164 | 
         
            -
             
     | 
| 165 | 
         
            -
            9. Accepting Warranty or Additional Liability. While redistributing
         
     | 
| 166 | 
         
            -
            the Work or Derivative Works thereof, You may choose to offer,
         
     | 
| 167 | 
         
            -
            and charge a fee for, acceptance of support, warranty, indemnity,
         
     | 
| 168 | 
         
            -
            or other liability obligations and/or rights consistent with this
         
     | 
| 169 | 
         
            -
            License. However, in accepting such obligations, You may act only
         
     | 
| 170 | 
         
            -
            on Your own behalf and on Your sole responsibility, not on behalf
         
     | 
| 171 | 
         
            -
            of any other Contributor, and only if You agree to indemnify,
         
     | 
| 172 | 
         
            -
            defend, and hold each Contributor harmless for any liability
         
     | 
| 173 | 
         
            -
            incurred by, or claims asserted against, such Contributor by reason
         
     | 
| 174 | 
         
            -
            of your accepting any such warranty or additional liability.
         
     | 
| 175 | 
         
            -
             
     | 
| 176 | 
         
            -
            END OF TERMS AND CONDITIONS
         
     | 
| 177 | 
         
            -
             
     | 
| 178 | 
         
            -
            APPENDIX: How to apply the Apache License to your work.
         
     | 
| 179 | 
         
            -
             
     | 
| 180 | 
         
            -
            To apply the Apache License to your work, attach the following
         
     | 
| 181 | 
         
            -
            boilerplate notice, with the fields enclosed by brackets "[]"
         
     | 
| 182 | 
         
            -
            replaced with your own identifying information. (Don't include
         
     | 
| 183 | 
         
            -
            the brackets!)  The text should be enclosed in the appropriate
         
     | 
| 184 | 
         
            -
            comment syntax for the file format. We also recommend that a
         
     | 
| 185 | 
         
            -
            file or class name and description of purpose be included on the
         
     | 
| 186 | 
         
            -
            same "printed page" as the copyright notice for easier
         
     | 
| 187 | 
         
            -
            identification within third-party archives.
         
     | 
| 188 | 
         
            -
             
     | 
| 189 | 
         
            -
            Copyright 2019 - present, Facebook, Inc
         
     | 
| 190 | 
         
            -
             
     | 
| 191 | 
         
            -
            Licensed under the Apache License, Version 2.0 (the "License");
         
     | 
| 192 | 
         
            -
            you may not use this file except in compliance with the License.
         
     | 
| 193 | 
         
            -
            You may obtain a copy of the License at
         
     | 
| 194 | 
         
            -
             
     | 
| 195 | 
         
            -
            http://www.apache.org/licenses/LICENSE-2.0
         
     | 
| 196 | 
         
            -
             
     | 
| 197 | 
         
            -
            Unless required by applicable law or agreed to in writing, software
         
     | 
| 198 | 
         
            -
            distributed under the License is distributed on an "AS IS" BASIS,
         
     | 
| 199 | 
         
            -
            WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         
     | 
| 200 | 
         
            -
            See the License for the specific language governing permissions and
         
     | 
| 201 | 
         
            -
            limitations under the License.
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        model/SCHP/mhp_extension/detectron2/MODEL_ZOO.md
    DELETED
    
    | 
         @@ -1,903 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            # Detectron2 Model Zoo and Baselines
         
     | 
| 2 | 
         
            -
             
     | 
| 3 | 
         
            -
            ## Introduction
         
     | 
| 4 | 
         
            -
             
     | 
| 5 | 
         
            -
            This file documents a large collection of baselines trained
         
     | 
| 6 | 
         
            -
            with detectron2 in Sep-Oct, 2019.
         
     | 
| 7 | 
         
            -
            All numbers were obtained on [Big Basin](https://engineering.fb.com/data-center-engineering/introducing-big-basin-our-next-generation-ai-hardware/)
         
     | 
| 8 | 
         
            -
            servers with 8 NVIDIA V100 GPUs & NVLink. The software in use were PyTorch 1.3, CUDA 9.2, cuDNN 7.4.2 or 7.6.3.
         
     | 
| 9 | 
         
            -
            You can access these models from code using [detectron2.model_zoo](https://detectron2.readthedocs.io/modules/model_zoo.html) APIs.
         
     | 
| 10 | 
         
            -
             
     | 
| 11 | 
         
            -
            In addition to these official baseline models, you can find more models in [projects/](projects/).
         
     | 
| 12 | 
         
            -
             
     | 
| 13 | 
         
            -
            #### How to Read the Tables
         
     | 
| 14 | 
         
            -
            * The "Name" column contains a link to the config file. Running `tools/train_net.py` with this config file
         
     | 
| 15 | 
         
            -
            	and 8 GPUs will reproduce the model.
         
     | 
| 16 | 
         
            -
            * Training speed is averaged across the entire training.
         
     | 
| 17 | 
         
            -
            	We keep updating the speed with latest version of detectron2/pytorch/etc.,
         
     | 
| 18 | 
         
            -
            	so they might be different from the `metrics` file.
         
     | 
| 19 | 
         
            -
            	Training speed for multi-machine jobs is not provided.
         
     | 
| 20 | 
         
            -
            * Inference speed is measured by `tools/train_net.py --eval-only`, or [inference_on_dataset()](https://detectron2.readthedocs.io/modules/evaluation.html#detectron2.evaluation.inference_on_dataset),
         
     | 
| 21 | 
         
            -
              with batch size 1 in detectron2 directly.
         
     | 
| 22 | 
         
            -
            	Measuring it with your own code will likely introduce other overhead.
         
     | 
| 23 | 
         
            -
              Actual deployment in production should in general be faster than the given inference
         
     | 
| 24 | 
         
            -
              speed due to more optimizations.
         
     | 
| 25 | 
         
            -
            * The *model id* column is provided for ease of reference.
         
     | 
| 26 | 
         
            -
              To check downloaded file integrity, any model on this page contains its md5 prefix in its file name.
         
     | 
| 27 | 
         
            -
            * Training curves and other statistics can be found in `metrics` for each model.
         
     | 
| 28 | 
         
            -
             
     | 
| 29 | 
         
            -
            #### Common Settings for COCO Models
         
     | 
| 30 | 
         
            -
            * All COCO models were trained on `train2017` and evaluated on `val2017`.
         
     | 
| 31 | 
         
            -
            * The default settings are __not directly comparable__ with Detectron's standard settings.
         
     | 
| 32 | 
         
            -
              For example, our default training data augmentation uses scale jittering in addition to horizontal flipping.
         
     | 
| 33 | 
         
            -
             
     | 
| 34 | 
         
            -
              To make fair comparisons with Detectron's settings, see
         
     | 
| 35 | 
         
            -
              [Detectron1-Comparisons](configs/Detectron1-Comparisons/) for accuracy comparison,
         
     | 
| 36 | 
         
            -
              and [benchmarks](https://detectron2.readthedocs.io/notes/benchmarks.html)
         
     | 
| 37 | 
         
            -
              for speed comparison.
         
     | 
| 38 | 
         
            -
            * For Faster/Mask R-CNN, we provide baselines based on __3 different backbone combinations__:
         
     | 
| 39 | 
         
            -
              * __FPN__: Use a ResNet+FPN backbone with standard conv and FC heads for mask and box prediction,
         
     | 
| 40 | 
         
            -
                respectively. It obtains the best
         
     | 
| 41 | 
         
            -
                speed/accuracy tradeoff, but the other two are still useful for research.
         
     | 
| 42 | 
         
            -
              * __C4__: Use a ResNet conv4 backbone with conv5 head. The original baseline in the Faster R-CNN paper.
         
     | 
| 43 | 
         
            -
              * __DC5__ (Dilated-C5): Use a ResNet conv5 backbone with dilations in conv5, and standard conv and FC heads
         
     | 
| 44 | 
         
            -
                for mask and box prediction, respectively.
         
     | 
| 45 | 
         
            -
                This is used by the Deformable ConvNet paper.
         
     | 
| 46 | 
         
            -
            * Most models are trained with the 3x schedule (~37 COCO epochs).
         
     | 
| 47 | 
         
            -
              Although 1x models are heavily under-trained, we provide some ResNet-50 models with the 1x (~12 COCO epochs)
         
     | 
| 48 | 
         
            -
              training schedule for comparison when doing quick research iteration.
         
     | 
| 49 | 
         
            -
             
     | 
| 50 | 
         
            -
            #### ImageNet Pretrained Models
         
     | 
| 51 | 
         
            -
             
     | 
| 52 | 
         
            -
            We provide backbone models pretrained on ImageNet-1k dataset.
         
     | 
| 53 | 
         
            -
            These models have __different__ format from those provided in Detectron: we do not fuse BatchNorm into an affine layer.
         
     | 
| 54 | 
         
            -
            * [R-50.pkl](https://dl.fbaipublicfiles.com/detectron2/ImageNetPretrained/MSRA/R-50.pkl): converted copy of [MSRA's original ResNet-50](https://github.com/KaimingHe/deep-residual-networks) model.
         
     | 
| 55 | 
         
            -
            * [R-101.pkl](https://dl.fbaipublicfiles.com/detectron2/ImageNetPretrained/MSRA/R-101.pkl): converted copy of [MSRA's original ResNet-101](https://github.com/KaimingHe/deep-residual-networks) model.
         
     | 
| 56 | 
         
            -
            * [X-101-32x8d.pkl](https://dl.fbaipublicfiles.com/detectron2/ImageNetPretrained/FAIR/X-101-32x8d.pkl): ResNeXt-101-32x8d model trained with Caffe2 at FB.
         
     | 
| 57 | 
         
            -
             
     | 
| 58 | 
         
            -
            Pretrained models in Detectron's format can still be used. For example:
         
     | 
| 59 | 
         
            -
            * [X-152-32x8d-IN5k.pkl](https://dl.fbaipublicfiles.com/detectron/ImageNetPretrained/25093814/X-152-32x8d-IN5k.pkl):
         
     | 
| 60 | 
         
            -
              ResNeXt-152-32x8d model trained on ImageNet-5k with Caffe2 at FB (see ResNeXt paper for details on ImageNet-5k).
         
     | 
| 61 | 
         
            -
            * [R-50-GN.pkl](https://dl.fbaipublicfiles.com/detectron/ImageNetPretrained/47261647/R-50-GN.pkl):
         
     | 
| 62 | 
         
            -
              ResNet-50 with Group Normalization.
         
     | 
| 63 | 
         
            -
            * [R-101-GN.pkl](https://dl.fbaipublicfiles.com/detectron/ImageNetPretrained/47592356/R-101-GN.pkl):
         
     | 
| 64 | 
         
            -
              ResNet-101 with Group Normalization.
         
     | 
| 65 | 
         
            -
             
     | 
| 66 | 
         
            -
            Torchvision's ResNet models can be used after converted by [this script](tools/convert-torchvision-to-d2.py).
         
     | 
| 67 | 
         
            -
             
     | 
| 68 | 
         
            -
            #### License
         
     | 
| 69 | 
         
            -
             
     | 
| 70 | 
         
            -
            All models available for download through this document are licensed under the
         
     | 
| 71 | 
         
            -
            [Creative Commons Attribution-ShareAlike 3.0 license](https://creativecommons.org/licenses/by-sa/3.0/).
         
