Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files
app.py
CHANGED
@@ -33,9 +33,7 @@ num_users = 943
|
|
33 |
def recommend(user_id):
|
34 |
|
35 |
ground_truth_items, recommendations = utils.predict(lightGCNModel, device, data, num_users, num_items, user_id, train_edge_label_index, k=5)
|
36 |
-
return ground_truth_items, recommendations
|
37 |
-
|
38 |
-
|
39 |
|
40 |
iface = gr.Interface(fn=recommend, inputs="number", outputs=["text", "text"])
|
41 |
iface.launch()
|
|
|
33 |
def recommend(user_id):
|
34 |
|
35 |
ground_truth_items, recommendations = utils.predict(lightGCNModel, device, data, num_users, num_items, user_id, train_edge_label_index, k=5)
|
36 |
+
return ' '.join(ground_truth_items['title'].tolist()), ' '.join(recommendations)
|
|
|
|
|
37 |
|
38 |
iface = gr.Interface(fn=recommend, inputs="number", outputs=["text", "text"])
|
39 |
iface.launch()
|
utils.py
CHANGED
@@ -56,6 +56,6 @@ def predict(model, device, data, num_users, num_items, user_id, train_edge_label
|
|
56 |
for index in top_ratings:
|
57 |
asin_of_item = unique_items[index]
|
58 |
recommended_item = meta_dataframe[meta_dataframe['asin'] == asin_of_item]['title'].values
|
59 |
-
recommended_items.append(recommended_item)
|
60 |
|
61 |
return ground_truth_items, recommended_items
|
|
|
56 |
for index in top_ratings:
|
57 |
asin_of_item = unique_items[index]
|
58 |
recommended_item = meta_dataframe[meta_dataframe['asin'] == asin_of_item]['title'].values
|
59 |
+
recommended_items.append(recommended_item.item())
|
60 |
|
61 |
return ground_truth_items, recommended_items
|