GuanHuaYu student
commited on
Commit
·
61d758d
1
Parent(s):
c4598a9
Fix
Browse files- README.md +16 -0
- app.py +961 -125
- fault_classification_pmu.py +720 -58
- lstm_cnn_gradio_notebook.ipynb +0 -0
- requirements.txt +1 -1
- tcn_app.py +0 -0
- tcn_gradio_notebook.ipynb +0 -0
README.md
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: Fault Classification PMU
|
| 3 |
+
emoji: ⚡️
|
| 4 |
+
colorFrom: blue
|
| 5 |
+
colorTo: purple
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: "4.44.1"
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
---
|
| 11 |
+
|
| 12 |
+
# Fault Classification for PMU and PV Systems
|
| 13 |
+
|
| 14 |
+
This Space hosts the Gradio front end used to retrain and serve fault classification models for transmission lines and grid-connected photovoltaic systems. It loads pre-trained Keras models and feature scalers, accepts bulk CSV uploads for continued training, and exposes interactive inference utilities for high-frequency PMU measurements.
|
| 15 |
+
|
| 16 |
+
Refer to `app.py` for the interface definition and to `fault_classification_pmu.py` for the training pipeline that supports CNN-LSTM, TCN, and SVM architectures.
|
app.py
CHANGED
|
@@ -10,10 +10,15 @@ from __future__ import annotations
|
|
| 10 |
|
| 11 |
import json
|
| 12 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
import re
|
| 14 |
-
import socket
|
| 15 |
from pathlib import Path
|
| 16 |
-
from typing import Dict, List, Optional, Sequence, Tuple
|
| 17 |
|
| 18 |
import gradio as gr
|
| 19 |
import joblib
|
|
@@ -22,29 +27,16 @@ import pandas as pd
|
|
| 22 |
from huggingface_hub import hf_hub_download
|
| 23 |
from tensorflow.keras.models import load_model
|
| 24 |
|
| 25 |
-
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
# --------------------------------------------------------------------------------------
|
| 29 |
# Configuration
|
| 30 |
# --------------------------------------------------------------------------------------
|
| 31 |
-
DEFAULT_FEATURE_COLUMNS: List[str] =
|
| 32 |
-
"[325] UPMU_SUB22:FREQ",
|
| 33 |
-
"[326] UPMU_SUB22:DFDT",
|
| 34 |
-
"[327] UPMU_SUB22:FLAG",
|
| 35 |
-
"[328] UPMU_SUB22-L1:MAG",
|
| 36 |
-
"[329] UPMU_SUB22-L1:ANG",
|
| 37 |
-
"[330] UPMU_SUB22-L2:MAG",
|
| 38 |
-
"[331] UPMU_SUB22-L2:ANG",
|
| 39 |
-
"[332] UPMU_SUB22-L3:MAG",
|
| 40 |
-
"[333] UPMU_SUB22-L3:ANG",
|
| 41 |
-
"[334] UPMU_SUB22-C1:MAG",
|
| 42 |
-
"[335] UPMU_SUB22-C1:ANG",
|
| 43 |
-
"[336] UPMU_SUB22-C2:MAG",
|
| 44 |
-
"[337] UPMU_SUB22-C2:ANG",
|
| 45 |
-
"[338] UPMU_SUB22-C3:MAG",
|
| 46 |
-
"[339] UPMU_SUB22-C3:ANG",
|
| 47 |
-
]
|
| 48 |
DEFAULT_SEQUENCE_LENGTH = 32
|
| 49 |
DEFAULT_STRIDE = 4
|
| 50 |
|
|
@@ -70,23 +62,35 @@ def download_from_hub(filename: str) -> Optional[Path]:
|
|
| 70 |
return None
|
| 71 |
try:
|
| 72 |
print(f"Downloading {filename} from {HUB_REPO} ...")
|
|
|
|
| 73 |
path = hf_hub_download(repo_id=HUB_REPO, filename=filename)
|
| 74 |
print("Downloaded", path)
|
| 75 |
return Path(path)
|
| 76 |
except Exception as exc: # pragma: no cover - logging convenience
|
| 77 |
print("Failed to download", filename, "from", HUB_REPO, ":", exc)
|
|
|
|
| 78 |
return None
|
| 79 |
|
| 80 |
|
| 81 |
def resolve_artifact(local_name: str, env_var: str, hub_filename: str) -> Optional[Path]:
|
|
|
|
| 82 |
candidates = [Path(local_name)] if local_name else []
|
| 83 |
env_value = os.environ.get(env_var)
|
| 84 |
if env_value:
|
| 85 |
candidates.append(Path(env_value))
|
|
|
|
| 86 |
for candidate in candidates:
|
| 87 |
if candidate and candidate.exists():
|
|
|
|
| 88 |
return candidate
|
| 89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
|
| 91 |
|
| 92 |
def load_metadata(path: Optional[Path]) -> Dict:
|
|
@@ -98,11 +102,62 @@ def load_metadata(path: Optional[Path]) -> Dict:
|
|
| 98 |
return {}
|
| 99 |
|
| 100 |
|
| 101 |
-
def
|
| 102 |
if not path:
|
| 103 |
return None
|
| 104 |
try:
|
| 105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
print("Loaded model from", path)
|
| 107 |
return model
|
| 108 |
except Exception as exc: # pragma: no cover - runtime diagnostics
|
|
@@ -110,34 +165,360 @@ def try_load_model(path: Optional[Path]):
|
|
| 110 |
return None
|
| 111 |
|
| 112 |
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
try:
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
except Exception
|
| 121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
return None
|
| 123 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
|
| 125 |
-
|
| 126 |
-
SCALER_PATH = resolve_artifact(LOCAL_SCALER_FILE, ENV_SCALER_PATH, HUB_SCALER_FILENAME)
|
| 127 |
-
METADATA_PATH = resolve_artifact(LOCAL_METADATA_FILE, ENV_METADATA_PATH, HUB_METADATA_FILENAME)
|
| 128 |
|
| 129 |
-
MODEL = try_load_model(MODEL_PATH)
|
| 130 |
-
SCALER = try_load_scaler(SCALER_PATH)
|
| 131 |
-
METADATA = load_metadata(METADATA_PATH)