     | 
| 72 | 
         
            -
             
     | 
| 73 | 
         
            -
            ### COCO Object Detection Baselines
         
     | 
| 74 | 
         
            -
             
     | 
| 75 | 
         
            -
            #### Faster R-CNN:
         
     | 
| 76 | 
         
            -
            <!--
         
     | 
| 77 | 
         
            -
            (fb only) To update the table in vim:
         
     | 
| 78 | 
         
            -
            1. Remove the old table: d}
         
     | 
| 79 | 
         
            -
            2. Copy the below command to the place of the table
         
     | 
| 80 | 
         
            -
            3. :.!bash
         
     | 
| 81 | 
         
            -
             
     | 
| 82 | 
         
            -
            ./gen_html_table.py --config 'COCO-Detection/faster*50*'{1x,3x}'*' 'COCO-Detection/faster*101*' --name R50-C4 R50-DC5 R50-FPN R50-C4 R50-DC5 R50-FPN R101-C4 R101-DC5 R101-FPN X101-FPN --fields lr_sched train_speed inference_speed mem box_AP
         
     | 
| 83 | 
         
            -
            -->
         
     | 
| 84 | 
         
            -
             
     | 
| 85 | 
         
            -
             
     | 
| 86 | 
         
            -
            <table><tbody>
         
     | 
| 87 | 
         
            -
            <!-- START TABLE -->
         
     | 
| 88 | 
         
            -
            <!-- TABLE HEADER -->
         
     | 
| 89 | 
         
            -
            <th valign="bottom">Name</th>
         
     | 
| 90 | 
         
            -
            <th valign="bottom">lr<br/>sched</th>
         
     | 
| 91 | 
         
            -
            <th valign="bottom">train<br/>time<br/>(s/iter)</th>
         
     | 
| 92 | 
         
            -
            <th valign="bottom">inference<br/>time<br/>(s/im)</th>
         
     | 
| 93 | 
         
            -
            <th valign="bottom">train<br/>mem<br/>(GB)</th>
         
     | 
| 94 | 
         
            -
            <th valign="bottom">box<br/>AP</th>
         
     | 
| 95 | 
         
            -
            <th valign="bottom">model id</th>
         
     | 
| 96 | 
         
            -
            <th valign="bottom">download</th>
         
     | 
| 97 | 
         
            -
            <!-- TABLE BODY -->
         
     | 
| 98 | 
         
            -
            <!-- ROW: faster_rcnn_R_50_C4_1x -->
         
     | 
| 99 | 
         
            -
             <tr><td align="left"><a href="configs/COCO-Detection/faster_rcnn_R_50_C4_1x.yaml">R50-C4</a></td>
         
     | 
| 100 | 
         
            -
            <td align="center">1x</td>
         
     | 
| 101 | 
         
            -
            <td align="center">0.551</td>
         
     | 
| 102 | 
         
            -
            <td align="center">0.102</td>
         
     | 
| 103 | 
         
            -
            <td align="center">4.8</td>
         
     | 
| 104 | 
         
            -
            <td align="center">35.7</td>
         
     | 
| 105 | 
         
            -
            <td align="center">137257644</td>
         
     | 
| 106 | 
         
            -
            <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_C4_1x/137257644/model_final_721ade.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_C4_1x/137257644/metrics.json">metrics</a></td>
         
     | 
| 107 | 
         
            -
            </tr>
         
     | 
| 108 | 
         
            -
            <!-- ROW: faster_rcnn_R_50_DC5_1x -->
         
     | 
| 109 | 
         
            -
             <tr><td align="left"><a href="configs/COCO-Detection/faster_rcnn_R_50_DC5_1x.yaml">R50-DC5</a></td>
         
     | 
| 110 | 
         
            -
            <td align="center">1x</td>
         
     | 
| 111 | 
         
            -
            <td align="center">0.380</td>
         
     | 
| 112 | 
         
            -
            <td align="center">0.068</td>
         
     | 
| 113 | 
         
            -
            <td align="center">5.0</td>
         
     | 
| 114 | 
         
            -
            <td align="center">37.3</td>
         
     | 
| 115 | 
         
            -
            <td align="center">137847829</td>
         
     | 
| 116 | 
         
            -
            <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_DC5_1x/137847829/model_final_51d356.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_DC5_1x/137847829/metrics.json">metrics</a></td>
         
     | 
| 117 | 
         
            -
            </tr>
         
     | 
| 118 | 
         
            -
            <!-- ROW: faster_rcnn_R_50_FPN_1x -->
         
     | 
| 119 | 
         
            -
             <tr><td align="left"><a href="configs/COCO-Detection/faster_rcnn_R_50_FPN_1x.yaml">R50-FPN</a></td>
         
     | 
| 120 | 
         
            -
            <td align="center">1x</td>
         
     | 
| 121 | 
         
            -
            <td align="center">0.210</td>
         
     | 
| 122 | 
         
            -
            <td align="center">0.038</td>
         
     | 
| 123 | 
         
            -
            <td align="center">3.0</td>
         
     | 
| 124 | 
         
            -
            <td align="center">37.9</td>
         
     | 
| 125 | 
         
            -
            <td align="center">137257794</td>
         
     | 
| 126 | 
         
            -
            <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_FPN_1x/137257794/model_final_b275ba.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_FPN_1x/137257794/metrics.json">metrics</a></td>
         
     | 
| 127 | 
         
            -
            </tr>
         
     | 
| 128 | 
         
            -
            <!-- ROW: faster_rcnn_R_50_C4_3x -->
         
     | 
| 129 | 
         
            -
             <tr><td align="left"><a href="configs/COCO-Detection/faster_rcnn_R_50_C4_3x.yaml">R50-C4</a></td>
         
     | 
| 130 | 
         
            -
            <td align="center">3x</td>
         
     | 
| 131 | 
         
            -
            <td align="center">0.543</td>
         
     | 
| 132 | 
         
            -
            <td align="center">0.104</td>
         
     | 
| 133 | 
         
            -
            <td align="center">4.8</td>
         
     | 
| 134 | 
         
            -
            <td align="center">38.4</td>
         
     | 
| 135 | 
         
            -
            <td align="center">137849393</td>
         
     | 
| 136 | 
         
            -
            <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_C4_3x/137849393/model_final_f97cb7.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_C4_3x/137849393/metrics.json">metrics</a></td>
         
     | 
| 137 | 
         
            -
            </tr>
         
     | 
| 138 | 
         
            -
            <!-- ROW: faster_rcnn_R_50_DC5_3x -->
         
     | 
| 139 | 
         
            -
             <tr><td align="left"><a href="configs/COCO-Detection/faster_rcnn_R_50_DC5_3x.yaml">R50-DC5</a></td>
         
     | 
| 140 | 
         
            -
            <td align="center">3x</td>
         
     | 
| 141 | 
         
            -
            <td align="center">0.378</td>
         
     | 
| 142 | 
         
            -
            <td align="center">0.070</td>
         
     | 
| 143 | 
         
            -
            <td align="center">5.0</td>
         
     | 
| 144 | 
         
            -
            <td align="center">39.0</td>
         
     | 
| 145 | 
         
            -
            <td align="center">137849425</td>
         
     | 
| 146 | 
         
            -
            <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_DC5_3x/137849425/model_final_68d202.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_DC5_3x/137849425/metrics.json">metrics</a></td>
         
     | 
| 147 | 
         
            -
            </tr>
         
     | 
| 148 | 
         
            -
            <!-- ROW: faster_rcnn_R_50_FPN_3x -->
         
     | 
| 149 | 
         
            -
             <tr><td align="left"><a href="configs/COCO-Detection/faster_rcnn_R_50_FPN_3x.yaml">R50-FPN</a></td>
         
     | 
| 150 | 
         
            -
            <td align="center">3x</td>
         
     | 
| 151 | 
         
            -
            <td align="center">0.209</td>
         
     | 
| 152 | 
         
            -
            <td align="center">0.038</td>
         
     | 
| 153 | 
         
            -
            <td align="center">3.0</td>
         
     | 
| 154 | 
         
            -
            <td align="center">40.2</td>
         
     | 
| 155 | 
         
            -
            <td align="center">137849458</td>
         
     | 
| 156 | 
         
            -
            <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_FPN_3x/137849458/model_final_280758.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_FPN_3x/137849458/metrics.json">metrics</a></td>
         
     | 
| 157 | 
         
            -
            </tr>
         
     | 
| 158 | 
         
            -
            <!-- ROW: faster_rcnn_R_101_C4_3x -->
         
     | 
| 159 | 
         
            -
             <tr><td align="left"><a href="configs/COCO-Detection/faster_rcnn_R_101_C4_3x.yaml">R101-C4</a></td>
         
     | 
| 160 | 
         
            -
            <td align="center">3x</td>
         
     | 
| 161 | 
         
            -
            <td align="center">0.619</td>
         
     | 
| 162 | 
         
            -
            <td align="center">0.139</td>
         
     | 
| 163 | 
         
            -
            <td align="center">5.9</td>
         
     | 
| 164 | 
         
            -
            <td align="center">41.1</td>
         
     | 
| 165 | 
         
            -
            <td align="center">138204752</td>
         
     | 
| 166 | 
         
            -
            <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_101_C4_3x/138204752/model_final_298dad.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_101_C4_3x/138204752/metrics.json">metrics</a></td>
         
     | 
| 167 | 
         
            -
            </tr>
         
     | 
| 168 | 
         
            -
            <!-- ROW: faster_rcnn_R_101_DC5_3x -->
         
     | 
| 169 | 
         
            -
             <tr><td align="left"><a href="configs/COCO-Detection/faster_rcnn_R_101_DC5_3x.yaml">R101-DC5</a></td>
         
     | 
| 170 | 
         
            -
            <td align="center">3x</td>
         
     | 
| 171 | 
         
            -
            <td align="center">0.452</td>
         
     | 
| 172 | 
         
            -
            <td align="center">0.086</td>
         
     | 
| 173 | 
         
            -
            <td align="center">6.1</td>
         
     | 
| 174 | 
         
            -
            <td align="center">40.6</td>
         
     | 
| 175 | 
         
            -
            <td align="center">138204841</td>
         
     | 
| 176 | 
         
            -
            <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_101_DC5_3x/138204841/model_final_3e0943.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_101_DC5_3x/138204841/metrics.json">metrics</a></td>
         
     | 
| 177 | 
         
            -
            </tr>
         
     | 
| 178 | 
         
            -
            <!-- ROW: faster_rcnn_R_101_FPN_3x -->
         
     | 
| 179 | 
         
            -
             <tr><td align="left"><a href="configs/COCO-Detection/faster_rcnn_R_101_FPN_3x.yaml">R101-FPN</a></td>
         
     | 
| 180 | 
         
            -
            <td align="center">3x</td>
         
     | 
| 181 | 
         
            -
            <td align="center">0.286</td>
         
     | 
| 182 | 
         
            -
            <td align="center">0.051</td>
         
     | 
| 183 | 
         
            -
            <td align="center">4.1</td>
         
     | 
| 184 | 
         
            -
            <td align="center">42.0</td>
         
     | 
| 185 | 
         
            -
            <td align="center">137851257</td>
         
     | 
| 186 | 
         
            -
            <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_101_FPN_3x/137851257/model_final_f6e8b1.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_101_FPN_3x/137851257/metrics.json">metrics</a></td>
         
     | 
| 187 | 
         
            -
            </tr>
         
     | 
| 188 | 
         
            -
            <!-- ROW: faster_rcnn_X_101_32x8d_FPN_3x -->
         
     | 
| 189 | 
         
            -
             <tr><td align="left"><a href="configs/COCO-Detection/faster_rcnn_X_101_32x8d_FPN_3x.yaml">X101-FPN</a></td>
         
     | 
| 190 | 
         
            -
            <td align="center">3x</td>
         
     | 
| 191 | 
         
            -
            <td align="center">0.638</td>
         
     | 
| 192 | 
         
            -
            <td align="center">0.098</td>
         
     | 
| 193 | 
         
            -
            <td align="center">6.7</td>
         
     | 
| 194 | 
         
            -
            <td align="center">43.0</td>
         
     | 
| 195 | 
         
            -
            <td align="center">139173657</td>
         
     | 
| 196 | 
         
            -
            <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_X_101_32x8d_FPN_3x/139173657/model_final_68b088.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_X_101_32x8d_FPN_3x/139173657/metrics.json">metrics</a></td>
         
     | 
| 197 | 
         
            -
            </tr>
         
     | 
| 198 | 
         
            -
            </tbody></table>
         
     | 
| 199 | 
         
            -
             
     | 
| 200 | 
         
            -
            #### RetinaNet:
         
     | 
| 201 | 
         
            -
            <!--
         
     | 
| 202 | 
         
            -
            ./gen_html_table.py --config 'COCO-Detection/retina*50*' 'COCO-Detection/retina*101*' --name R50 R50 R101 --fields lr_sched train_speed inference_speed mem box_AP
         
     | 
| 203 | 
         
            -
            -->
         
     | 
| 204 | 
         
            -
             
     | 
| 205 | 
         
            -
             
     | 
| 206 | 
         
            -
            <table><tbody>
         
     | 
| 207 | 
         
            -
            <!-- START TABLE -->
         
     | 
| 208 | 
         
            -
            <!-- TABLE HEADER -->
         
     | 
| 209 | 
         
            -
            <th valign="bottom">Name</th>
         
     | 
| 210 | 
         
            -
            <th valign="bottom">lr<br/>sched</th>
         
     | 
| 211 | 
         
            -
            <th valign="bottom">train<br/>time<br/>(s/iter)</th>
         
     | 
| 212 | 
         
            -
            <th valign="bottom">inference<br/>time<br/>(s/im)</th>
         
     | 
| 213 | 
         
            -
            <th valign="bottom">train<br/>mem<br/>(GB)</th>
         
     | 
| 214 | 
         
            -
            <th valign="bottom">box<br/>AP</th>
         
     | 
| 215 | 
         
            -
            <th valign="bottom">model id</th>
         
     | 
| 216 | 
         
            -
            <th valign="bottom">download</th>
         
     | 
| 217 | 
         
            -
            <!-- TABLE BODY -->
         
     | 
| 218 | 
         
            -
            <!-- ROW: retinanet_R_50_FPN_1x -->
         
     | 
| 219 | 
         
            -
             <tr><td align="left"><a href="configs/COCO-Detection/retinanet_R_50_FPN_1x.yaml">R50</a></td>
         
