Spaces:
Runtime error
Runtime error
Added the Front_End Jupyter Notebook
Browse files- Front_End (1).ipynb +193 -0
Front_End (1).ipynb
ADDED
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nbformat": 4,
|
3 |
+
"nbformat_minor": 0,
|
4 |
+
"metadata": {
|
5 |
+
"colab": {
|
6 |
+
"provenance": []
|
7 |
+
},
|
8 |
+
"kernelspec": {
|
9 |
+
"name": "python3",
|
10 |
+
"display_name": "Python 3"
|
11 |
+
},
|
12 |
+
"language_info": {
|
13 |
+
"name": "python"
|
14 |
+
}
|
15 |
+
},
|
16 |
+
"cells": [
|
17 |
+
{
|
18 |
+
"cell_type": "code",
|
19 |
+
"execution_count": null,
|
20 |
+
"metadata": {
|
21 |
+
"id": "XICISQU4VQ7j"
|
22 |
+
},
|
23 |
+
"outputs": [],
|
24 |
+
"source": []
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"cell_type": "code",
|
28 |
+
"source": [],
|
29 |
+
"metadata": {
|
30 |
+
"id": "VsFOxVleVRpA"
|
31 |
+
},
|
32 |
+
"execution_count": null,
|
33 |
+
"outputs": []
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"cell_type": "code",
|
37 |
+
"source": [
|
38 |
+
"import json\n",
|
39 |
+
"import os\n",
|
40 |
+
"from transformers import AutoProcessor, AutoModelForVision2Seq\n",
|
41 |
+
"import torch\n",
|
42 |
+
"from PIL import Image\n",
|
43 |
+
"import gradio as gr\n",
|
44 |
+
"import subprocess\n",
|
45 |
+
"from llava.model.builder import load_pretrained_model\n",
|
46 |
+
"from llava.mm_utils import get_model_name_from_path\n",
|
47 |
+
"from llava.eval.run_llava import eval_model\n",
|
48 |
+
"\n",
|
49 |
+
"# Load the LLaVA model and processor\n",
|
50 |
+
"llava_model_path = \"/workspace/LLaVA/LLaVA/llava-fine_tune_model\"\n",
|
51 |
+
"\n",
|
52 |
+
"# Load the LLaVA-Med model and processor\n",
|
53 |
+
"llava_med_model_path = \"/workspace/LLaVA-Med/Model/fine_tuned-med-llava\"\n",
|
54 |
+
"\n",
|
55 |
+
"# Args class to store arguments for LLaVA models\n",
|
56 |
+
"class Args:\n",
|
57 |
+
" def __init__(self, model_path, model_base, model_name, query, image_path, conv_mode, image_file, sep, temperature, top_p, num_beams, max_new_tokens):\n",
|
58 |
+
" self.model_path = model_path\n",
|
59 |
+
" self.model_base = model_base\n",
|
60 |
+
" self.model_name = model_name\n",
|
61 |
+
" self.query = query\n",
|
62 |
+
" self.image_path = image_path\n",
|
63 |
+
" self.conv_mode = conv_mode\n",
|
64 |
+
" self.image_file = image_file\n",
|
65 |
+
" self.sep = sep\n",
|
66 |
+
" self.temperature = temperature\n",
|
67 |
+
" self.top_p = top_p\n",
|
68 |
+
" self.num_beams = num_beams\n",
|
69 |
+
" self.max_new_tokens = max_new_tokens\n",
|
70 |
+
"\n",
|
71 |
+
"# Function to predict using Idefics2\n",
|
72 |
+
"def predict_idefics2(image, question, temperature, max_tokens):\n",
|
73 |
+
" image = image.convert(\"RGB\")\n",
|
74 |
+
" images = [image]\n",
|
75 |
+
"\n",
|
76 |
+
" messages = [\n",
|
77 |
+
" {\n",
|
78 |
+
" \"role\": \"user\",\n",
|
79 |
+
" \"content\": [\n",
|
80 |
+
" {\"type\": \"image\"},\n",
|
81 |
+
" {\"type\": \"text\", \"text\": question}\n",
|
82 |
+
" ]\n",
|
83 |
+
" }\n",
|
84 |
+
" ]\n",
|
85 |
+
" input_text = idefics2_processor.apply_chat_template(messages, add_generation_prompt=False).strip()\n",
|
86 |
+
"\n",
|
87 |
+
" inputs = idefics2_processor(text=[input_text], images=images, return_tensors=\"pt\", padding=True).to(\"cuda:0\")\n",
|
88 |
+
"\n",
|
89 |
+
" with torch.no_grad():\n",
|
90 |
+
" outputs = idefics2_model.generate(**inputs, max_length=max_tokens, max_new_tokens=max_tokens, temperature=temperature)\n",
|
91 |
+
"\n",
|
92 |
+
" predictions = idefics2_processor.decode(outputs[0], skip_special_tokens=True)\n",
|
93 |
+
"\n",
|
94 |
+
" return predictions\n",
|
95 |
+
"\n",
|
96 |
+
"# Function to predict using LLaVA\n",
|
97 |
+