|
| 132 |
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
|
| 139 |
-
|
| 140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
|
| 142 |
# --------------------------------------------------------------------------------------
|
| 143 |
# Pre-processing helpers
|
|
@@ -146,8 +527,11 @@ if MODEL is not None and not LABEL_CLASSES:
|
|
| 146 |
def ensure_ready():
|
| 147 |
if MODEL is None or SCALER is None:
|
| 148 |
raise RuntimeError(
|
| 149 |
-
"
|
| 150 |
-
"
|
|
|
|
|
|
|
|
|
|
| 151 |
)
|
| 152 |
|
| 153 |
|
|
@@ -155,7 +539,7 @@ def parse_text_features(text: str) -> np.ndarray:
|
|
| 155 |
cleaned = re.sub(r"[;\n\t]+", ",", text.strip())
|
| 156 |
arr = np.fromstring(cleaned, sep=",")
|
| 157 |
if arr.size == 0:
|
| 158 |
-
raise ValueError("
|
| 159 |
return arr.astype(np.float32)
|
| 160 |
|
| 161 |
|
|
@@ -171,7 +555,8 @@ def apply_scaler(sequences: np.ndarray) -> np.ndarray:
|
|
| 171 |
def make_sliding_windows(data: np.ndarray, sequence_length: int, stride: int) -> np.ndarray:
|
| 172 |
if data.shape[0] < sequence_length:
|
| 173 |
raise ValueError(
|
| 174 |
-
f"
|
|
|
|
| 175 |
)
|
| 176 |
windows = [data[start : start + sequence_length] for start in range(0, data.shape[0] - sequence_length + 1, stride)]
|
| 177 |
return np.stack(windows)
|
|
@@ -204,7 +589,8 @@ def dataframe_to_sequences(
|
|
| 204 |
if sequence_length == 1 and array.shape[1] == n_features:
|
| 205 |
return array.reshape(array.shape[0], 1, n_features)
|
| 206 |
raise ValueError(
|
| 207 |
-
"CSV
|
|
|
|
| 208 |
)
|
| 209 |
|
| 210 |
|
|
@@ -248,10 +634,18 @@ def probabilities_to_json(probabilities: np.ndarray) -> List[Dict[str, object]]:
|
|
| 248 |
def predict_sequences(sequences: np.ndarray) -> Tuple[str, pd.DataFrame, List[Dict[str, object]]]:
|
| 249 |
ensure_ready()
|
| 250 |
sequences = apply_scaler(sequences.astype(np.float32))
|
| 251 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 252 |
table = format_predictions(probs)
|
| 253 |
json_probs = probabilities_to_json(probs)
|
| 254 |
-
|
|
|
|
| 255 |
return status, table, json_probs
|
| 256 |
|
| 257 |
|
|
@@ -260,21 +654,23 @@ def predict_from_text(text: str, sequence_length: int) -> Tuple[str, pd.DataFram
|
|
| 260 |
n_features = len(FEATURE_COLUMNS)
|
| 261 |
if arr.size % n_features != 0:
|
| 262 |
raise ValueError(
|
| 263 |
-
f"
|
|
|
|
| 264 |
)
|
| 265 |
timesteps = arr.size // n_features
|
| 266 |
if timesteps != sequence_length:
|
| 267 |
raise ValueError(
|
| 268 |
-
f"
|
|
|
|
| 269 |
)
|
| 270 |
sequences = arr.reshape(1, sequence_length, n_features)
|
| 271 |
status, table, probs = predict_sequences(sequences)
|
| 272 |
-
status = f"
|
| 273 |
return status, table, probs
|
| 274 |
|
| 275 |
|
| 276 |
def predict_from_csv(file_obj, sequence_length: int, stride: int) -> Tuple[str, pd.DataFrame, List[Dict[str, object]]]:
|
| 277 |
-
df =
|
| 278 |
sequences = dataframe_to_sequences(
|
| 279 |
df,
|
| 280 |
sequence_length=sequence_length,
|
|
@@ -282,82 +678,497 @@ def predict_from_csv(file_obj, sequence_length: int, stride: int) -> Tuple[str,
|
|
| 282 |
feature_columns=FEATURE_COLUMNS,
|
| 283 |
)
|
| 284 |
status, table, probs = predict_sequences(sequences)
|
| 285 |
-
status = f"CSV
|
| 286 |
return status, table, probs
|
| 287 |
|
| 288 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 289 |
# --------------------------------------------------------------------------------------
|
| 290 |
# Gradio interface
|
| 291 |
# --------------------------------------------------------------------------------------
|
| 292 |
|
| 293 |
def build_interface() -> gr.Blocks:
|
| 294 |
-
|
| 295 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 296 |
if MODEL is None or SCALER is None:
|
| 297 |
gr.Markdown(
|
| 298 |
-
"⚠️
|
| 299 |
-
"`pmu_feature_scaler.pkl
|
|
|
|
| 300 |
)
|
| 301 |
else:
|
|
|
|
| 302 |
gr.Markdown(
|
| 303 |
-
"
|
|
|
|
|
|
|
|
|
|
| 304 |
)
|
| 305 |
|
| 306 |
-
with gr.Accordion("
|
| 307 |
gr.Markdown(
|
| 308 |
-
f"
|
| 309 |
+ "\n".join(f"- {name}" for name in FEATURE_COLUMNS)
|
| 310 |
)
|
| 311 |
gr.Markdown(
|
| 312 |
-
f"
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
with gr.Row():
|
| 316 |
-
file_in = gr.File(label="上传 PMU CSV", file_types=[".csv"])
|
| 317 |
-
text_in = gr.Textbox(
|
| 318 |
-
lines=4,
|
| 319 |
-
label="或粘贴单个窗口的逗号分隔特征",
|
| 320 |
-
placeholder="49.97772,1.215825E-38,...",
|
| 321 |
-
)
|
| 322 |
-
|
| 323 |
-
with gr.Row():
|
| 324 |
-
sequence_length_input = gr.Slider(
|
| 325 |
-
minimum=1,
|
| 326 |
-
maximum=max(1, SEQUENCE_LENGTH * 2),
|
| 327 |
-
step=1,
|
| 328 |
-
value=SEQUENCE_LENGTH,
|
| 329 |
-
label="序列长度 (timesteps)",
|
| 330 |
)
|
| 331 |
-
stride_input = gr.Slider(
|
| 332 |
-
minimum=1,
|
| 333 |
-
maximum=max(1, SEQUENCE_LENGTH),
|
| 334 |
-
step=1,
|
| 335 |
-
value=max(1, DEFAULT_WINDOW_STRIDE),
|
| 336 |
-
label="CSV 滑动窗口步长",
