Spaces:
Running
Running
from dataclasses import dataclass, make_dataclass | |
from enum import Enum | |
import json | |
import logging | |
from datetime import datetime | |
import pandas as pd | |
# Configure logging | |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s") | |
def parse_datetime(datetime_str): | |
formats = [ | |
"%Y-%m-%dT%H-%M-%S.%f", # Format with dashes | |
"%Y-%m-%dT%H:%M:%S.%f", # Standard format with colons | |
"%Y-%m-%dT%H %M %S.%f", # Spaces as separator | |
] | |
for fmt in formats: | |
try: | |
return datetime.strptime(datetime_str, fmt) | |
except ValueError: | |
continue | |
# in rare cases set unix start time for files with incorrect time (legacy files) | |
logging.error(f"No valid date format found for: {datetime_str}") | |
return datetime(1970, 1, 1) | |
def load_json_data(file_path): | |
"""Safely load JSON data from a file.""" | |
try: | |
with open(file_path, "r") as file: | |
return json.load(file) | |
except json.JSONDecodeError: | |
print(f"Error reading JSON from {file_path}") | |
return None # Or raise an exception | |
def fields(raw_class): | |
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"] | |
class Task: | |
benchmark: str | |
metric: str | |
col_name: str | |
class Tasks(Enum): | |
math = Task("RussianMath", "score", "math_score") | |
physics = Task("RussianPhysics", "score", "physics_score") | |
combined = Task("Combined", "score", "score") | |
# These classes are for user facing column names, | |
# to avoid having to change them all around the code | |
# when a modif is needed | |
class ColumnContent: | |
name: str | |
type: str | |
displayed_by_default: bool | |
hidden: bool = False | |
never_hidden: bool = False | |
dummy: bool = False | |
auto_eval_column_dict = [] | |
# Init | |
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("model", "markdown", True, never_hidden=True)]) | |
# Scores | |
auto_eval_column_dict.append(["score", ColumnContent, ColumnContent("score", "number", True)]) | |
for task in Tasks: | |
if task != Tasks.combined: # Combined score уже добавлен выше | |
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)]) | |
# Model information | |
auto_eval_column_dict.append(["total_tokens", ColumnContent, ColumnContent("total_tokens", "number", False)]) | |
auto_eval_column_dict.append(["evaluation_time", ColumnContent, ColumnContent("evaluation_time", "number", False)]) | |
auto_eval_column_dict.append(["system_prompt", ColumnContent, ColumnContent("system_prompt", "str", False)]) | |
# We use make dataclass to dynamically fill the scores from Tasks | |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True) | |
class EvalQueueColumn: # Queue column | |
model = ColumnContent("model", "markdown", True) | |
baseline_row = { | |
AutoEvalColumn.model.name: "<p>Baseline</p>", | |
AutoEvalColumn.score.name: 0.1, | |
AutoEvalColumn.math.name: 0.1, | |
AutoEvalColumn.physics.name: 0.1, | |
AutoEvalColumn.total_tokens.name: 0, | |
AutoEvalColumn.evaluation_time.name: 0, | |
AutoEvalColumn.system_prompt.name: "Вы - полезный помощник по математике и физике. Ответьте на русском языке.", | |
} | |
# Define the human baselines | |
human_baseline_row = { | |
AutoEvalColumn.model.name: "<p>Human performance</p>", | |
AutoEvalColumn.score.name: 0.9, | |
AutoEvalColumn.math.name: 0.9, | |
AutoEvalColumn.physics.name: 0.9, | |
AutoEvalColumn.total_tokens.name: 0, | |
AutoEvalColumn.evaluation_time.name: 0, | |
AutoEvalColumn.system_prompt.name: "Вы - полезный помощник по математике и физике. Ответьте на русском языке.", | |
} | |
class ModelDetails: | |
name: str | |
symbol: str = "" # emoji, only for the model type | |
class ModelType(Enum): | |
PT = ModelDetails(name="pretrained", symbol="🟢") | |
CPT = ModelDetails(name="continuously pretrained", symbol="🟩") | |
FT = ModelDetails(name="fine-tuned on domain-specific datasets", symbol="🔶") | |
chat = ModelDetails(name="chat models (RLHF, DPO, IFT, ...)", symbol="💬") | |
merges = ModelDetails(name="base merges and moerges", symbol="🤝") | |
Unknown = ModelDetails(name="", symbol="?") | |
def to_str(self, separator=" "): | |
return f"{self.value.symbol}{separator}{self.value.name}" | |
def from_str(type): | |
if "fine-tuned" in type or "🔶" in type: | |
return ModelType.FT | |
if "continously pretrained" in type or "🟩" in type: | |
return ModelType.CPT | |
if "pretrained" in type or "🟢" in type: | |
return ModelType.PT | |
if any([k in type for k in ["instruction-tuned", "RL-tuned", "chat", "🟦", "⭕", "💬"]]): | |
return ModelType.chat | |
if "merge" in type or "🤝" in type: | |
return ModelType.merges | |
return ModelType.Unknown | |
class WeightType(Enum): | |
Adapter = ModelDetails("Adapter") | |
Original = ModelDetails("Original") | |
Delta = ModelDetails("Delta") | |
class Precision(Enum): | |
float16 = ModelDetails("float16") | |
bfloat16 = ModelDetails("bfloat16") | |
qt_8bit = ModelDetails("8bit") | |
qt_4bit = ModelDetails("4bit") | |
qt_GPTQ = ModelDetails("GPTQ") | |
Unknown = ModelDetails("?") | |
def from_str(precision): | |
if precision in ["torch.float16", "float16"]: | |
return Precision.float16 | |
if precision in ["torch.bfloat16", "bfloat16"]: | |
return Precision.bfloat16 | |
if precision in ["8bit"]: | |
return Precision.qt_8bit | |
if precision in ["4bit"]: | |
return Precision.qt_4bit | |
if precision in ["GPTQ", "None"]: | |
return Precision.qt_GPTQ | |
return Precision.Unknown | |
# Column selection | |
COLS = [c.name for c in fields(AutoEvalColumn)] | |
TYPES = [c.type for c in fields(AutoEvalColumn)] | |
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)] | |
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)] | |
NUMERIC_INTERVALS = { | |
"?": pd.Interval(-1, 0, closed="right"), | |
"~0.1": pd.Interval(0, 0.2, closed="right"), | |
"~0.3": pd.Interval(0.2, 0.4, closed="right"), | |
"~0.5": pd.Interval(0.4, 0.6, closed="right"), | |
"~0.7": pd.Interval(0.6, 0.8, closed="right"), | |
"0.8+": pd.Interval(0.8, 1.0, closed="right"), | |
} | |