"def predict_llava(image, question, temperature, max_tokens):\n",
|
98 |
+
" # Save the image temporarily\n",
|
99 |
+
" image.save(\"temp_image.jpg\")\n",
|
100 |
+
"\n",
|
101 |
+
" # Setup evaluation arguments\n",
|
102 |
+
" args = Args(\n",
|
103 |
+
" model_path=llava_model_path,\n",
|
104 |
+
" model_base=None,\n",
|
105 |
+
" model_name=get_model_name_from_path(llava_model_path),\n",
|
106 |
+
" query=question,\n",
|
107 |
+
" image_path=\"temp_image.jpg\",\n",
|
108 |
+
" conv_mode=None,\n",
|
109 |
+
" image_file=\"temp_image.jpg\",\n",
|
110 |
+
" sep=\",\",\n",
|
111 |
+
" temperature=temperature,\n",
|
112 |
+
" top_p=None,\n",
|
113 |
+
" num_beams=1,\n",
|
114 |
+
" max_new_tokens=max_tokens\n",
|
115 |
+
" )\n",
|
116 |
+
"\n",
|
117 |
+
" # Generate the answer using the selected model\n",
|
118 |
+
" output = eval_model(args)\n",
|
119 |
+
"\n",
|
120 |
+
" return output\n",
|
121 |
+
"\n",
|
122 |
+
"# Function to predict using LLaVA-Med\n",
|
123 |
+
"def predict_llava_med(image, question, temperature, max_tokens):\n",
|
124 |
+
" # Save the image temporarily\n",
|
125 |
+
" image_path = \"temp_image_med.jpg\"\n",
|
126 |
+
" image.save(image_path)\n",
|
127 |
+
"\n",
|
128 |
+
" # Command to run the LLaVA-Med model\n",
|
129 |
+
" command = [\n",
|
130 |
+
" \"python\", \"-m\", \"llava.eval.run_llava\",\n",
|
131 |
+
" \"--model-name\", llava_med_model_path,\n",
|
132 |
+
" \"--image-file\", image_path,\n",
|
133 |
+
" \"--query\", question,\n",
|
134 |
+
" \"--temperature\", str(temperature),\n",
|
135 |
+
" \"--max-new-tokens\", str(max_tokens)\n",
|
136 |
+
" ]\n",
|
137 |
+
"\n",
|
138 |
+
" # Execute the command and capture the output\n",
|
139 |
+
" result = subprocess.run(command, capture_output=True, text=True)\n",
|
140 |
+
"\n",
|
141 |
+
" return result.stdout.strip() # Return the output as text\n",
|
142 |
+
"\n",
|
143 |
+
"# Main prediction function\n",
|
144 |
+
"def predict(model_name, image, text, temperature, max_tokens):\n",
|
145 |
+
" if model_name == \"LLaVA\":\n",
|
146 |
+
" return predict_llava(image, text, temperature, max_tokens)\n",
|
147 |
+
" elif model_name == \"LLaVA-Med\":\n",
|
148 |
+
" return predict_llava_med(image, text, temperature, max_tokens)\n",
|
149 |
+
"\n",
|
150 |
+
"# Define the Gradio interface\n",
|
151 |
+
"interface = gr.Interface(\n",
|
152 |
+
" fn=predict,\n",
|
153 |
+
" inputs=[\n",
|
154 |
+
" gr.Radio(choices=[\"LLaVA\", \"LLaVA-Med\"], label=\"Select Model\"),\n",
|
155 |
+
" gr.Image(type=\"pil\", label=\"Input Image\"),\n",
|
156 |
+
" gr.Textbox(label=\"Input Text\"),\n",
|
157 |
+
" gr.Slider(minimum=0.1, maximum=1.0, default=0.7, label=\"Temperature\"),\n",
|
158 |
+
" gr.Slider(minimum=1, maximum=512, default=256, label=\"Max Tokens\"),\n",
|
159 |
+
" ],\n",
|
160 |
+
" outputs=gr.Textbox(label=\"Output Text\"),\n",
|
161 |
+
" title=\"Multimodal LLM Interface\",\n",
|
162 |
+
" description=\"Switch between models and adjust parameters.\",\n",
|
163 |
+
")\n",
|
164 |
+
"\n",
|
165 |
+
"# Launch the Gradio interface\n",
|
166 |
+
"interface.launch()\n"
|
167 |
+
],
|
168 |
+
"metadata": {
|
169 |
+
"id": "pCJxQjryVRrh"
|
170 |
+
},
|
171 |
+
"execution_count": null,
|
172 |
+
"outputs": []
|
173 |
+
},
|
174 |
+
{
|
175 |
+
"cell_type": "code",
|
176 |
+
"source": [],
|
177 |
+
"metadata": {
|
178 |
+
"id": "YBSsgQNwVRto"
|
179 |
+
},
|
180 |
+
"execution_count": null,
|
181 |
+
"outputs": []
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"cell_type": "code",
|
185 |
+
"source": [],
|
186 |
+
"metadata": {
|
187 |
+
"id": "UjB_xxubVRu7"
|
188 |
+
},
|
189 |
+
"execution_count": null,
|
190 |
+
"outputs": []
|
191 |
+
}
|
192 |
+
]
|
193 |
+
}
|