|
| 337 |
-
)
|
| 338 |
-
|
| 339 |
-
predict_btn = gr.Button("执行预测", variant="primary")
|
| 340 |
-
status_out = gr.Textbox(label="状态", interactive=False)
|
| 341 |
-
table_out = gr.Dataframe(headers=["window", "predicted_label", "confidence", "top3"], label="预测结果", interactive=False)
|
| 342 |
-
probs_out = gr.JSON(label="各窗口概率分布")
|
| 343 |
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 361 |
|
| 362 |
return demo
|
| 363 |
|
|
@@ -366,33 +1177,58 @@ def build_interface() -> gr.Blocks:
|
|
| 366 |
# Launch helpers
|
| 367 |
# --------------------------------------------------------------------------------------
|
| 368 |
|
| 369 |
-
def
|
| 370 |
-
|
| 371 |
-
s.bind(("", 0))
|
| 372 |
-
return s.getsockname()[1]
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
def choose_port() -> Optional[int]:
|
| 376 |
-
for env_var in ("GRADIO_SERVER_PORT", "PORT"):
|
| 377 |
value = os.environ.get(env_var)
|
| 378 |
if value:
|
| 379 |
try:
|
| 380 |
return int(value)
|
| 381 |
except ValueError:
|
| 382 |
-
|
| 383 |
-
return
|
| 384 |
|
| 385 |
|
| 386 |
def main():
|
| 387 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 388 |
try:
|
| 389 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 390 |
print(f"Launching Gradio app on port {port}")
|
| 391 |
-
demo.launch(server_name="0.0.0.0", server_port=port)
|
| 392 |
except OSError as exc:
|
| 393 |
print("Failed to launch on requested port:", exc)
|
| 394 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 395 |
|
| 396 |
|
| 397 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 398 |
main()
|
|
|
|
| 10 |
|
| 11 |
import json
|
| 12 |
import os
|
| 13 |
+
import shutil
|
| 14 |
+
|
| 15 |
+
os.environ.setdefault("CUDA_VISIBLE_DEVICES", "-1")
|
| 16 |
+
os.environ.setdefault("TF_CPP_MIN_LOG_LEVEL", "2")
|
| 17 |
+
os.environ.setdefault("TF_ENABLE_ONEDNN_OPTS", "0")
|
| 18 |
+
|
| 19 |
import re
|
|
|
|
| 20 |
from pathlib import Path
|
| 21 |
+
from typing import Any, Dict, List, Optional, Sequence, Tuple
|
| 22 |
|
| 23 |
import gradio as gr
|
| 24 |
import joblib
|
|
|
|
| 27 |
from huggingface_hub import hf_hub_download
|
| 28 |
from tensorflow.keras.models import load_model
|
| 29 |
|
| 30 |
+
from fault_classification_pmu import (
|
| 31 |
+
DEFAULT_FEATURE_COLUMNS as TRAINING_DEFAULT_FEATURE_COLUMNS,
|
| 32 |
+
LABEL_GUESS_CANDIDATES as TRAINING_LABEL_GUESSES,
|
| 33 |
+
train_from_dataframe,
|
| 34 |
+
)
|
| 35 |
|
| 36 |
# --------------------------------------------------------------------------------------
|
| 37 |
# Configuration
|
| 38 |
# --------------------------------------------------------------------------------------
|
| 39 |
+
DEFAULT_FEATURE_COLUMNS: List[str] = list(TRAINING_DEFAULT_FEATURE_COLUMNS)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
DEFAULT_SEQUENCE_LENGTH = 32
|
| 41 |
DEFAULT_STRIDE = 4
|
| 42 |
|
|
|
|
| 62 |
return None
|
| 63 |
try:
|
| 64 |
print(f"Downloading {filename} from {HUB_REPO} ...")
|
| 65 |
+
# Add timeout to prevent hanging
|
| 66 |
path = hf_hub_download(repo_id=HUB_REPO, filename=filename)
|
| 67 |
print("Downloaded", path)
|
| 68 |
return Path(path)
|
| 69 |
except Exception as exc: # pragma: no cover - logging convenience
|
| 70 |
print("Failed to download", filename, "from", HUB_REPO, ":", exc)
|
| 71 |
+
print("Continuing without pre-trained model...")
|
| 72 |
return None
|
| 73 |
|
| 74 |
|
| 75 |
def resolve_artifact(local_name: str, env_var: str, hub_filename: str) -> Optional[Path]:
|
| 76 |
+
print(f"Resolving artifact: {local_name}, env: {env_var}, hub: {hub_filename}")
|
| 77 |
candidates = [Path(local_name)] if local_name else []
|
| 78 |
env_value = os.environ.get(env_var)
|
| 79 |
if env_value:
|
| 80 |
candidates.append(Path(env_value))
|
| 81 |
+
|
| 82 |
for candidate in candidates:
|
| 83 |
if candidate and candidate.exists():
|
| 84 |
+
print(f"Found local artifact: {candidate}")
|
| 85 |
return candidate
|
| 86 |
+
|
| 87 |
+
print(f"No local artifacts found, checking hub...")
|
| 88 |
+
# Only try to download if we have a hub repo configured
|
| 89 |
+
if HUB_REPO:
|
| 90 |
+
return download_from_hub(hub_filename)
|
| 91 |
+
else:
|
| 92 |
+
print("No HUB_REPO configured, skipping download")
|
| 93 |
+
return None
|
| 94 |
|
| 95 |
|
| 96 |
def load_metadata(path: Optional[Path]) -> Dict:
|
|
|
|
| 102 |
return {}
|
| 103 |
|
| 104 |
|
| 105 |
+
def try_load_scaler(path: Optional[Path]):
|
| 106 |
if not path:
|
| 107 |
return None
|
| 108 |
try:
|
| 109 |
+
scaler = joblib.load(path)
|
| 110 |
+
print("Loaded scaler from", path)
|
| 111 |
+
return scaler
|
| 112 |
+
except Exception as exc:
|
| 113 |
+
print("Failed to load scaler", path, exc)
|
| 114 |
+
return None
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
# Initialize paths with error handling
|
| 118 |
+
print("Starting application initialization...")
