from dataclasses import dataclass, make_dataclass from enum import Enum import json import logging from datetime import datetime import pandas as pd # Configure logging logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s") def parse_datetime(datetime_str): formats = [ "%Y-%m-%dT%H-%M-%S.%f", # Format with dashes "%Y-%m-%dT%H:%M:%S.%f", # Standard format with colons "%Y-%m-%dT%H %M %S.%f", # Spaces as separator ] for fmt in formats: try: return datetime.strptime(datetime_str, fmt) except ValueError: continue # in rare cases set unix start time for files with incorrect time (legacy files) logging.error(f"No valid date format found for: {datetime_str}") return datetime(1970, 1, 1) def load_json_data(file_path): """Safely load JSON data from a file.""" try: with open(file_path, "r") as file: return json.load(file) except json.JSONDecodeError: print(f"Error reading JSON from {file_path}") return None # Or raise an exception def fields(raw_class): return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"] @dataclass class Task: benchmark: str metric: str col_name: str class Tasks(Enum): math = Task("RussianMath", "score", "math_score") physics = Task("RussianPhysics", "score", "physics_score") combined = Task("Combined", "score", "score") # These classes are for user facing column names, # to avoid having to change them all around the code # when a modif is needed @dataclass(frozen=True) class ColumnContent: name: str type: str displayed_by_default: bool hidden: bool = False never_hidden: bool = False dummy: bool = False auto_eval_column_dict = [] # Init auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("model", "markdown", True, never_hidden=True)]) # Scores auto_eval_column_dict.append(["score", ColumnContent, ColumnContent("score", "number", True)]) for task in Tasks: if task != Tasks.combined: # Combined score уже добавлен выше auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)]) # Model information auto_eval_column_dict.append(["total_tokens", ColumnContent, ColumnContent("total_tokens", "number", False)]) auto_eval_column_dict.append(["evaluation_time", ColumnContent, ColumnContent("evaluation_time", "number", False)]) auto_eval_column_dict.append(["system_prompt", ColumnContent, ColumnContent("system_prompt", "str", False)]) # We use make dataclass to dynamically fill the scores from Tasks AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True) @dataclass(frozen=True) class EvalQueueColumn: # Queue column model = ColumnContent("model", "markdown", True) baseline_row = { AutoEvalColumn.model.name: "

Baseline

", AutoEvalColumn.score.name: 0.1, AutoEvalColumn.math.name: 0.1, AutoEvalColumn.physics.name: 0.1, AutoEvalColumn.total_tokens.name: 0, AutoEvalColumn.evaluation_time.name: 0, AutoEvalColumn.system_prompt.name: "Вы - полезный помощник по математике и физике. Ответьте на русском языке.", } # Define the human baselines human_baseline_row = { AutoEvalColumn.model.name: "

Human performance

", AutoEvalColumn.score.name: 0.9, AutoEvalColumn.math.name: 0.9, AutoEvalColumn.physics.name: 0.9, AutoEvalColumn.total_tokens.name: 0, AutoEvalColumn.evaluation_time.name: 0, AutoEvalColumn.system_prompt.name: "Вы - полезный помощник по математике и физике. Ответьте на русском языке.", } @dataclass class ModelDetails: name: str symbol: str = "" # emoji, only for the model type class ModelType(Enum): PT = ModelDetails(name="pretrained", symbol="🟢") CPT = ModelDetails(name="continuously pretrained", symbol="🟩") FT = ModelDetails(name="fine-tuned on domain-specific datasets", symbol="🔶") chat = ModelDetails(name="chat models (RLHF, DPO, IFT, ...)", symbol="💬") merges = ModelDetails(name="base merges and moerges", symbol="🤝") Unknown = ModelDetails(name="", symbol="?") def to_str(self, separator=" "): return f"{self.value.symbol}{separator}{self.value.name}" @staticmethod def from_str(type): if "fine-tuned" in type or "🔶" in type: return ModelType.FT if "continously pretrained" in type or "🟩" in type: return ModelType.CPT if "pretrained" in type or "🟢" in type: return ModelType.PT if any([k in type for k in ["instruction-tuned", "RL-tuned", "chat", "🟦", "⭕", "💬"]]): return ModelType.chat if "merge" in type or "🤝" in type: return ModelType.merges return ModelType.Unknown class WeightType(Enum): Adapter = ModelDetails("Adapter") Original = ModelDetails("Original") Delta = ModelDetails("Delta") class Precision(Enum): float16 = ModelDetails("float16") bfloat16 = ModelDetails("bfloat16") qt_8bit = ModelDetails("8bit") qt_4bit = ModelDetails("4bit") qt_GPTQ = ModelDetails("GPTQ") Unknown = ModelDetails("?") def from_str(precision): if precision in ["torch.float16", "float16"]: return Precision.float16 if precision in ["torch.bfloat16", "bfloat16"]: return Precision.bfloat16 if precision in ["8bit"]: return Precision.qt_8bit if precision in ["4bit"]: return Precision.qt_4bit if precision in ["GPTQ", "None"]: return Precision.qt_GPTQ return Precision.Unknown # Column selection COLS = [c.name for c in fields(AutoEvalColumn)] TYPES = [c.type for c in fields(AutoEvalColumn)] EVAL_COLS = [c.name for c in fields(EvalQueueColumn)] EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)] NUMERIC_INTERVALS = { "?": pd.Interval(-1, 0, closed="right"), "~0.1": pd.Interval(0, 0.2, closed="right"), "~0.3": pd.Interval(0.2, 0.4, closed="right"), "~0.5": pd.Interval(0.4, 0.6, closed="right"), "~0.7": pd.Interval(0.6, 0.8, closed="right"), "0.8+": pd.Interval(0.8, 1.0, closed="right"), }