     | 
| 220 | 
         
            -
            <td align="center">1x</td>
         
     | 
| 221 | 
         
            -
            <td align="center">0.200</td>
         
     | 
| 222 | 
         
            -
            <td align="center">0.055</td>
         
     | 
| 223 | 
         
            -
            <td align="center">3.9</td>
         
     | 
| 224 | 
         
            -
            <td align="center">36.5</td>
         
     | 
| 225 | 
         
            -
            <td align="center">137593951</td>
         
     | 
| 226 | 
         
            -
            <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/retinanet_R_50_FPN_1x/137593951/model_final_b796dc.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/retinanet_R_50_FPN_1x/137593951/metrics.json">metrics</a></td>
         
     | 
| 227 | 
         
            -
            </tr>
         
     | 
| 228 | 
         
            -
            <!-- ROW: retinanet_R_50_FPN_3x -->
         
     | 
| 229 | 
         
            -
             <tr><td align="left"><a href="configs/COCO-Detection/retinanet_R_50_FPN_3x.yaml">R50</a></td>
         
     | 
| 230 | 
         
            -
            <td align="center">3x</td>
         
     | 
| 231 | 
         
            -
            <td align="center">0.201</td>
         
     | 
| 232 | 
         
            -
            <td align="center">0.055</td>
         
     | 
| 233 | 
         
            -
            <td align="center">3.9</td>
         
     | 
| 234 | 
         
            -
            <td align="center">37.9</td>
         
     | 
| 235 | 
         
            -
            <td align="center">137849486</td>
         
     | 
| 236 | 
         
            -
            <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/retinanet_R_50_FPN_3x/137849486/model_final_4cafe0.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/retinanet_R_50_FPN_3x/137849486/metrics.json">metrics</a></td>
         
     | 
| 237 | 
         
            -
            </tr>
         
     | 
| 238 | 
         
            -
            <!-- ROW: retinanet_R_101_FPN_3x -->
         
     | 
| 239 | 
         
            -
             <tr><td align="left"><a href="configs/COCO-Detection/retinanet_R_101_FPN_3x.yaml">R101</a></td>
         
     | 
| 240 | 
         
            -
            <td align="center">3x</td>
         
     | 
| 241 | 
         
            -
            <td align="center">0.280</td>
         
     | 
| 242 | 
         
            -
            <td align="center">0.068</td>
         
     | 
| 243 | 
         
            -
            <td align="center">5.1</td>
         
     | 
| 244 | 
         
            -
            <td align="center">39.9</td>
         
     | 
| 245 | 
         
            -
            <td align="center">138363263</td>
         
     | 
| 246 | 
         
            -
            <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/retinanet_R_101_FPN_3x/138363263/model_final_59f53c.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/retinanet_R_101_FPN_3x/138363263/metrics.json">metrics</a></td>
         
     | 
| 247 | 
         
            -
            </tr>
         
     | 
| 248 | 
         
            -
            </tbody></table>
         
     | 
| 249 | 
         
            -
             
     | 
| 250 | 
         
            -
            #### RPN & Fast R-CNN:
         
     | 
| 251 | 
         
            -
            <!--
         
     | 
| 252 | 
         
            -
            ./gen_html_table.py --config 'COCO-Detection/rpn*' 'COCO-Detection/fast_rcnn*' --name "RPN R50-C4" "RPN R50-FPN" "Fast R-CNN R50-FPN" --fields lr_sched train_speed inference_speed mem box_AP prop_AR
         
     | 
| 253 | 
         
            -
            -->
         
     | 
| 254 | 
         
            -
             
     | 
| 255 | 
         
            -
            <table><tbody>
         
     | 
| 256 | 
         
            -
            <!-- START TABLE -->
         
     | 
| 257 | 
         
            -
            <!-- TABLE HEADER -->
         
     | 
| 258 | 
         
            -
            <th valign="bottom">Name</th>
         
     | 
| 259 | 
         
            -
            <th valign="bottom">lr<br/>sched</th>
         
     | 
| 260 | 
         
            -
            <th valign="bottom">train<br/>time<br/>(s/iter)</th>
         
     | 
| 261 | 
         
            -
            <th valign="bottom">inference<br/>time<br/>(s/im)</th>
         
     | 
| 262 | 
         
            -
            <th valign="bottom">train<br/>mem<br/>(GB)</th>
         
     | 
| 263 | 
         
            -
            <th valign="bottom">box<br/>AP</th>
         
     | 
| 264 | 
         
            -
            <th valign="bottom">prop.<br/>AR</th>
         
     | 
| 265 | 
         
            -
            <th valign="bottom">model id</th>
         
     | 
| 266 | 
         
            -
            <th valign="bottom">download</th>
         
     | 
| 267 | 
         
            -
            <!-- TABLE BODY -->
         
     | 
| 268 | 
         
            -
            <!-- ROW: rpn_R_50_C4_1x -->
         
     | 
| 269 | 
         
            -
             <tr><td align="left"><a href="configs/COCO-Detection/rpn_R_50_C4_1x.yaml">RPN R50-C4</a></td>
         
     | 
| 270 | 
         
            -
            <td align="center">1x</td>
         
     | 
| 271 | 
         
            -
            <td align="center">0.130</td>
         
     | 
| 272 | 
         
            -
            <td align="center">0.034</td>
         
     | 
| 273 | 
         
            -
            <td align="center">1.5</td>
         
     | 
| 274 | 
         
            -
            <td align="center"></td>
         
     | 
| 275 | 
         
            -
            <td align="center">51.6</td>
         
     | 
| 276 | 
         
            -
            <td align="center">137258005</td>
         
     | 
| 277 | 
         
            -
            <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/rpn_R_50_C4_1x/137258005/model_final_450694.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/rpn_R_50_C4_1x/137258005/metrics.json">metrics</a></td>
         
     | 
| 278 | 
         
            -
            </tr>
         
     | 
| 279 | 
         
            -
            <!-- ROW: rpn_R_50_FPN_1x -->
         
     | 
| 280 | 
         
            -
             <tr><td align="left"><a href="configs/COCO-Detection/rpn_R_50_FPN_1x.yaml">RPN R50-FPN</a></td>
         
     | 
| 281 | 
         
            -
            <td align="center">1x</td>
         
     | 
| 282 | 
         
            -
            <td align="center">0.186</td>
         
     | 
| 283 | 
         
            -
            <td align="center">0.032</td>
         
     | 
| 284 | 
         
            -
            <td align="center">2.7</td>
         
     | 
| 285 | 
         
            -
            <td align="center"></td>
         
     | 
| 286 | 
         
            -
            <td align="center">58.0</td>
         
     | 
| 287 | 
         
            -
            <td align="center">137258492</td>
         
     | 
| 288 | 
         
            -
            <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/rpn_R_50_FPN_1x/137258492/model_final_02ce48.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/rpn_R_50_FPN_1x/137258492/metrics.json">metrics</a></td>
         
     | 
| 289 | 
         
            -
            </tr>
         
     | 
| 290 | 
         
            -
            <!-- ROW: fast_rcnn_R_50_FPN_1x -->
         
     | 
| 291 | 
         
            -
             <tr><td align="left"><a href="configs/COCO-Detection/fast_rcnn_R_50_FPN_1x.yaml">Fast R-CNN R50-FPN</a></td>
         
     | 
| 292 | 
         
            -
            <td align="center">1x</td>
         
     | 
| 293 | 
         
            -
            <td align="center">0.140</td>
         
     | 
| 294 | 
         
            -
            <td align="center">0.029</td>
         
     | 
| 295 | 
         
            -
            <td align="center">2.6</td>
         
     | 
| 296 | 
         
            -
            <td align="center">37.8</td>
         
     | 
| 297 | 
         
            -
            <td align="center"></td>
         
     | 
| 298 | 
         
            -
            <td align="center">137635226</td>
         
     | 
| 299 | 
         
            -
            <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/fast_rcnn_R_50_FPN_1x/137635226/model_final_e5f7ce.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/fast_rcnn_R_50_FPN_1x/137635226/metrics.json">metrics</a></td>
         
     | 
| 300 | 
         
            -
            </tr>
         
     | 
| 301 | 
         
            -
            </tbody></table>
         
     | 
| 302 | 
         
            -
             
     | 
| 303 | 
         
            -
            ### COCO Instance Segmentation Baselines with Mask R-CNN
         
     | 
| 304 | 
         
            -
            <!--
         
     | 
| 305 | 
         
            -
            ./gen_html_table.py --config 'COCO-InstanceSegmentation/mask*50*'{1x,3x}'*' 'COCO-InstanceSegmentation/mask*101*' --name R50-C4 R50-DC5 R50-FPN R50-C4 R50-DC5 R50-FPN R101-C4 R101-DC5 R101-FPN X101-FPN --fields lr_sched train_speed inference_speed mem box_AP mask_AP
         
     | 
| 306 | 
         
            -
            -->
         
     | 
| 307 | 
         
            -
             
     | 
| 308 | 
         
            -
             
     | 
| 309 | 
         
            -
             
     | 
| 310 | 
         
            -
            <table><tbody>
         
     | 
| 311 | 
         
            -
            <!-- START TABLE -->
         
     | 
| 312 | 
         
            -
            <!-- TABLE HEADER -->
         
     | 
| 313 | 
         
            -
            <th valign="bottom">Name</th>
         
     | 
| 314 | 
         
            -
            <th valign="bottom">lr<br/>sched</th>
         
     | 
| 315 | 
         
            -
            <th valign="bottom">train<br/>time<br/>(s/iter)</th>
         
     | 
| 316 | 
         
            -
            <th valign="bottom">inference<br/>time<br/>(s/im)</th>
         
     | 
| 317 | 
         
            -
            <th valign="bottom">train<br/>mem<br/>(GB)</th>
         
     | 
| 318 | 
         
            -
            <th valign="bottom">box<br/>AP</th>
         
     | 
| 319 | 
         
            -
            <th valign="bottom">mask<br/>AP</th>
         
     | 
| 320 | 
         
            -
            <th valign="bottom">model id</th>
         
     | 
| 321 | 
         
            -
            <th valign="bottom">download</th>
         
     | 
| 322 | 
         
            -
            <!-- TABLE BODY -->
         
     | 
| 323 | 
         
            -
            <!-- ROW: mask_rcnn_R_50_C4_1x -->
         
     | 
| 324 | 
         
            -
             <tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_1x.yaml">R50-C4</a></td>
         
     | 
| 325 | 
         
            -
            <td align="center">1x</td>
         
     | 
| 326 | 
         
            -
            <td align="center">0.584</td>
         
     | 
| 327 | 
         
            -
            <td align="center">0.110</td>
         
     | 
| 328 | 
         
            -
            <td align="center">5.2</td>
         
     | 
| 329 | 
         
            -
            <td align="center">36.8</td>
         
     | 
| 330 | 
         
            -
            <td align="center">32.2</td>
         
     | 
| 331 | 
         
            -
            <td align="center">137259246</td>
         
     | 
| 332 | 
         
            -
            <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_1x/137259246/model_final_9243eb.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_1x/137259246/metrics.json">metrics</a></td>
         
     | 
| 333 | 
         
            -
            </tr>
         
     | 
| 334 | 
         
            -
            <!-- ROW: mask_rcnn_R_50_DC5_1x -->
         
     | 
| 335 | 
         
            -
             <tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_1x.yaml">R50-DC5</a></td>
         
     | 
| 336 | 
         
            -
            <td align="center">1x</td>
         
     | 
| 337 | 
         
            -
            <td align="center">0.471</td>
         
     | 
| 338 | 
         
            -
            <td align="center">0.076</td>
         
     | 
| 339 | 
         
            -
            <td align="center">6.5</td>
         
     | 
| 340 | 
         
            -
            <td align="center">38.3</td>
         
     | 
| 341 | 
         
            -
            <td align="center">34.2</td>
         
     | 
| 342 | 
         
            -
            <td align="center">137260150</td>
         
     | 
| 343 | 
         
            -
            <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_1x/137260150/model_final_4f86c3.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_1x/137260150/metrics.json">metrics</a></td>
         
     | 
| 344 | 
         
            -
            </tr>
         
     | 
| 345 | 
         
            -
            <!-- ROW: mask_rcnn_R_50_FPN_1x -->
         
     | 
| 346 | 
         
            -
             <tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml">R50-FPN</a></td>
         