|
| 119 |
+
try:
|
| 120 |
+
MODEL_PATH = resolve_artifact(LOCAL_MODEL_FILE, ENV_MODEL_PATH, HUB_MODEL_FILENAME)
|
| 121 |
+
print(f"Model path resolved: {MODEL_PATH}")
|
| 122 |
+
except Exception as e:
|
| 123 |
+
print(f"Model path resolution failed: {e}")
|
| 124 |
+
MODEL_PATH = None
|
| 125 |
+
|
| 126 |
+
try:
|
| 127 |
+
SCALER_PATH = resolve_artifact(LOCAL_SCALER_FILE, ENV_SCALER_PATH, HUB_SCALER_FILENAME)
|
| 128 |
+
print(f"Scaler path resolved: {SCALER_PATH}")
|
| 129 |
+
except Exception as e:
|
| 130 |
+
print(f"Scaler path resolution failed: {e}")
|
| 131 |
+
SCALER_PATH = None
|
| 132 |
+
|
| 133 |
+
try:
|
| 134 |
+
METADATA_PATH = resolve_artifact(LOCAL_METADATA_FILE, ENV_METADATA_PATH, HUB_METADATA_FILENAME)
|
| 135 |
+
print(f"Metadata path resolved: {METADATA_PATH}")
|
| 136 |
+
except Exception as e:
|
| 137 |
+
print(f"Metadata path resolution failed: {e}")
|
| 138 |
+
METADATA_PATH = None
|
| 139 |
+
|
| 140 |
+
try:
|
| 141 |
+
METADATA = load_metadata(METADATA_PATH)
|
| 142 |
+
print(f"Metadata loaded: {len(METADATA)} entries")
|
| 143 |
+
except Exception as e:
|
| 144 |
+
print(f"Metadata loading failed: {e}")
|
| 145 |
+
METADATA = {}
|
| 146 |
+
|
| 147 |
+
# Queuing configuration
|
| 148 |
+
QUEUE_MAX_SIZE = 32
|
| 149 |
+
# Apply a small per-event concurrency limit to avoid relying on the deprecated
|
| 150 |
+
# ``concurrency_count`` parameter when enabling Gradio's request queue.
|
| 151 |
+
EVENT_CONCURRENCY_LIMIT = 2
|
| 152 |
+
|
| 153 |
+
def try_load_model(path: Optional[Path], model_type: str, model_format: str):
|
| 154 |
+
if not path:
|
| 155 |
+
return None
|
| 156 |
+
try:
|
| 157 |
+
if model_type == "svm" or model_format == "joblib":
|
| 158 |
+
model = joblib.load(path)
|
| 159 |
+
else:
|
| 160 |
+
model = load_model(path)
|
| 161 |
print("Loaded model from", path)
|
| 162 |
return model
|
| 163 |
except Exception as exc: # pragma: no cover - runtime diagnostics
|
|
|
|
| 165 |
return None
|
| 166 |
|
| 167 |
|
| 168 |
+
FEATURE_COLUMNS: List[str] = list(DEFAULT_FEATURE_COLUMNS)
|
| 169 |
+
LABEL_CLASSES: List[str] = []
|
| 170 |
+
LABEL_COLUMN: str = "Fault"
|
| 171 |
+
SEQUENCE_LENGTH: int = DEFAULT_SEQUENCE_LENGTH
|
| 172 |
+
DEFAULT_WINDOW_STRIDE: int = DEFAULT_STRIDE
|
| 173 |
+
MODEL_TYPE: str = "cnn_lstm"
|
| 174 |
+
MODEL_FORMAT: str = "keras"
|
| 175 |
+
|
| 176 |
+
MODEL_FILENAME_BY_TYPE: Dict[str, str] = {
|
| 177 |
+
"cnn_lstm": LOCAL_MODEL_FILE,
|
| 178 |
+
"tcn": "pmu_tcn_model.keras",
|
| 179 |
+
"svm": "pmu_svm_model.joblib",
|
| 180 |
+
}
|
| 181 |
+
|
| 182 |
+
REQUIRED_PMU_COLUMNS: Tuple[str, ...] = tuple(DEFAULT_FEATURE_COLUMNS)
|
| 183 |
+
TRAINING_UPLOAD_DIR = Path(os.environ.get("PMU_TRAINING_UPLOAD_DIR", "training_uploads"))
|
| 184 |
+
TRAINING_UPLOAD_DIR.mkdir(parents=True, exist_ok=True)
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
def _normalise_header(name: str) -> str:
|
| 188 |
+
return str(name).strip().lower()
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
def guess_label_from_columns(columns: Sequence[str], preferred: Optional[str] = None) -> Optional[str]:
|
| 192 |
+
if not columns:
|
| 193 |
+
return preferred
|
| 194 |
+
|
| 195 |
+
lookup = {_normalise_header(col): str(col) for col in columns}
|
| 196 |
+
|
| 197 |
+
if preferred:
|
| 198 |
+
preferred_stripped = preferred.strip()
|
| 199 |
+
for col in columns:
|
| 200 |
+
if str(col).strip() == preferred_stripped:
|
| 201 |
+
return str(col)
|
| 202 |
+
preferred_norm = _normalise_header(preferred)
|
| 203 |
+
if preferred_norm in lookup:
|
| 204 |
+
return lookup[preferred_norm]
|
| 205 |
+
|
| 206 |
+
for guess in TRAINING_LABEL_GUESSES:
|
| 207 |
+
guess_norm = _normalise_header(guess)
|
| 208 |
+
if guess_norm in lookup:
|
| 209 |
+
return lookup[guess_norm]
|
| 210 |
+
|
| 211 |
+
for col in columns:
|
| 212 |
+
if _normalise_header(col).startswith("fault"):
|
| 213 |
+
return str(col)
|
| 214 |
+
|
| 215 |
+
return str(columns[0])
|
| 216 |
+
|
| 217 |
+
|
| 218 |
+
def summarise_training_files(paths: Sequence[str], notes: Sequence[str]) -> str:
|
| 219 |
+
lines = [Path(path).name for path in paths]
|
| 220 |
+
lines.extend(notes)
|
| 221 |
+
return "\n".join(lines) if lines else "No training files selected."
|
| 222 |
+
|
| 223 |
+
|
| 224 |
+
def read_training_status(status_file_path: str) -> str:
|
| 225 |
+
"""Read the current training status from file."""
|
| 226 |
try:
|
| 227 |
+
if Path(status_file_path).exists():
|
| 228 |
+
with open(status_file_path, 'r') as f:
|
| 229 |
+
return f.read().strip()
|
| 230 |
+
except Exception:
|
| 231 |
+
pass
|
| 232 |
+
return "Training status unavailable"
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
def _persist_uploaded_file(file_obj) -> Optional[Path]:
|
| 236 |
+
if file_obj is None:
|
| 237 |
return None
|
| 238 |
|
| 239 |
+
if isinstance(file_obj, (str, Path)):
|
| 240 |
+
source = Path(file_obj)
|
| 241 |
+
original_name = source.name
|
| 242 |
+
else:
|
| 243 |
+
source = Path(getattr(file_obj, "name", "") or getattr(file_obj, "path", ""))
|
| 244 |
+
original_name = getattr(file_obj, "orig_name", source.name) or source.name
|
| 245 |
+
if not source or not source.exists():
|
| 246 |
+
return None
|
| 247 |
+
|
| 248 |
+
original_name = Path(original_name).name or source.name
|
| 249 |
+
|
| 250 |
+
base_path = Path(original_name)
|
| 251 |
+
destination = TRAINING_UPLOAD_DIR / base_path.name
|
| 252 |
+
counter = 1
|
| 253 |
+
while destination.exists():
|
| 254 |
+
suffix = base_path.suffix or ".csv"
|
| 255 |
+
destination = TRAINING_UPLOAD_DIR / f"{base_path.stem}_{counter}{suffix}"
|
| 256 |
+
counter += 1
|
| 257 |
+
|
| 258 |
+
shutil.copy2(source, destination)
|
| 259 |
+
return destination
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
def append_training_files(new_files, existing_paths: Sequence[str], current_label: str):
|
| 263 |
+
if isinstance(existing_paths, (str, Path)):
|
| 264 |
+
paths: List[str] = [str(existing_paths)]
|
| 265 |
+
elif existing_paths is None:
|
| 266 |
+
paths = []
|
| 267 |
+
else:
|
| 268 |
+
paths = list(existing_paths)
|
| 269 |
+
if new_files:
|
| 270 |
+
for file in new_files:
|
| 271 |
+
persisted = _persist_uploaded_file(file)
|
| 272 |
+
if persisted is None:
|
| 273 |
+
continue
|
| 274 |
+
path_str = str(persisted)
|
| 275 |
+
if path_str not in paths:
|
| 276 |
+
paths.append(path_str)
|
| 277 |
+
|
| 278 |
+
valid_paths: List[str] = []
|
| 279 |
+
notes: List[str] = []
|
| 280 |
+
columns_map: Dict[str, str] = {}
|
| 281 |
+
for path in paths:
|
| 282 |
+
try:
|
| 283 |
+
df = load_measurement_csv(path)
|
| 284 |
+
except Exception as exc: # pragma: no cover - user file diagnostics
|
| 285 |
+
notes.append(f"⚠️ Skipped {Path(path).name}: {exc}")
|
| 286 |
+
try:
|
| 287 |
+
Path(path).unlink(missing_ok=True)
|
| 288 |
+
except Exception:
|
| 289 |
+
pass
|
| 290 |
+
continue
|
| 291 |
+
valid_paths.append(path)
|
| 292 |
+
for col in df.columns:
|
| 293 |
+
columns_map[_normalise_header(col)] = str(col)
|
| 294 |
+
|
| 295 |
+
paths = valid_paths
|
| 296 |
+
summary = summarise_training_files(paths, notes)
|
| 297 |
+
column_choices = sorted(columns_map.values())
|
| 298 |
+
preferred = current_label or LABEL_COLUMN
|
| 299 |
+
guessed = guess_label_from_columns(column_choices, preferred)
|
| 300 |
+
dropdown_choices = column_choices if column_choices else [preferred or LABEL_COLUMN]
|
| 301 |
+
dropdown_value = guessed or preferred or LABEL_COLUMN
|
| 302 |
|
| 303 |
+
return paths, summary, gr.update(choices=dropdown_choices, value=dropdown_value)
|
|
|
|
|
|
|
| 304 |
|
|
|
|
|
|
|
|
|
|
| 305 |
|
| 306 |
+
def clear_training_files():
|
| 307 |
+
default_label = LABEL_COLUMN or "Fault"
|
| 308 |
+
for cached_file in TRAINING_UPLOAD_DIR.glob("*"):
|
| 309 |
+
try:
|
| 310 |
+
if cached_file.is_file():
|
| 311 |
+
cached_file.unlink(missing_ok=True)
|
| 312 |
+
except Exception:
|
| 313 |
+
pass
|
| 314 |
+
return (
|
| 315 |
+
[],
|
| 316 |
+
"No training files selected.",
|
| 317 |
+
gr.update(choices=[default_label], value=default_label),
|
| 318 |
+
gr.update(value=None),
|
| 319 |
+
)
|
| 320 |
+
|
| 321 |
+
PROJECT_OVERVIEW_MD = """
|
| 322 |
+
## Project Overview
|
| 323 |
+
|
| 324 |
+
This project focuses on classifying faults in electrical transmission lines and
|
| 325 |
+
grid-connected photovoltaic (PV) systems by combining ensemble learning
|
| 326 |
+
techniques with deep neural architectures.
|
| 327 |
+
|
| 328 |
+
## Datasets
|
| 329 |
+
|
| 330 |
+
### Transmission Line Fault Dataset
|
| 331 |
+
- 134,406 samples collected from Phasor Measurement Units (PMUs)
|
| 332 |
+
- 14 monitored channels covering currents, voltages, magnitudes, frequency, and phase angles
|
| 333 |
+
- Labels span symmetrical and asymmetrical faults: NF, L-G, LL, LL-G, LLL, and LLL-G
|
| 334 |
+
- Time span: 0 to 5.7 seconds with high-frequency sampling
|
| 335 |
+
|
| 336 |
+
### Grid-Connected PV System Fault Dataset
|
| 337 |
+
- 2,163,480 samples from 16 experimental scenarios
|
| 338 |
+
- 14 features including PV array measurements (Ipv, Vpv, Vdc), three-phase currents/voltages, aggregate magnitudes (Iabc, Vabc), and frequency indicators (If, Vf)
|
| 339 |
+
- Captures array, inverter, grid anomaly, feedback sensor, and MPPT controller faults at 9.9989 μs sampling intervals
|
| 340 |
+
|
| 341 |
+
## Data Format Quick Reference
|
| 342 |
+
|
| 343 |
+
Each measurement file may be comma or tab separated and typically exposes the
|
| 344 |
+
following ordered columns:
|
| 345 |
+
|
| 346 |
+
1. `Timestamp`
|
| 347 |
+
2. `[325] UPMU_SUB22:FREQ` – system frequency (Hz)
|
| 348 |
+
3. `[326] UPMU_SUB22:DFDT` – frequency rate-of-change
|
| 349 |
+
4. `[327] UPMU_SUB22:FLAG` – PMU status flag
|
| 350 |
+
5. `[328] UPMU_SUB22-L1:MAG` – phase A voltage magnitude
|
| 351 |
+
6. `[329] UPMU_SUB22-L1:ANG` – phase A voltage angle
|
| 352 |
+
7. `[330] UPMU_SUB22-L2:MAG` – phase B voltage magnitude
|
| 353 |
+
8. `[331] UPMU_SUB22-L2:ANG` – phase B voltage angle
|
| 354 |
+
9. `[332] UPMU_SUB22-L3:MAG` – phase C voltage magnitude
|
| 355 |
+
10. `[333] UPMU_SUB22-L3:ANG` – phase C voltage angle
|
| 356 |
+
11. `[334] UPMU_SUB22-C1:MAG` – phase A current magnitude
|
| 357 |
+
12. `[335] UPMU_SUB22-C1:ANG` – phase A current angle
|
| 358 |
+
13. `[336] UPMU_SUB22-C2:MAG` – phase B current magnitude
|
| 359 |
+
14. `[337] UPMU_SUB22-C2:ANG` – phase B current angle
|
| 360 |
+
15. `[338] UPMU_SUB22-C3:MAG` – phase C current magnitude
|
| 361 |
+
16. `[339] UPMU_SUB22-C3:ANG` – phase C current angle
|
| 362 |
+
|
| 363 |
+
Upload as many hourly CSV exports as needed—the training tab concatenates them
|
| 364 |
+
before building sliding windows.