     | 
| 347 | 
         
            -
            <td align="center">1x</td>
         
     | 
| 348 | 
         
            -
            <td align="center">0.261</td>
         
     | 
| 349 | 
         
            -
            <td align="center">0.043</td>
         
     | 
| 350 | 
         
            -
            <td align="center">3.4</td>
         
     | 
| 351 | 
         
            -
            <td align="center">38.6</td>
         
     | 
| 352 | 
         
            -
            <td align="center">35.2</td>
         
     | 
| 353 | 
         
            -
            <td align="center">137260431</td>
         
     | 
| 354 | 
         
            -
            <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x/137260431/model_final_a54504.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x/137260431/metrics.json">metrics</a></td>
         
     | 
| 355 | 
         
            -
            </tr>
         
     | 
| 356 | 
         
            -
            <!-- ROW: mask_rcnn_R_50_C4_3x -->
         
     | 
| 357 | 
         
            -
             <tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_3x.yaml">R50-C4</a></td>
         
     | 
| 358 | 
         
            -
            <td align="center">3x</td>
         
     | 
| 359 | 
         
            -
            <td align="center">0.575</td>
         
     | 
| 360 | 
         
            -
            <td align="center">0.111</td>
         
     | 
| 361 | 
         
            -
            <td align="center">5.2</td>
         
     | 
| 362 | 
         
            -
            <td align="center">39.8</td>
         
     | 
| 363 | 
         
            -
            <td align="center">34.4</td>
         
     | 
| 364 | 
         
            -
            <td align="center">137849525</td>
         
     | 
| 365 | 
         
            -
            <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_3x/137849525/model_final_4ce675.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_3x/137849525/metrics.json">metrics</a></td>
         
     | 
| 366 | 
         
            -
            </tr>
         
     | 
| 367 | 
         
            -
            <!-- ROW: mask_rcnn_R_50_DC5_3x -->
         
     | 
| 368 | 
         
            -
             <tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_3x.yaml">R50-DC5</a></td>
         
     | 
| 369 | 
         
            -
            <td align="center">3x</td>
         
     | 
| 370 | 
         
            -
            <td align="center">0.470</td>
         
     | 
| 371 | 
         
            -
            <td align="center">0.076</td>
         
     | 
| 372 | 
         
            -
            <td align="center">6.5</td>
         
     | 
| 373 | 
         
            -
            <td align="center">40.0</td>
         
     | 
| 374 | 
         
            -
            <td align="center">35.9</td>
         
     | 
| 375 | 
         
            -
            <td align="center">137849551</td>
         
     | 
| 376 | 
         
            -
            <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_3x/137849551/model_final_84107b.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_3x/137849551/metrics.json">metrics</a></td>
         
     | 
| 377 | 
         
            -
            </tr>
         
     | 
| 378 | 
         
            -
            <!-- ROW: mask_rcnn_R_50_FPN_3x -->
         
     | 
| 379 | 
         
            -
             <tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml">R50-FPN</a></td>
         
     | 
| 380 | 
         
            -
            <td align="center">3x</td>
         
     | 
| 381 | 
         
            -
            <td align="center">0.261</td>
         
     | 
| 382 | 
         
            -
            <td align="center">0.043</td>
         
     | 
| 383 | 
         
            -
            <td align="center">3.4</td>
         
     | 
| 384 | 
         
            -
            <td align="center">41.0</td>
         
     | 
| 385 | 
         
            -
            <td align="center">37.2</td>
         
     | 
| 386 | 
         
            -
            <td align="center">137849600</td>
         
     | 
| 387 | 
         
            -
            <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/model_final_f10217.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/metrics.json">metrics</a></td>
         
     | 
| 388 | 
         
            -
            </tr>
         
     | 
| 389 | 
         
            -
            <!-- ROW: mask_rcnn_R_101_C4_3x -->
         
     | 
| 390 | 
         
            -
             <tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_101_C4_3x.yaml">R101-C4</a></td>
         
     | 
| 391 | 
         
            -
            <td align="center">3x</td>
         
     | 
| 392 | 
         
            -
            <td align="center">0.652</td>
         
     | 
| 393 | 
         
            -
            <td align="center">0.145</td>
         
     | 
| 394 | 
         
            -
            <td align="center">6.3</td>
         
     | 
| 395 | 
         
            -
            <td align="center">42.6</td>
         
     | 
| 396 | 
         
            -
            <td align="center">36.7</td>
         
     | 
| 397 | 
         
            -
            <td align="center">138363239</td>
         
     | 
| 398 | 
         
            -
            <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_101_C4_3x/138363239/model_final_a2914c.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_101_C4_3x/138363239/metrics.json">metrics</a></td>
         
     | 
| 399 | 
         
            -
            </tr>
         
     | 
| 400 | 
         
            -
            <!-- ROW: mask_rcnn_R_101_DC5_3x -->
         
     | 
| 401 | 
         
            -
             <tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_101_DC5_3x.yaml">R101-DC5</a></td>
         
     | 
| 402 | 
         
            -
            <td align="center">3x</td>
         
     | 
| 403 | 
         
            -
            <td align="center">0.545</td>
         
     | 
| 404 | 
         
            -
            <td align="center">0.092</td>
         
     | 
| 405 | 
         
            -
            <td align="center">7.6</td>
         
     | 
| 406 | 
         
            -
            <td align="center">41.9</td>
         
     | 
| 407 | 
         
            -
            <td align="center">37.3</td>
         
     | 
| 408 | 
         
            -
            <td align="center">138363294</td>
         
     | 
| 409 | 
         
            -
            <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_101_DC5_3x/138363294/model_final_0464b7.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_101_DC5_3x/138363294/metrics.json">metrics</a></td>
         
     | 
| 410 | 
         
            -
            </tr>
         
     | 
| 411 | 
         
            -
            <!-- ROW: mask_rcnn_R_101_FPN_3x -->
         
     | 
| 412 | 
         
            -
             <tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_3x.yaml">R101-FPN</a></td>
         
     | 
| 413 | 
         
            -
            <td align="center">3x</td>
         
     | 
| 414 | 
         
            -
            <td align="center">0.340</td>
         
     | 
| 415 | 
         
            -
            <td align="center">0.056</td>
         
     | 
| 416 | 
         
            -
            <td align="center">4.6</td>
         
     | 
| 417 | 
         
            -
            <td align="center">42.9</td>
         
     | 
| 418 | 
         
            -
            <td align="center">38.6</td>
         
     | 
| 419 | 
         
            -
            <td align="center">138205316</td>
         
     | 
| 420 | 
         
            -
            <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_3x/138205316/model_final_a3ec72.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_3x/138205316/metrics.json">metrics</a></td>
         
     | 
| 421 | 
         
            -
            </tr>
         
     | 
| 422 | 
         
            -
            <!-- ROW: mask_rcnn_X_101_32x8d_FPN_3x -->
         
     | 
| 423 | 
         
            -
             <tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_3x.yaml">X101-FPN</a></td>
         
     | 
| 424 | 
         
            -
            <td align="center">3x</td>
         
     | 
| 425 | 
         
            -
            <td align="center">0.690</td>
         
     | 
| 426 | 
         
            -
            <td align="center">0.103</td>
         
     | 
| 427 | 
         
            -
            <td align="center">7.2</td>
         
     | 
| 428 | 
         
            -
            <td align="center">44.3</td>
         
     | 
| 429 | 
         
            -
            <td align="center">39.5</td>
         
     | 
| 430 | 
         
            -
            <td align="center">139653917</td>
         
     | 
| 431 | 
         
            -
            <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_3x/139653917/model_final_2d9806.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_3x/139653917/metrics.json">metrics</a></td>
         
     | 
| 432 | 
         
            -
            </tr>
         
     | 
| 433 | 
         
            -
            </tbody></table>
         
     | 
| 434 | 
         
            -
             
     | 
| 435 | 
         
            -
            ### COCO Person Keypoint Detection Baselines with Keypoint R-CNN
         
     | 
| 436 | 
         
            -
            <!--
         
     | 
| 437 | 
         
            -
            ./gen_html_table.py --config 'COCO-Keypoints/*50*' 'COCO-Keypoints/*101*'  --name R50-FPN R50-FPN R101-FPN X101-FPN --fields lr_sched train_speed inference_speed mem box_AP keypoint_AP
         
     | 
| 438 | 
         
            -
            -->
         
     | 
| 439 | 
         
            -
             
     | 
| 440 | 
         
            -
             
     | 
| 441 | 
         
            -
            <table><tbody>
         
     | 
| 442 | 
         
            -
            <!-- START TABLE -->
         
     | 
| 443 | 
         
            -
            <!-- TABLE HEADER -->
         
     | 
| 444 | 
         
            -
            <th valign="bottom">Name</th>
         
     | 
| 445 | 
         
            -
            <th valign="bottom">lr<br/>sched</th>
         
     | 
| 446 | 
         
            -
            <th valign="bottom">train<br/>time<br/>(s/iter)</th>
         
     | 
| 447 | 
         
            -
            <th valign="bottom">inference<br/>time<br/>(s/im)</th>
         
     | 
| 448 | 
         
            -
            <th valign="bottom">train<br/>mem<br/>(GB)</th>
         
     | 
| 449 | 
         
            -
            <th valign="bottom">box<br/>AP</th>
         
     | 
| 450 | 
         
            -
            <th valign="bottom">kp.<br/>AP</th>
         
     | 
| 451 | 
         
            -
            <th valign="bottom">model id</th>
         
     | 
| 452 | 
         
            -
            <th valign="bottom">download</th>
         
     | 
| 453 | 
         
            -
            <!-- TABLE BODY -->
         
     | 
| 454 | 
         
            -
            <!-- ROW: keypoint_rcnn_R_50_FPN_1x -->
         
     | 
| 455 | 
         
            -
             <tr><td align="left"><a href="configs/COCO-Keypoints/keypoint_rcnn_R_50_FPN_1x.yaml">R50-FPN</a></td>
         
     | 
| 456 | 
         
            -
            <td align="center">1x</td>
         
     | 
| 457 | 
         
            -
            <td align="center">0.315</td>
         
     | 
| 458 | 
         
            -
            <td align="center">0.072</td>
         
     | 
| 459 | 
         
            -
            <td align="center">5.0</td>
         
     | 
| 460 | 
         
            -
            <td align="center">53.6</td>
         
     | 
| 461 | 
         
            -
            <td align="center">64.0</td>
         
     | 
| 462 | 
         
            -
            <td align="center">137261548</td>
         
     | 
| 463 | 
         
            -
            <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Keypoints/keypoint_rcnn_R_50_FPN_1x/137261548/model_final_04e291.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Keypoints/keypoint_rcnn_R_50_FPN_1x/137261548/metrics.json">metrics</a></td>
         
     | 
| 464 | 
         
            -
            </tr>
         
     | 
| 465 | 
         
            -
            <!-- ROW: keypoint_rcnn_R_50_FPN_3x -->
         
     | 
| 466 | 
         
            -
             <tr><td align="left"><a href="configs/COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x.yaml">R50-FPN</a></td>
         
     | 
| 467 | 
         
            -
            <td align="center">3x</td>
         
     | 
| 468 | 
         
            -
            <td align="center">0.316</td>
         
     | 
| 469 | 
         
            -
            <td align="center">0.066</td>
         
     | 
| 470 | 
         
            -
            <td align="center">5.0</td>
         
     | 
| 471 | 
         
            -
            <td align="center">55.4</td>
         
     | 
| 472 | 
         
            -
            <td align="center">65.5</td>
         
     | 
| 473 | 
         
            -
            <td align="center">137849621</td>
         
     | 
| 474 | 
         
            -
            <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x/137849621/model_final_a6e10b.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x/137849621/metrics.json">metrics</a></td>
         
     | 
| 475 | 
         
            -
            </tr>
         
     | 
| 476 | 
         
            -
            <!-- ROW: keypoint_rcnn_R_101_FPN_3x -->
         
     | 
| 477 | 
         
            -
             <tr><td align="left"><a href="configs/COCO-Keypoints/keypoint_rcnn_R_101_FPN_3x.yaml">R101-FPN</a></td>
         
     | 
| 478 | 
         
            -
            <td align="center">3x</td>
         
     | 
| 479 | 
         
            -
            <td align="center">0.390</td>
         
     | 
| 480 | 
         
            -
            <td align="center">0.076</td>
         
     | 
| 481 | 
         
            -
            <td align="center">6.1</td>
         
     | 
| 482 | 
         
            -
            <td align="center">56.4</td>
         
     | 
| 483 | 
         
            -
            <td align="center">66.1</td>
         
     | 
| 484 | 
         
            -
            <td align="center">138363331</td>
         
     | 
| 485 | 
         
            -
            <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Keypoints/keypoint_rcnn_R_101_FPN_3x/138363331/model_final_997cc7.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Keypoints/keypoint_rcnn_R_101_FPN_3x/138363331/metrics.json">metrics</a></td>
         