|
| 365 |
+
|
| 366 |
+
## Models Developed
|
| 367 |
+
|
| 368 |
+
1. **Support Vector Machine (SVM)** – provides the classical machine learning baseline with balanced accuracy across both datasets (85% PMU / 83% PV).
|
| 369 |
+
2. **CNN-LSTM** – couples convolutional feature extraction with temporal memory, achieving 92% PMU / 89% PV accuracy.
|
| 370 |
+
3. **Temporal Convolutional Network (TCN)** – leverages dilated convolutions for long-range context and delivers the best trade-off between accuracy and training time (94% PMU / 91% PV).
|
| 371 |
+
|
| 372 |
+
## Results Summary
|
| 373 |
+
|
| 374 |
+
- **Transmission Line Fault Classification**: SVM 85%, CNN-LSTM 92%, TCN 94%
|
| 375 |
+
- **PV System Fault Classification**: SVM 83%, CNN-LSTM 89%, TCN 91%
|
| 376 |
+
|
| 377 |
+
Use the **Inference** tab to score new PMU/PV windows and the **Training** tab to
|
| 378 |
+
fine-tune or retrain any of the supported models directly within Hugging Face
|
| 379 |
+
Spaces. The logs panel will surface TensorBoard archives whenever deep-learning
|
| 380 |
+
models are trained.
|
| 381 |
+
"""
|
| 382 |
+
|
| 383 |
|
| 384 |
+
def load_measurement_csv(path: str) -> pd.DataFrame:
|
| 385 |
+
"""Read a PMU/PV measurement file with flexible separators and column mapping."""
|
| 386 |
+
|
| 387 |
+
try:
|
| 388 |
+
df = pd.read_csv(path, sep=None, engine="python", encoding="utf-8-sig")
|
| 389 |
+
except Exception:
|
| 390 |
+
df = None
|
| 391 |
+
for separator in ("\t", ",", ";"):
|
| 392 |
+
try:
|
| 393 |
+
df = pd.read_csv(path, sep=separator, engine="python", encoding="utf-8-sig")
|
| 394 |
+
break
|
| 395 |
+
except Exception:
|
| 396 |
+
df = None
|
| 397 |
+
if df is None:
|
| 398 |
+
raise
|
| 399 |
+
|
| 400 |
+
# Clean column names
|
| 401 |
+
df.columns = [str(col).strip() for col in df.columns]
|
| 402 |
+
|
| 403 |
+
print(f"Loaded CSV with {len(df)} rows and {len(df.columns)} columns")
|
| 404 |
+
print(f"Columns: {list(df.columns)}")
|
| 405 |
+
print(f"Data shape: {df.shape}")
|
| 406 |
+
|
| 407 |
+
# Check if we have enough data for training
|
| 408 |
+
if len(df) < 100:
|
| 409 |
+
print(f"Warning: Only {len(df)} rows of data. Recommend at least 1000 rows for effective training.")
|
| 410 |
+
|
| 411 |
+
# Check for label column
|
| 412 |
+
has_label = any(col.lower() in ['fault', 'label', 'class', 'target'] for col in df.columns)
|
| 413 |
+
if not has_label:
|
| 414 |
+
print("Warning: No label column found. Adding dummy 'Fault' column with value 'Normal' for all samples.")
|
| 415 |
+
df['Fault'] = 'Normal' # Add dummy label for training
|
| 416 |
+
|
| 417 |
+
# Create column mapping - map similar column names to expected format
|
| 418 |
+
column_mapping = {}
|
| 419 |
+
expected_cols = list(REQUIRED_PMU_COLUMNS)
|
| 420 |
+
|
| 421 |
+
# If we have at least the right number of numeric columns after Timestamp, use positional mapping
|
| 422 |
+
if "Timestamp" in df.columns:
|
| 423 |
+
numeric_cols = [col for col in df.columns if col != "Timestamp"]
|
| 424 |
+
if len(numeric_cols) >= len(expected_cols):
|
| 425 |
+
# Map by position (after Timestamp)
|
| 426 |
+
for i, expected_col in enumerate(expected_cols):
|
| 427 |
+
if i < len(numeric_cols):
|
| 428 |
+
column_mapping[numeric_cols[i]] = expected_col
|
| 429 |
+
|
| 430 |
+
# Rename columns to match expected format
|
| 431 |
+
df = df.rename(columns=column_mapping)
|
| 432 |
+
|
| 433 |
+
# Check if we have the required columns after mapping
|
| 434 |
+
missing = [col for col in REQUIRED_PMU_COLUMNS if col not in df.columns]
|
| 435 |
+
if missing:
|
| 436 |
+
# If still missing, try a more flexible approach
|
| 437 |
+
available_numeric = df.select_dtypes(include=[np.number]).columns.tolist()
|
| 438 |
+
if len(available_numeric) >= len(expected_cols):
|
| 439 |
+
# Use the first N numeric columns
|
| 440 |
+
for i, expected_col in enumerate(expected_cols):
|
| 441 |
+
if i < len(available_numeric):
|
| 442 |
+
if available_numeric[i] not in df.columns:
|
| 443 |
+
continue
|
| 444 |
+
df = df.rename(columns={available_numeric[i]: expected_col})
|
| 445 |
+
|
| 446 |
+
# Recheck missing columns
|
| 447 |
+
missing = [col for col in REQUIRED_PMU_COLUMNS if col not in df.columns]
|
| 448 |
+
|
| 449 |
+
if missing:
|
| 450 |
+
missing_str = ", ".join(missing)
|
| 451 |
+
available_str = ", ".join(df.columns.tolist())
|
| 452 |
+
raise ValueError(
|
| 453 |
+
f"Missing required PMU feature columns: {missing_str}. "
|
| 454 |
+
f"Available columns: {available_str}. "
|
| 455 |
+
"Please ensure your CSV has the correct format with Timestamp followed by PMU measurements."
|
| 456 |
+
)
|
| 457 |
+
|
| 458 |
+
return df
|
| 459 |
+
|
| 460 |
+
|
| 461 |
+
def apply_metadata(metadata: Dict[str, Any]) -> None:
|
| 462 |
+
global FEATURE_COLUMNS, LABEL_CLASSES, LABEL_COLUMN, SEQUENCE_LENGTH, DEFAULT_WINDOW_STRIDE, MODEL_TYPE, MODEL_FORMAT
|
| 463 |
+
FEATURE_COLUMNS = [str(col) for col in metadata.get("feature_columns", DEFAULT_FEATURE_COLUMNS)]
|
| 464 |
+
LABEL_CLASSES = [str(label) for label in metadata.get("label_classes", [])]
|
| 465 |
+
LABEL_COLUMN = str(metadata.get("label_column", "Fault"))
|
| 466 |
+
SEQUENCE_LENGTH = int(metadata.get("sequence_length", DEFAULT_SEQUENCE_LENGTH))
|
| 467 |
+
DEFAULT_WINDOW_STRIDE = int(metadata.get("stride", DEFAULT_STRIDE))
|
| 468 |
+
MODEL_TYPE = str(metadata.get("model_type", "cnn_lstm")).lower()
|
| 469 |
+
MODEL_FORMAT = str(
|
| 470 |
+
metadata.get("model_format", "joblib" if MODEL_TYPE == "svm" else "keras")
|
| 471 |
+
).lower()
|
| 472 |
+
|
| 473 |
+
|
| 474 |
+
apply_metadata(METADATA)
|
| 475 |
+
|
| 476 |
+
def sync_label_classes_from_model(model: Optional[object]) -> None:
|
| 477 |
+
global LABEL_CLASSES
|
| 478 |
+
if model is None:
|
| 479 |
+
return
|
| 480 |
+
if hasattr(model, "classes_"):
|
| 481 |
+
LABEL_CLASSES = [str(label) for label in getattr(model, "classes_")]
|
| 482 |
+
elif not LABEL_CLASSES and hasattr(model, "output_shape"):
|
| 483 |
+
LABEL_CLASSES = [str(i) for i in range(int(model.output_shape[-1]))]
|
| 484 |
+
|
| 485 |
+
|
| 486 |
+
# Load model and scaler with error handling
|
| 487 |
+
print("Loading model and scaler...")
|
| 488 |
+
try:
|
| 489 |
+
MODEL = try_load_model(MODEL_PATH, MODEL_TYPE, MODEL_FORMAT)
|
| 490 |
+
print(f"Model loaded: {MODEL is not None}")
|
| 491 |
+
except Exception as e:
|
| 492 |
+
print(f"Model loading failed: {e}")
|
| 493 |
+
MODEL = None
|
| 494 |
+
|
| 495 |
+
try:
|
| 496 |
+
SCALER = try_load_scaler(SCALER_PATH)
|
| 497 |
+
print(f"Scaler loaded: {SCALER is not None}")
|
| 498 |
+
except Exception as e:
|
| 499 |
+
print(f"Scaler loading failed: {e}")
|
| 500 |
+
SCALER = None
|
| 501 |
+
|
| 502 |
+
try:
|
| 503 |
+
sync_label_classes_from_model(MODEL)
|
| 504 |
+
print("Label classes synchronized")
|
| 505 |
+
except Exception as e:
|
| 506 |
+
print(f"Label sync failed: {e}")
|
| 507 |
+
|
| 508 |
+
print("Application initialization completed.")
|
| 509 |
+
print(f"Ready to start Gradio interface. Model available: {MODEL is not None}, Scaler available: {SCALER is not None}")
|
| 510 |
+
|
| 511 |
+
|
| 512 |
+
def refresh_artifacts(model_path: Path, scaler_path: Path, metadata_path: Path) -> None:
|
| 513 |
+
global MODEL_PATH, SCALER_PATH, METADATA_PATH, MODEL, SCALER, METADATA
|
| 514 |
+
MODEL_PATH = model_path
|
| 515 |
+
SCALER_PATH = scaler_path
|
| 516 |
+
METADATA_PATH = metadata_path
|
| 517 |
+
METADATA = load_metadata(metadata_path)
|
| 518 |
+
apply_metadata(METADATA)
|
| 519 |
+
MODEL = try_load_model(model_path, MODEL_TYPE, MODEL_FORMAT)
|
| 520 |
+
SCALER = try_load_scaler(scaler_path)
|
| 521 |
+
sync_label_classes_from_model(MODEL)
|
| 522 |
|
| 523 |
# --------------------------------------------------------------------------------------
|
| 524 |
# Pre-processing helpers
|
|
|
|
| 527 |
def ensure_ready():
|
| 528 |
if MODEL is None or SCALER is None:
|
| 529 |
raise RuntimeError(
|
| 530 |
+
"The model and feature scaler are not available. Upload the trained model "
|
| 531 |
+
"(for example `pmu_cnn_lstm_model.keras`, `pmu_tcn_model.keras`, or `pmu_svm_model.joblib`), "
|
| 532 |
+
"the feature scaler (`pmu_feature_scaler.pkl`), and the metadata JSON (`pmu_metadata.json`) to the Space root "
|
| 533 |
+
"or configure the Hugging Face Hub environment variables so the artifacts can be downloaded "
|
| 534 |
+
"automatically."