     | 
| 486 | 
         
            -
            </tr>
         
     | 
| 487 | 
         
            -
            <!-- ROW: keypoint_rcnn_X_101_32x8d_FPN_3x -->
         
     | 
| 488 | 
         
            -
             <tr><td align="left"><a href="configs/COCO-Keypoints/keypoint_rcnn_X_101_32x8d_FPN_3x.yaml">X101-FPN</a></td>
         
     | 
| 489 | 
         
            -
            <td align="center">3x</td>
         
     | 
| 490 | 
         
            -
            <td align="center">0.738</td>
         
     | 
| 491 | 
         
            -
            <td align="center">0.121</td>
         
     | 
| 492 | 
         
            -
            <td align="center">8.7</td>
         
     | 
| 493 | 
         
            -
            <td align="center">57.3</td>
         
     | 
| 494 | 
         
            -
            <td align="center">66.0</td>
         
     | 
| 495 | 
         
            -
            <td align="center">139686956</td>
         
     | 
| 496 | 
         
            -
            <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Keypoints/keypoint_rcnn_X_101_32x8d_FPN_3x/139686956/model_final_5ad38f.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Keypoints/keypoint_rcnn_X_101_32x8d_FPN_3x/139686956/metrics.json">metrics</a></td>
         
     | 
| 497 | 
         
            -
            </tr>
         
     | 
| 498 | 
         
            -
            </tbody></table>
         
     | 
| 499 | 
         
            -
             
     | 
| 500 | 
         
            -
            ### COCO Panoptic Segmentation Baselines with Panoptic FPN
         
     | 
| 501 | 
         
            -
            <!--
         
     | 
| 502 | 
         
            -
            ./gen_html_table.py --config 'COCO-PanopticSegmentation/*50*' 'COCO-PanopticSegmentation/*101*'  --name R50-FPN R50-FPN R101-FPN --fields lr_sched train_speed inference_speed mem box_AP mask_AP PQ
         
     | 
| 503 | 
         
            -
            -->
         
     | 
| 504 | 
         
            -
             
     | 
| 505 | 
         
            -
             
     | 
| 506 | 
         
            -
            <table><tbody>
         
     | 
| 507 | 
         
            -
            <!-- START TABLE -->
         
     | 
| 508 | 
         
            -
            <!-- TABLE HEADER -->
         
     | 
| 509 | 
         
            -
            <th valign="bottom">Name</th>
         
     | 
| 510 | 
         
            -
            <th valign="bottom">lr<br/>sched</th>
         
     | 
| 511 | 
         
            -
            <th valign="bottom">train<br/>time<br/>(s/iter)</th>
         
     | 
| 512 | 
         
            -
            <th valign="bottom">inference<br/>time<br/>(s/im)</th>
         
     | 
| 513 | 
         
            -
            <th valign="bottom">train<br/>mem<br/>(GB)</th>
         
     | 
| 514 | 
         
            -
            <th valign="bottom">box<br/>AP</th>
         
     | 
| 515 | 
         
            -
            <th valign="bottom">mask<br/>AP</th>
         
     | 
| 516 | 
         
            -
            <th valign="bottom">PQ</th>
         
     | 
| 517 | 
         
            -
            <th valign="bottom">model id</th>
         
     | 
| 518 | 
         
            -
            <th valign="bottom">download</th>
         
     | 
| 519 | 
         
            -
            <!-- TABLE BODY -->
         
     | 
| 520 | 
         
            -
            <!-- ROW: panoptic_fpn_R_50_1x -->
         
     | 
| 521 | 
         
            -
             <tr><td align="left"><a href="configs/COCO-PanopticSegmentation/panoptic_fpn_R_50_1x.yaml">R50-FPN</a></td>
         
     | 
| 522 | 
         
            -
            <td align="center">1x</td>
         
     | 
| 523 | 
         
            -
            <td align="center">0.304</td>
         
     | 
| 524 | 
         
            -
            <td align="center">0.053</td>
         
     | 
| 525 | 
         
            -
            <td align="center">4.8</td>
         
     | 
| 526 | 
         
            -
            <td align="center">37.6</td>
         
     | 
| 527 | 
         
            -
            <td align="center">34.7</td>
         
     | 
| 528 | 
         
            -
            <td align="center">39.4</td>
         
     | 
| 529 | 
         
            -
            <td align="center">139514544</td>
         
     | 
| 530 | 
         
            -
            <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-PanopticSegmentation/panoptic_fpn_R_50_1x/139514544/model_final_dbfeb4.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-PanopticSegmentation/panoptic_fpn_R_50_1x/139514544/metrics.json">metrics</a></td>
         
     | 
| 531 | 
         
            -
            </tr>
         
     | 
| 532 | 
         
            -
            <!-- ROW: panoptic_fpn_R_50_3x -->
         
     | 
| 533 | 
         
            -
             <tr><td align="left"><a href="configs/COCO-PanopticSegmentation/panoptic_fpn_R_50_3x.yaml">R50-FPN</a></td>
         
     | 
| 534 | 
         
            -
            <td align="center">3x</td>
         
     | 
| 535 | 
         
            -
            <td align="center">0.302</td>
         
     | 
| 536 | 
         
            -
            <td align="center">0.053</td>
         
     | 
| 537 | 
         
            -
            <td align="center">4.8</td>
         
     | 
| 538 | 
         
            -
            <td align="center">40.0</td>
         
     | 
| 539 | 
         
            -
            <td align="center">36.5</td>
         
     | 
| 540 | 
         
            -
            <td align="center">41.5</td>
         
     | 
| 541 | 
         
            -
            <td align="center">139514569</td>
         
     | 
| 542 | 
         
            -
            <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-PanopticSegmentation/panoptic_fpn_R_50_3x/139514569/model_final_c10459.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-PanopticSegmentation/panoptic_fpn_R_50_3x/139514569/metrics.json">metrics</a></td>
         
     | 
| 543 | 
         
            -
            </tr>
         
     | 
| 544 | 
         
            -
            <!-- ROW: panoptic_fpn_R_101_3x -->
         
     | 
| 545 | 
         
            -
             <tr><td align="left"><a href="configs/COCO-PanopticSegmentation/panoptic_fpn_R_101_3x.yaml">R101-FPN</a></td>
         
     | 
| 546 | 
         
            -
            <td align="center">3x</td>
         
     | 
| 547 | 
         
            -
            <td align="center">0.392</td>
         
     | 
| 548 | 
         
            -
            <td align="center">0.066</td>
         
     | 
| 549 | 
         
            -
            <td align="center">6.0</td>
         
     | 
| 550 | 
         
            -
            <td align="center">42.4</td>
         
     | 
| 551 | 
         
            -
            <td align="center">38.5</td>
         
     | 
| 552 | 
         
            -
            <td align="center">43.0</td>
         
     | 
| 553 | 
         
            -
            <td align="center">139514519</td>
         
     | 
| 554 | 
         
            -
            <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-PanopticSegmentation/panoptic_fpn_R_101_3x/139514519/model_final_cafdb1.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-PanopticSegmentation/panoptic_fpn_R_101_3x/139514519/metrics.json">metrics</a></td>
         
     | 
| 555 | 
         
            -
            </tr>
         
     | 
| 556 | 
         
            -
            </tbody></table>
         
     | 
| 557 | 
         
            -
             
     | 
| 558 | 
         
            -
             
     | 
| 559 | 
         
            -
            ### LVIS Instance Segmentation Baselines with Mask R-CNN
         
     | 
| 560 | 
         
            -
             
     | 
| 561 | 
         
            -
            Mask R-CNN baselines on the [LVIS dataset](https://lvisdataset.org), v0.5.
         
     | 
| 562 | 
         
            -
            These baselines are described in Table 3(c) of the [LVIS paper](https://arxiv.org/abs/1908.03195).
         
     | 
| 563 | 
         
            -
             
     | 
| 564 | 
         
            -
            NOTE: the 1x schedule here has the same amount of __iterations__ as the COCO 1x baselines.
         
     | 
| 565 | 
         
            -
            They are roughly 24 epochs of LVISv0.5 data.
         
     | 
| 566 | 
         
            -
            The final results of these configs have large variance across different runs.
         
     | 
| 567 | 
         
            -
             
     | 
| 568 | 
         
            -
            <!--
         
     | 
| 569 | 
         
            -
            ./gen_html_table.py --config 'LVIS-InstanceSegmentation/mask*50*' 'LVIS-InstanceSegmentation/mask*101*' --name R50-FPN R101-FPN X101-FPN --fields lr_sched train_speed inference_speed mem box_AP mask_AP
         
     | 
| 570 | 
         
            -
            -->
         
     | 
| 571 | 
         
            -
             
     | 
| 572 | 
         
            -
             
     | 
| 573 | 
         
            -
            <table><tbody>
         
     | 
| 574 | 
         
            -
            <!-- START TABLE -->
         
     | 
| 575 | 
         
            -
            <!-- TABLE HEADER -->
         
     | 
| 576 | 
         
            -
            <th valign="bottom">Name</th>
         
     | 
| 577 | 
         
            -
            <th valign="bottom">lr<br/>sched</th>
         
     | 
| 578 | 
         
            -
            <th valign="bottom">train<br/>time<br/>(s/iter)</th>
         
     | 
| 579 | 
         
            -
            <th valign="bottom">inference<br/>time<br/>(s/im)</th>
         
     | 
| 580 | 
         
            -
            <th valign="bottom">train<br/>mem<br/>(GB)</th>
         
     | 
| 581 | 
         
            -
            <th valign="bottom">box<br/>AP</th>
         
     | 
| 582 | 
         
            -
            <th valign="bottom">mask<br/>AP</th>
         
     | 
| 583 | 
         
            -
            <th valign="bottom">model id</th>
         
     | 
| 584 | 
         
            -
            <th valign="bottom">download</th>
         
     | 
| 585 | 
         
            -
            <!-- TABLE BODY -->
         
     | 
| 586 | 
         
            -
            <!-- ROW: mask_rcnn_R_50_FPN_1x -->
         
     | 
| 587 | 
         
            -
             <tr><td align="left"><a href="configs/LVIS-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml">R50-FPN</a></td>
         
     | 
| 588 | 
         
            -
            <td align="center">1x</td>
         
     | 
| 589 | 
         
            -
            <td align="center">0.292</td>
         
     | 
| 590 | 
         
            -
            <td align="center">0.107</td>
         
     | 
| 591 | 
         
            -
            <td align="center">7.1</td>
         
     | 
| 592 | 
         
            -
            <td align="center">23.6</td>
         
     | 
| 593 | 
         
            -
            <td align="center">24.4</td>
         
     | 
| 594 | 
         
            -
            <td align="center">144219072</td>
         
     | 
| 595 | 
         
            -
            <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/LVIS-InstanceSegmentation/mask_rcnn_R_50_FPN_1x/144219072/model_final_571f7c.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/LVIS-InstanceSegmentation/mask_rcnn_R_50_FPN_1x/144219072/metrics.json">metrics</a></td>
         
     | 
| 596 | 
         
            -
            </tr>
         
     | 
| 597 | 
         
            -
            <!-- ROW: mask_rcnn_R_101_FPN_1x -->
         
     | 
| 598 | 
         
            -
             <tr><td align="left"><a href="configs/LVIS-InstanceSegmentation/mask_rcnn_R_101_FPN_1x.yaml">R101-FPN</a></td>
         
     | 
| 599 | 
         
            -
            <td align="center">1x</td>
         
     | 
| 600 | 
         
            -
            <td align="center">0.371</td>
         
     | 
| 601 | 
         
            -
            <td align="center">0.114</td>
         
     | 
| 602 | 
         
            -
            <td align="center">7.8</td>
         
     | 
| 603 | 
         
            -
            <td align="center">25.6</td>
         
     | 
| 604 | 
         
            -
            <td align="center">25.9</td>
         
     | 
| 605 | 
         
            -
            <td align="center">144219035</td>
         
     | 
| 606 | 
         
            -
            <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/LVIS-InstanceSegmentation/mask_rcnn_R_101_FPN_1x/144219035/model_final_824ab5.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/LVIS-InstanceSegmentation/mask_rcnn_R_101_FPN_1x/144219035/metrics.json">metrics</a></td>
         
     | 
| 607 | 
         
            -
            </tr>
         
     | 
| 608 | 
         
            -
            <!-- ROW: mask_rcnn_X_101_32x8d_FPN_1x -->
         
     | 
| 609 | 
         
            -
             <tr><td align="left"><a href="configs/LVIS-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_1x.yaml">X101-FPN</a></td>
         
     | 
| 610 | 
         
            -
            <td align="center">1x</td>
         
     | 
| 611 | 
         
            -
            <td align="center">0.712</td>
         
     | 
| 612 | 
         
            -
            <td align="center">0.151</td>
         
     | 
| 613 | 
         
            -
            <td align="center">10.2</td>
         
     | 
| 614 | 
         
            -
            <td align="center">26.7</td>
         
     | 
| 615 | 
         
            -
            <td align="center">27.1</td>
         
     | 
| 616 | 
         
            -
            <td align="center">144219108</td>
         
     | 
| 617 | 
         
            -
            <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/LVIS-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_1x/144219108/model_final_5e3439.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/LVIS-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_1x/144219108/metrics.json">metrics</a></td>
         
     | 
| 618 | 
         
            -
            </tr>
         
     | 
| 619 | 
         
            -
            </tbody></table>
         
     | 
| 620 | 
         
            -
             
     | 
| 621 | 
         
            -
             
     | 
| 622 | 
         
            -
             
     | 
| 623 | 
         
            -
            ### Cityscapes & Pascal VOC Baselines
         
     | 
| 624 | 
         
            -
             
     | 
| 625 | 
         
            -
            Simple baselines for
         
     | 
| 626 | 
         
            -
            * Mask R-CNN on Cityscapes instance segmentation (initialized from COCO pre-training, then trained on Cityscapes fine annotations only)
         
     | 
| 627 | 
         
            -
            * Faster R-CNN on PASCAL VOC object detection (trained on VOC 2007 train+val + VOC 2012 train+val, tested on VOC 2007 using 11-point interpolated AP)
         
     | 
| 628 | 
         
            -
             
     | 
| 629 | 
         
            -
            <!--
         
     | 
| 630 | 
         
            -
            ./gen_html_table.py --config 'Cityscapes/*' 'PascalVOC-Detection/*' --name "R50-FPN, Cityscapes" "R50-C4, VOC" --fields train_speed inference_speed mem box_AP box_AP50 mask_AP
         
     | 
| 631 | 
         
            -
            -->
         
     | 
| 632 | 
         
            -
             
     | 
| 633 | 
         
            -
             
     | 
| 634 | 
         
            -
            <table><tbody>
         
     | 
| 635 | 
         
            -
            <!-- START TABLE -->
         
     | 
| 636 | 
         
            -
            <!-- TABLE HEADER -->
         
     | 
| 637 | 
         
            -
            <th valign="bottom">Name</th>
         
     | 
| 638 | 
         
            -
            <th valign="bottom">train<br/>time<br/>(s/iter)</th>
         
     | 
| 639 | 
         
            -
            <th valign="bottom">inference<br/>time<br/>(s/im)</th>
         
     | 
| 640 | 
         
            -
            <th valign="bottom">train<br/>mem<br/>(GB)</th>
         
     | 
| 641 | 
         
            -
            <th valign="bottom">box<br/>AP</th>
         
     | 
| 642 | 
         
            -
            <th valign="bottom">box<br/>AP50</th>
         
     | 
| 643 | 
         
            -
            <th valign="bottom">mask<br/>AP</th>
         
     | 
| 644 | 
         
            -
            <th valign="bottom">model id</th>
         
     | 
| 645 | 
         
            -
            <th valign="bottom">download</th>
         
     | 
| 646 | 
         
            -
            <!-- TABLE BODY -->
         
     | 
| 647 | 
         
            -
            <!-- ROW: mask_rcnn_R_50_FPN -->
         
     | 
| 648 | 
         
            -
             <tr><td align="left"><a href="configs/Cityscapes/mask_rcnn_R_50_FPN.yaml">R50-FPN, Cityscapes</a></td>
         
     | 
| 649 | 
         
            -
            <td align="center">0.240</td>
         
     | 
| 650 | 
         
            -
            <td align="center">0.078</td>
         
     | 
| 651 | 
         
            -
            <td align="center">4.4</td>
         
     | 
| 652 | 
         
            -
            <td align="center"></td>
         
     | 
| 653 | 
         
            -
            <td align="center"></td>
         
     | 
| 654 | 
         
            -
            <td align="center">36.5</td>
         
     | 
| 655 | 
         
            -
            <td align="center">142423278</td>
         
     | 
| 656 | 
         
            -
            <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Cityscapes/mask_rcnn_R_50_FPN/142423278/model_final_af9cf5.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/Cityscapes/mask_rcnn_R_50_FPN/142423278/metrics.json">metrics</a></td>
         
     | 
| 657 | 
         
            -
            </tr>
         
     | 
| 658 | 
         
            -
            <!-- ROW: faster_rcnn_R_50_C4 -->
         
     | 
| 659 | 
         
            -
             <tr><td align="left"><a href="configs/PascalVOC-Detection/faster_rcnn_R_50_C4.yaml">R50-C4, VOC</a></td>
         
     | 
| 660 | 
         
            -
            <td align="center">0.537</td>
         
     | 
| 661 | 
         
            -
            <td align="center">0.081</td>
         
     | 
| 662 | 
         
            -
            <td align="center">4.8</td>
         
     | 
| 663 | 
         
            -
            <td align="center">51.9</td>
         
     | 
| 664 | 
         
            -
            <td align="center">80.3</td>
         
     | 
| 665 | 
         
            -
            <td align="center"></td>
         
     | 
| 666 | 
         
            -
            <td align="center">142202221</td>
         
     | 
| 667 | 
         
            -
            <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/PascalVOC-Detection/faster_rcnn_R_50_C4/142202221/model_final_b1acc2.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/PascalVOC-Detection/faster_rcnn_R_50_C4/142202221/metrics.json">metrics</a></td>
         
     | 
| 668 | 
         
            -
            </tr>
         
     | 
| 669 | 
         
            -
            </tbody></table>
         
     | 
| 670 | 
         
            -
             
     | 
| 671 | 
         
            -
             
     | 
| 672 | 
         
            -
             
     | 
| 673 | 
         
            -
            ### Other Settings
         
     | 
| 674 | 
         
            -
             
     | 
| 675 | 
         
            -
            Ablations for Deformable Conv and Cascade R-CNN:
         
     | 
| 676 | 
         
            -
             
     | 
| 677 | 
         
            -
            <!--
         
     | 
| 678 | 
         
            -
            ./gen_html_table.py --config 'COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml' 'Misc/*R_50_FPN_1x_dconv*' 'Misc/cascade*1x.yaml' 'COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml' 'Misc/*R_50_FPN_3x_dconv*' 'Misc/cascade*3x.yaml' --name "Baseline R50-FPN" "Deformable Conv" "Cascade R-CNN" "Baseline R50-FPN" "Deformable Conv" "Cascade R-CNN"  --fields lr_sched train_speed inference_speed mem box_AP mask_AP
         
     | 
| 679 | 
         
            -
            -->
         
     | 
| 680 | 
         
            -
             
     | 
| 681 | 
         
            -
             
     | 
| 682 | 
         
            -
            <table><tbody>
         
     | 
| 683 | 
         
            -
            <!-- START TABLE -->
         
     | 
| 684 | 
         
            -
            <!-- TABLE HEADER -->
         
     | 
| 685 | 
         
            -
            <th valign="bottom">Name</th>
         
     | 
| 686 | 
         
            -
            <th valign="bottom">lr<br/>sched</th>
         
     | 
| 687 | 
         
            -
            <th valign="bottom">train<br/>time<br/>(s/iter)</th>
         
     | 
| 688 | 
         
            -
            <th valign="bottom">inference<br/>time<br/>(s/im)</th>
         
     | 
| 689 | 
         
            -
            <th valign="bottom">train<br/>mem<br/>(GB)</th>
         
     | 
| 690 | 
         
            -
            <th valign="bottom">box<br/>AP</th>
         
     | 
| 691 | 
         
            -
            <th valign="bottom">mask<br/>AP</th>
         
     | 
| 692 | 
         
            -
            <th valign="bottom">model id</th>
         
     | 
| 693 | 
         
            -
            <th valign="bottom">download</th>
         
     | 
| 694 | 
         
            -
            <!-- TABLE BODY -->
         
     | 
| 695 | 
         
            -
            <!-- ROW: mask_rcnn_R_50_FPN_1x -->
         
     | 
| 696 | 
         
            -
             <tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml">Baseline R50-FPN</a></td>
         
     | 
| 697 | 
         
            -
            <td align="center">1x</td>
         
     | 
| 698 | 
         
            -
            <td align="center">0.261</td>
         
     | 
| 699 | 
         
            -
            <td align="center">0.043</td>
         
     | 
| 700 | 
         
            -
            <td align="center">3.4</td>
         
     | 
| 701 | 
         
            -
            <td align="center">38.6</td>
         
     | 
| 702 | 
         
            -
            <td align="center">35.2</td>
         
     | 
| 703 | 
         
            -
            <td align="center">137260431</td>
         
     | 
| 704 | 
         
            -
            <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x/137260431/model_final_a54504.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x/137260431/metrics.json">metrics</a></td>
         
     | 
| 705 | 
         
            -
            </tr>
         
     | 
| 706 | 
         
            -
            <!-- ROW: mask_rcnn_R_50_FPN_1x_dconv_c3-c5 -->
         
     | 
| 707 | 
         
            -
             <tr><td align="left"><a href="configs/Misc/mask_rcnn_R_50_FPN_1x_dconv_c3-c5.yaml">Deformable Conv</a></td>
         
     | 
| 708 | 
         
            -
            <td align="center">1x</td>
         
     | 
| 709 | 
         
            -
            <td align="center">0.342</td>
         
     | 
| 710 | 
         
            -
            <td align="center">0.048</td>
         
     | 
| 711 | 
         
            -
            <td align="center">3.5</td>
         
     | 
| 712 | 
         
            -
            <td align="center">41.5</td>
         
     | 
| 713 | 
         
            -
            <td align="center">37.5</td>
         
     | 
| 714 | 
         
            -
            <td align="center">138602867</td>
         
     | 
| 715 | 
         
            -
            <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/mask_rcnn_R_50_FPN_1x_dconv_c3-c5/138602867/model_final_65c703.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/Misc/mask_rcnn_R_50_FPN_1x_dconv_c3-c5/138602867/metrics.json">metrics</a></td>
         
     | 
| 716 | 
         
            -
            </tr>
         
     | 
| 717 | 
         
            -
            <!-- ROW: cascade_mask_rcnn_R_50_FPN_1x -->
         
     | 
| 718 | 
         
            -
             <tr><td align="left"><a href="configs/Misc/cascade_mask_rcnn_R_50_FPN_1x.yaml">Cascade R-CNN</a></td>
         
     | 
| 719 | 
         
            -
            <td align="center">1x</td>
         
     | 
| 720 | 
         
            -
            <td align="center">0.317</td>
         
     | 
| 721 | 
         
            -
            <td align="center">0.052</td>
         
     | 
| 722 | 
         
            -
            <td align="center">4.0</td>
         
     | 
| 723 | 
         
            -
            <td align="center">42.1</td>
         
     | 
| 724 | 
         
            -
            <td align="center">36.4</td>
         
     | 
| 725 | 
         
            -
            <td align="center">138602847</td>
         
     | 
| 726 | 
         
            -
            <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/cascade_mask_rcnn_R_50_FPN_1x/138602847/model_final_e9d89b.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/Misc/cascade_mask_rcnn_R_50_FPN_1x/138602847/metrics.json">metrics</a></td>
         
     | 
| 727 | 
         
            -
            </tr>
         
     | 
| 728 | 
         
            -
            <!-- ROW: mask_rcnn_R_50_FPN_3x -->
         
     | 
| 729 | 
         
            -
             <tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml">Baseline R50-FPN</a></td>
         
     | 
| 730 | 
         
            -
            <td align="center">3x</td>
         
     | 
| 731 | 
         
            -
            <td align="center">0.261</td>
         
     | 
| 732 | 
         
            -
            <td align="center">0.043</td>
         
     | 
| 733 | 
         
            -
            <td align="center">3.4</td>
         
     | 
| 734 | 
         
            -
            <td align="center">41.0</td>
         
     | 
| 735 | 
         
            -
            <td align="center">37.2</td>
         
     | 
| 736 | 
         
            -
            <td align="center">137849600</td>
         
     | 
| 737 | 
         
            -
            <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/model_final_f10217.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/metrics.json">metrics</a></td>
         
     | 
| 738 | 
         
            -
            </tr>
         
     | 
| 739 | 
         
            -
            <!-- ROW: mask_rcnn_R_50_FPN_3x_dconv_c3-c5 -->
         
     | 
| 740 | 
         
            -
             <tr><td align="left"><a href="configs/Misc/mask_rcnn_R_50_FPN_3x_dconv_c3-c5.yaml">Deformable Conv</a></td>
         
     | 
| 741 | 
         
            -
            <td align="center">3x</td>
         
     | 
| 742 | 
         
            -
            <td align="center">0.349</td>
         
     | 
| 743 | 
         
            -
            <td align="center">0.047</td>
         
     | 
| 744 | 
         
            -
            <td align="center">3.5</td>
         
     | 
| 745 | 
         
            -
            <td align="center">42.7</td>
         
     | 
| 746 | 
         
            -
            <td align="center">38.5</td>
         
     | 
| 747 | 
         
            -
            <td align="center">144998336</td>
         
     | 
| 748 | 
         
            -
            <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/mask_rcnn_R_50_FPN_3x_dconv_c3-c5/144998336/model_final_821d0b.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/Misc/mask_rcnn_R_50_FPN_3x_dconv_c3-c5/144998336/metrics.json">metrics</a></td>
         
     | 
| 749 | 
         
            -
            </tr>
         
     | 
| 750 | 
         
            -
            <!-- ROW: cascade_mask_rcnn_R_50_FPN_3x -->
         
     | 
| 751 | 
         
            -
             <tr><td align="left"><a href="configs/Misc/cascade_mask_rcnn_R_50_FPN_3x.yaml">Cascade R-CNN</a></td>
         
     | 
| 752 | 
         
            -
            <td align="center">3x</td>
         
     | 
| 753 | 
         
            -
            <td align="center">0.328</td>
         
     | 
| 754 | 
         
            -
            <td align="center">0.053</td>
         
     | 
| 755 | 
         
            -
            <td align="center">4.0</td>
         
     | 
| 756 | 
         
            -
            <td align="center">44.3</td>
         
     | 
| 757 | 
         
            -
            <td align="center">38.5</td>
         
     | 
| 758 | 
         
            -
            <td align="center">144998488</td>
         
     | 
| 759 | 
         
            -
            <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/cascade_mask_rcnn_R_50_FPN_3x/144998488/model_final_480dd8.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/Misc/cascade_mask_rcnn_R_50_FPN_3x/144998488/metrics.json">metrics</a></td>
         
     | 
| 760 | 
         
            -
            </tr>
         
     | 
| 761 | 
         
            -
            </tbody></table>
         
     | 
| 762 | 
         
            -
             
     | 
| 763 | 
         
            -
             
     | 
| 764 | 
         
            -
            Ablations for normalization methods, and a few models trained from scratch following [Rethinking ImageNet Pre-training](https://arxiv.org/abs/1811.08883).
         
     | 
| 765 | 
         
            -
            (Note: The baseline uses `2fc` head while the others use [`4conv1fc` head](https://arxiv.org/abs/1803.08494))
         
     | 
| 766 | 
         
            -
            <!--
         
     | 
| 767 | 
         
            -
            ./gen_html_table.py --config 'COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml' 'Misc/mask*50_FPN_3x_gn.yaml' 'Misc/mask*50_FPN_3x_syncbn.yaml' 'Misc/scratch*' --name "Baseline R50-FPN" "GN" "SyncBN" "GN (from scratch)" "GN (from scratch)" "SyncBN (from scratch)" --fields lr_sched train_speed inference_speed mem box_AP mask_AP
         
     | 
| 768 | 
         
            -
               -->
         
     | 
| 769 | 
         
            -
             
     | 
| 770 | 
         
            -
             
     | 
| 771 | 
         
            -
            <table><tbody>
         
     | 
| 772 | 
         
            -
            <!-- START TABLE -->
         
     | 
| 773 | 
         
            -
            <!-- TABLE HEADER -->
         
     | 
| 774 | 
         
            -
            <th valign="bottom">Name</th>
         
     | 
| 775 | 
         
            -
            <th valign="bottom">lr<br/>sched</th>
         
     | 
| 776 | 
         
            -
            <th valign="bottom">train<br/>time<br/>(s/iter)</th>
         
     | 
| 777 | 
         
            -
            <th valign="bottom">inference<br/>time<br/>(s/im)</th>
         
     | 
| 778 | 
         
            -
            <th valign="bottom">train<br/>mem<br/>(GB)</th>
         
     | 
| 779 | 
         
            -
            <th valign="bottom">box<br/>AP</th>
         
     | 
| 780 | 
         
            -
            <th valign="bottom">mask<br/>AP</th>
         
     | 
| 781 | 
         
            -
            <th valign="bottom">model id</th>
         
     | 
| 782 | 
         
            -
            <th valign="bottom">download</th>
         
     | 
| 783 | 
         
            -
            <!-- TABLE BODY -->
         
     | 
| 784 | 
         
            -
            <!-- ROW: mask_rcnn_R_50_FPN_3x -->
         
     | 
| 785 | 
         
            -
             <tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml">Baseline R50-FPN</a></td>
         
     | 
| 786 | 
         
            -
            <td align="center">3x</td>
         
     | 
| 787 | 
         
            -
            <td align="center">0.261</td>
         
     | 
| 788 | 
         
            -
            <td align="center">0.043</td>
         
     | 
| 789 | 
         
            -
            <td align="center">3.4</td>
         
     | 
| 790 | 
         
            -
            <td align="center">41.0</td>
         
     | 
| 791 | 
         
            -
            <td align="center">37.2</td>
         
     | 
| 792 | 
         
            -
            <td align="center">137849600</td>
         
     | 
| 793 | 
         
            -
            <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/model_final_f10217.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/metrics.json">metrics</a></td>
         
     | 
| 794 | 
         
            -
            </tr>
         
     | 
| 795 | 
         
            -
            <!-- ROW: mask_rcnn_R_50_FPN_3x_gn -->
         
     | 
| 796 | 
         
            -
             <tr><td align="left"><a href="configs/Misc/mask_rcnn_R_50_FPN_3x_gn.yaml">GN</a></td>
         
     | 
| 797 | 
         
            -
            <td align="center">3x</td>
         
     | 
| 798 | 
         
            -
            <td align="center">0.356</td>
         
     | 
| 799 | 
         
            -
            <td align="center">0.069</td>
         
     | 
| 800 | 
         
            -
            <td align="center">7.3</td>
         
     | 
| 801 | 
         
            -
            <td align="center">42.6</td>
         
     | 
| 802 | 
         
            -
            <td align="center">38.6</td>
         
     | 
| 803 | 
         
            -
            <td align="center">138602888</td>
         
     | 
| 804 | 
         
            -
            <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/mask_rcnn_R_50_FPN_3x_gn/138602888/model_final_dc5d9e.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/Misc/mask_rcnn_R_50_FPN_3x_gn/138602888/metrics.json">metrics</a></td>
         
     | 
| 805 | 
         
            -
            </tr>
         
     | 
| 806 | 
         
            -
            <!-- ROW: mask_rcnn_R_50_FPN_3x_syncbn -->
         
     | 
| 807 | 
         
            -
             <tr><td align="left"><a href="configs/Misc/mask_rcnn_R_50_FPN_3x_syncbn.yaml">SyncBN</a></td>
         
     | 
| 808 | 
         
            -
            <td align="center">3x</td>
         
     | 
| 809 | 
         
            -
            <td align="center">0.371</td>
         
     | 
| 810 | 
         
            -
            <td align="center">0.053</td>
         
     | 
| 811 | 
         
            -
            <td align="center">5.5</td>
         
     | 
| 812 | 
         
            -
            <td align="center">41.9</td>
         
     | 
| 813 | 
         
            -
            <td align="center">37.8</td>
         
     | 
| 814 | 
         
            -
            <td align="center">169527823</td>
         
     | 
| 815 | 
         
            -
            <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/mask_rcnn_R_50_FPN_3x_syncbn/169527823/model_final_3b3c51.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/Misc/mask_rcnn_R_50_FPN_3x_syncbn/169527823/metrics.json">metrics</a></td>
         
     | 
| 816 | 
         
            -
            </tr>
         
     | 
| 817 | 
         
            -
            <!-- ROW: scratch_mask_rcnn_R_50_FPN_3x_gn -->
         
     | 
| 818 | 
         
            -
             <tr><td align="left"><a href="configs/Misc/scratch_mask_rcnn_R_50_FPN_3x_gn.yaml">GN (from scratch)</a></td>
         
     | 
| 819 | 
         
            -
            <td align="center">3x</td>
         
     | 
| 820 | 
         
            -
            <td align="center">0.400</td>
         
     | 
| 821 | 
         
            -
            <td align="center">0.069</td>
         
     | 
| 822 | 
         
            -
            <td align="center">9.8</td>
         
     | 
| 823 | 
         
            -
            <td align="center">39.9</td>
         
     | 
| 824 | 
         
            -
            <td align="center">36.6</td>
         
     | 
| 825 | 
         
            -
            <td align="center">138602908</td>
         
     | 
| 826 | 
         
            -
            <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/scratch_mask_rcnn_R_50_FPN_3x_gn/138602908/model_final_01ca85.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/Misc/scratch_mask_rcnn_R_50_FPN_3x_gn/138602908/metrics.json">metrics</a></td>
         
     | 
| 827 | 
         
            -
            </tr>
         
     | 
| 828 | 
         
            -
            <!-- ROW: scratch_mask_rcnn_R_50_FPN_9x_gn -->
         
     | 
| 829 | 
         
            -
             <tr><td align="left"><a href="configs/Misc/scratch_mask_rcnn_R_50_FPN_9x_gn.yaml">GN (from scratch)</a></td>
         
     | 
| 830 | 
         
            -
            <td align="center">9x</td>
         
     | 
| 831 | 
         
            -
            <td align="center">N/A</td>
         
     | 
| 832 | 
         
            -
            <td align="center">0.070</td>
         
     | 
| 833 | 
         
            -
            <td align="center">9.8</td>
         
     | 
| 834 | 
         
            -
            <td align="center">43.7</td>
         
     | 
| 835 | 
         
            -
            <td align="center">39.6</td>
         
     | 
| 836 | 
         
            -
            <td align="center">183808979</td>
         
     | 
| 837 | 
         
            -
            <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/scratch_mask_rcnn_R_50_FPN_9x_gn/183808979/model_final_da7b4c.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/Misc/scratch_mask_rcnn_R_50_FPN_9x_gn/183808979/metrics.json">metrics</a></td>
         
     | 
| 838 | 
         
            -
            </tr>
         
     | 
| 839 | 
         
            -
            <!-- ROW: scratch_mask_rcnn_R_50_FPN_9x_syncbn -->
         
     | 
| 840 | 
         
            -
             <tr><td align="left"><a href="configs/Misc/scratch_mask_rcnn_R_50_FPN_9x_syncbn.yaml">SyncBN (from scratch)</a></td>
         
     | 
| 841 | 
         
            -
            <td align="center">9x</td>
         
     | 
| 842 | 
         
            -
            <td align="center">N/A</td>
         
     | 
| 843 | 
         
            -
            <td align="center">0.055</td>
         
     | 
| 844 | 
         
            -
            <td align="center">7.2</td>
         
     | 
| 845 | 
         
            -
            <td align="center">43.6</td>
         
     | 
| 846 | 
         
            -
            <td align="center">39.3</td>
         
     | 
| 847 | 
         
            -
            <td align="center">184226666</td>
         
     | 
| 848 | 
         
            -
            <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/scratch_mask_rcnn_R_50_FPN_9x_syncbn/184226666/model_final_5ce33e.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/Misc/scratch_mask_rcnn_R_50_FPN_9x_syncbn/184226666/metrics.json">metrics</a></td>
         
     | 
| 849 | 
         
            -
            </tr>
         
     | 
| 850 | 
         
            -
            </tbody></table>
         
     | 
| 851 | 
         
            -
             
     | 
| 852 | 
         
            -
             
     | 
| 853 | 
         
            -
            A few very large models trained for a long time, for demo purposes. They are trained using multiple machines:
         
     | 
| 854 | 
         
            -
             
     | 
| 855 | 
         
            -
            <!--
         
     | 
| 856 | 
         
            -
            ./gen_html_table.py --config 'Misc/panoptic_*dconv*' 'Misc/cascade_*152*' --name "Panoptic FPN R101" "Mask R-CNN X152" --fields inference_speed mem box_AP mask_AP PQ
         
     | 
| 857 | 
         
            -
            # manually add TTA results
         
     | 
| 858 | 
         
            -
            -->
         
     | 
| 859 | 
         
            -
             
     | 
| 860 | 
         
            -
             
     | 
| 861 | 
         
            -
            <table><tbody>
         
     | 
| 862 | 
         
            -
            <!-- START TABLE -->
         
     | 
| 863 | 
         
            -
            <!-- TABLE HEADER -->
         
     | 
| 864 | 
         
            -
            <th valign="bottom">Name</th>
         
     | 
| 865 | 
         
            -
            <th valign="bottom">inference<br/>time<br/>(s/im)</th>
         
     | 
| 866 | 
         
            -
            <th valign="bottom">train<br/>mem<br/>(GB)</th>
         
     | 
| 867 | 
         
            -
            <th valign="bottom">box<br/>AP</th>
         
     | 
| 868 | 
         
            -
            <th valign="bottom">mask<br/>AP</th>
         
     | 
| 869 | 
         
            -
            <th valign="bottom">PQ</th>
         
     | 
| 870 | 
         
            -
            <th valign="bottom">model id</th>
         
     | 
| 871 | 
         
            -
            <th valign="bottom">download</th>
         
     | 
| 872 | 
         
            -
            <!-- TABLE BODY -->
         
     | 
| 873 | 
         
            -
            <!-- ROW: panoptic_fpn_R_101_dconv_cascade_gn_3x -->
         
     | 
| 874 | 
         
            -
             <tr><td align="left"><a href="configs/Misc/panoptic_fpn_R_101_dconv_cascade_gn_3x.yaml">Panoptic FPN R101</a></td>
         
     | 
| 875 | 
         
            -
            <td align="center">0.107</td>
         
     | 
| 876 | 
         
            -
            <td align="center">11.4</td>
         
     | 
| 877 | 
         
            -
            <td align="center">47.4</td>
         
     | 
| 878 | 
         
            -
            <td align="center">41.3</td>
         
     | 
| 879 | 
         
            -
            <td align="center">46.1</td>
         
     | 
| 880 | 
         
            -
            <td align="center">139797668</td>
         
     | 
| 881 | 
         
            -
            <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/panoptic_fpn_R_101_dconv_cascade_gn_3x/139797668/model_final_be35db.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/Misc/panoptic_fpn_R_101_dconv_cascade_gn_3x/139797668/metrics.json">metrics</a></td>
         
     | 
| 882 | 
         
            -
            </tr>
         
     | 
| 883 | 
         
            -
            <!-- ROW: cascade_mask_rcnn_X_152_32x8d_FPN_IN5k_gn_dconv -->
         
     | 
| 884 | 
         
            -
             <tr><td align="left"><a href="configs/Misc/cascade_mask_rcnn_X_152_32x8d_FPN_IN5k_gn_dconv.yaml">Mask R-CNN X152</a></td>
         
     | 
| 885 | 
         
            -
            <td align="center">0.242</td>
         
     | 
| 886 | 
         
            -
            <td align="center">15.1</td>
         
     | 
| 887 | 
         
            -
            <td align="center">50.2</td>
         
     | 
| 888 | 
         
            -
            <td align="center">44.0</td>
         
     | 
| 889 | 
         
            -
            <td align="center"></td>
         
     | 
| 890 | 
         
            -
            <td align="center">18131413</td>
         
     | 
| 891 | 
         
            -
            <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/cascade_mask_rcnn_X_152_32x8d_FPN_IN5k_gn_dconv/18131413/model_0039999_e76410.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/Misc/cascade_mask_rcnn_X_152_32x8d_FPN_IN5k_gn_dconv/18131413/metrics.json">metrics</a></td>
         
     | 
| 892 | 
         
            -
            </tr>
         
     | 
| 893 | 
         
            -
            <!-- ROW: TTA cascade_mask_rcnn_X_152_32x8d_FPN_IN5k_gn_dconv -->
         
     | 
| 894 | 
         
            -
             <tr><td align="left">above + test-time aug.</td>
         
     | 
| 895 | 
         
            -
            <td align="center"></td>
         
     | 
| 896 | 
         
            -
            <td align="center"></td>
         
     | 
| 897 | 
         
            -
            <td align="center">51.9</td>
         
     | 
| 898 | 
         
            -
            <td align="center">45.9</td>
         
     | 
| 899 | 
         
            -
            <td align="center"></td>
         
     | 
| 900 | 
         
            -
            <td align="center"></td>
         
     | 
| 901 | 
         
            -
            <td align="center"></td>
         
     | 
| 902 | 
         
            -
            </tr>
         
     | 
| 903 | 
         
            -
            </tbody></table>
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        model/SCHP/mhp_extension/detectron2/README.md
    DELETED
    
    | 
         @@ -1,56 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            <img src=".github/Detectron2-Logo-Horz.svg" width="300" >
         
     | 
| 2 | 
         
            -
             
     | 
| 3 | 
         
            -
            Detectron2 is Facebook AI Research's next generation software system
         
     | 
| 4 | 
         
            -
            that implements state-of-the-art object detection algorithms.
         
     | 
| 5 | 
         
            -
            It is a ground-up rewrite of the previous version,
         
     | 
| 6 | 
         
            -
            [Detectron](https://github.com/facebookresearch/Detectron/),
         
     | 
| 7 | 
         
            -
            and it originates from [maskrcnn-benchmark](https://github.com/facebookresearch/maskrcnn-benchmark/).
         
     | 
| 8 | 
         
            -
             
     | 
| 9 | 
         
            -
            <div align="center">
         
     | 
| 10 | 
         
            -
              <img src="https://user-images.githubusercontent.com/1381301/66535560-d3422200-eace-11e9-9123-5535d469db19.png"/>
         
     | 
| 11 | 
         
            -
            </div>
         
     | 
| 12 | 
         
            -
             
     | 
| 13 | 
         
            -
            ### What's New
         
     | 
| 14 | 
         
            -
            * It is powered by the [PyTorch](https://pytorch.org) deep learning framework.
         
     | 
| 15 | 
         
            -
            * Includes more features such as panoptic segmentation, densepose, Cascade R-CNN, rotated bounding boxes, etc.
         
     | 
| 16 | 
         
            -
            * Can be used as a library to support [different projects](projects/) on top of it.
         
     | 
| 17 | 
         
            -
              We'll open source more research projects in this way.
         
     | 
| 18 | 
         
            -
            * It [trains much faster](https://detectron2.readthedocs.io/notes/benchmarks.html).
         
     | 
| 19 | 
         
            -
             
     | 
| 20 | 
         
            -
            See our [blog post](https://ai.facebook.com/blog/-detectron2-a-pytorch-based-modular-object-detection-library-/)
         
     | 
| 21 | 
         
            -
            to see more demos and learn about detectron2.
         
     | 
| 22 | 
         
            -
             
     | 
| 23 | 
         
            -
            ## Installation
         
     | 
| 24 | 
         
            -
             
     | 
| 25 | 
         
            -
            See [INSTALL.md](INSTALL.md).
         
     | 
| 26 | 
         
            -
             
     | 
| 27 | 
         
            -
            ## Quick Start
         
     | 
| 28 | 
         
            -
             
     | 
| 29 | 
         
            -
            See [GETTING_STARTED.md](GETTING_STARTED.md),
         
     | 
| 30 | 
         
            -
            or the [Colab Notebook](https://colab.research.google.com/drive/16jcaJoc6bCFAQ96jDe2HwtXj7BMD_-m5).
         
     | 
| 31 | 
         
            -
             
     | 
| 32 | 
         
            -
            Learn more at our [documentation](https://detectron2.readthedocs.org).
         
     | 
| 33 | 
         
            -
            And see [projects/](projects/) for some projects that are built on top of detectron2.
         
     | 
| 34 | 
         
            -
             
     | 
| 35 | 
         
            -
            ## Model Zoo and Baselines
         
     | 
| 36 | 
         
            -
             
     | 
| 37 | 
         
            -
            We provide a large set of baseline results and trained models available for download in the [Detectron2 Model Zoo](MODEL_ZOO.md).
         
     | 
| 38 | 
         
            -
             
     | 
| 39 | 
         
            -
             
     | 
| 40 | 
         
            -
            ## License
         
     | 
| 41 | 
         
            -
             
     | 
| 42 | 
         
            -
            Detectron2 is released under the [Apache 2.0 license](LICENSE).
         
     | 
| 43 | 
         
            -
             
     | 
| 44 | 
         
            -
            ## Citing Detectron2
         
     | 
| 45 | 
         
            -
             
     | 
| 46 | 
         
            -
            If you use Detectron2 in your research or wish to refer to the baseline results published in the [Model Zoo](MODEL_ZOO.md), please use the following BibTeX entry.
         
     | 
| 47 | 
         
            -
             
     | 
| 48 | 
         
            -
            ```BibTeX
         
     | 
| 49 | 
         
            -
            @misc{wu2019detectron2,
         
     | 
| 50 | 
         
            -
              author =       {Yuxin Wu and Alexander Kirillov and Francisco Massa and
         
     | 
| 51 | 
         
            -
                              Wan-Yen Lo and Ross Girshick},
         
     | 
| 52 | 
         
            -
              title =        {Detectron2},
         
     | 
| 53 | 
         
            -
              howpublished = {\url{https://github.com/facebookresearch/detectron2}},
         
     | 
| 54 | 
         
            -
              year =         {2019}
         
     | 
| 55 | 
         
            -
            }
         
     | 
| 56 | 
         
            -
            ```
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        model/SCHP/mhp_extension/detectron2/configs/Base-RCNN-C4.yaml
    DELETED
    
    | 
         @@ -1,18 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            MODEL:
         
     | 
| 2 | 
         
            -
              META_ARCHITECTURE: "GeneralizedRCNN"
         
     | 
| 3 | 
         
            -
              RPN:
         
     | 
| 4 | 
         
            -
                PRE_NMS_TOPK_TEST: 6000
         
     | 
| 5 | 
         
            -
                POST_NMS_TOPK_TEST: 1000
         
     | 
| 6 | 
         
            -
              ROI_HEADS:
         
     | 
| 7 | 
         
            -
                NAME: "Res5ROIHeads"
         
     | 
| 8 | 
         
            -
            DATASETS:
         
     | 
| 9 | 
         
            -
              TRAIN: ("coco_2017_train",)
         
     | 
| 10 | 
         
            -
              TEST: ("coco_2017_val",)
         
     | 
| 11 | 
         
            -
            SOLVER:
         
     | 
| 12 | 
         
            -
              IMS_PER_BATCH: 16
         
     | 
| 13 | 
         
            -
              BASE_LR: 0.02
         
     | 
| 14 | 
         
            -
              STEPS: (60000, 80000)
         
     | 
| 15 | 
         
            -
              MAX_ITER: 90000
         
     | 
| 16 | 
         
            -
            INPUT:
         
     | 
| 17 | 
         
            -
              MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
         
     | 
| 18 | 
         
            -
            VERSION: 2
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        model/SCHP/mhp_extension/detectron2/configs/Base-RCNN-DilatedC5.yaml
    DELETED
    
    | 
         @@ -1,31 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            MODEL:
         
     | 
| 2 | 
         
            -
              META_ARCHITECTURE: "GeneralizedRCNN"
         
     | 
| 3 | 
         
            -
              RESNETS:
         
     | 
| 4 | 
         
            -
                OUT_FEATURES: ["res5"]
         
     | 
| 5 | 
         
            -
                RES5_DILATION: 2
         
     | 
| 6 | 
         
            -
              RPN:
         
     | 
| 7 | 
         
            -
                IN_FEATURES: ["res5"]
         
     | 
| 8 | 
         
            -
                PRE_NMS_TOPK_TEST: 6000
         
     | 
| 9 | 
         
            -
                POST_NMS_TOPK_TEST: 1000
         
     | 
| 10 | 
         
            -
              ROI_HEADS:
         
     | 
| 11 | 
         
            -
                NAME: "StandardROIHeads"
         
     | 
| 12 | 
         
            -
                IN_FEATURES: ["res5"]
         
     | 
| 13 | 
         
            -
              ROI_BOX_HEAD:
         
     | 
| 14 | 
         
            -
                NAME: "FastRCNNConvFCHead"
         
     | 
| 15 | 
         
            -
                NUM_FC: 2
         
     | 
| 16 | 
         
            -
                POOLER_RESOLUTION: 7
         
     | 
| 17 | 
         
            -
              ROI_MASK_HEAD:
         
     | 
| 18 | 
         
            -
                NAME: "MaskRCNNConvUpsampleHead"
         
     | 
| 19 | 
         
            -
                NUM_CONV: 4
         
     | 
| 20 | 
         
            -
                POOLER_RESOLUTION: 14
         
     | 
| 21 | 
         
            -
            DATASETS:
         
     | 
| 22 | 
         
            -
              TRAIN: ("coco_2017_train",)
         
     | 
| 23 | 
         
            -
              TEST: ("coco_2017_val",)
         
     | 
| 24 | 
         
            -
            SOLVER:
         
     | 
| 25 | 
         
            -
              IMS_PER_BATCH: 16
         
     | 
| 26 | 
         
            -
              BASE_LR: 0.02
         
     | 
| 27 | 
         
            -
              STEPS: (60000, 80000)
         
     | 
| 28 | 
         
            -
              MAX_ITER: 90000
         
     | 
| 29 | 
         
            -
            INPUT:
         
     | 
| 30 | 
         
            -
              MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
         
     | 
| 31 | 
         
            -
            VERSION: 2
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         |