|
| 535 |
)
|
| 536 |
|
| 537 |
|
|
|
|
| 539 |
cleaned = re.sub(r"[;\n\t]+", ",", text.strip())
|
| 540 |
arr = np.fromstring(cleaned, sep=",")
|
| 541 |
if arr.size == 0:
|
| 542 |
+
raise ValueError("No feature values were parsed. Please enter comma-separated numbers.")
|
| 543 |
return arr.astype(np.float32)
|
| 544 |
|
| 545 |
|
|
|
|
| 555 |
def make_sliding_windows(data: np.ndarray, sequence_length: int, stride: int) -> np.ndarray:
|
| 556 |
if data.shape[0] < sequence_length:
|
| 557 |
raise ValueError(
|
| 558 |
+
f"The dataset contains {data.shape[0]} rows which is less than the requested sequence "
|
| 559 |
+
f"length {sequence_length}. Provide more samples or reduce the sequence length."
|
| 560 |
)
|
| 561 |
windows = [data[start : start + sequence_length] for start in range(0, data.shape[0] - sequence_length + 1, stride)]
|
| 562 |
return np.stack(windows)
|
|
|
|
| 589 |
if sequence_length == 1 and array.shape[1] == n_features:
|
| 590 |
return array.reshape(array.shape[0], 1, n_features)
|
| 591 |
raise ValueError(
|
| 592 |
+
"CSV columns do not match the expected feature layout. Include the full PMU feature set "
|
| 593 |
+
"or provide pre-shaped sliding window data."
|
| 594 |
)
|
| 595 |
|
| 596 |
|
|
|
|
| 634 |
def predict_sequences(sequences: np.ndarray) -> Tuple[str, pd.DataFrame, List[Dict[str, object]]]:
|
| 635 |
ensure_ready()
|
| 636 |
sequences = apply_scaler(sequences.astype(np.float32))
|
| 637 |
+
if MODEL_TYPE == "svm":
|
| 638 |
+
flattened = sequences.reshape(sequences.shape[0], -1)
|
| 639 |
+
if hasattr(MODEL, "predict_proba"):
|
| 640 |
+
probs = MODEL.predict_proba(flattened)
|
| 641 |
+
else:
|
| 642 |
+
raise RuntimeError("Loaded SVM model does not expose predict_proba. Retrain with probability=True.")
|
| 643 |
+
else:
|
| 644 |
+
probs = MODEL.predict(sequences, verbose=0)
|
| 645 |
table = format_predictions(probs)
|
| 646 |
json_probs = probabilities_to_json(probs)
|
| 647 |
+
architecture = MODEL_TYPE.replace("_", "-").upper()
|
| 648 |
+
status = f"Generated {len(sequences)} windows. {architecture} model output dimension: {probs.shape[1]}."
|
| 649 |
return status, table, json_probs
|
| 650 |
|
| 651 |
|
|
|
|
| 654 |
n_features = len(FEATURE_COLUMNS)
|
| 655 |
if arr.size % n_features != 0:
|
| 656 |
raise ValueError(
|
| 657 |
+
f"The number of values ({arr.size}) is not a multiple of the feature dimension "
|
| 658 |
+
f"({n_features}). Provide values in groups of {n_features}."
|
| 659 |
)
|
| 660 |
timesteps = arr.size // n_features
|
| 661 |
if timesteps != sequence_length:
|
| 662 |
raise ValueError(
|
| 663 |
+
f"Detected {timesteps} timesteps which does not match the configured sequence length "
|
| 664 |
+
f"({sequence_length})."
|
| 665 |
)
|
| 666 |
sequences = arr.reshape(1, sequence_length, n_features)
|
| 667 |
status, table, probs = predict_sequences(sequences)
|
| 668 |
+
status = f"Single window prediction complete. {status}"
|
| 669 |
return status, table, probs
|
| 670 |
|
| 671 |
|
| 672 |
def predict_from_csv(file_obj, sequence_length: int, stride: int) -> Tuple[str, pd.DataFrame, List[Dict[str, object]]]:
|
| 673 |
+
df = load_measurement_csv(file_obj.name)
|
| 674 |
sequences = dataframe_to_sequences(
|
| 675 |
df,
|
| 676 |
sequence_length=sequence_length,
|
|
|
|
| 678 |
feature_columns=FEATURE_COLUMNS,
|
| 679 |
)
|
| 680 |
status, table, probs = predict_sequences(sequences)
|
| 681 |
+
status = f"CSV processed successfully. Generated {len(sequences)} windows. {status}"
|
| 682 |
return status, table, probs
|
| 683 |
|
| 684 |
|
| 685 |
+
# --------------------------------------------------------------------------------------
|
| 686 |
+
# Training helpers
|
| 687 |
+
# --------------------------------------------------------------------------------------
|
| 688 |
+
|
| 689 |
+
|
| 690 |
+
def classification_report_to_dataframe(report: Dict[str, Any]) -> pd.DataFrame:
|
| 691 |
+
rows: List[Dict[str, Any]] = []
|
| 692 |
+
for label, metrics in report.items():
|
| 693 |
+
if isinstance(metrics, dict):
|
| 694 |
+
row = {"label": label}
|
| 695 |
+
for key, value in metrics.items():
|
| 696 |
+
if key == "support":
|
| 697 |
+
row[key] = int(value)
|
| 698 |
+
else:
|
| 699 |
+
row[key] = round(float(value), 4)
|
| 700 |
+
rows.append(row)
|
| 701 |
+
else:
|
| 702 |
+
rows.append({"label": label, "accuracy": round(float(metrics), 4)})
|
| 703 |
+
return pd.DataFrame(rows)
|
| 704 |
+
|
| 705 |
+
|
| 706 |
+
def confusion_matrix_to_dataframe(confusion: Sequence[Sequence[float]], labels: Sequence[str]) -> pd.DataFrame:
|
| 707 |
+
if not confusion:
|
| 708 |
+
return pd.DataFrame()
|
| 709 |
+
df = pd.DataFrame(confusion, index=list(labels), columns=list(labels))
|
| 710 |
+
df.index.name = "True Label"
|
| 711 |
+
df.columns.name = "Predicted Label"
|
| 712 |
+
return df
|
| 713 |
+
|
| 714 |
+
|
| 715 |
# --------------------------------------------------------------------------------------
|
| 716 |
# Gradio interface
|
| 717 |
# --------------------------------------------------------------------------------------
|
| 718 |
|
| 719 |
def build_interface() -> gr.Blocks:
|
| 720 |
+
theme = gr.themes.Soft(primary_hue="sky", secondary_hue="blue", neutral_hue="gray").set(
|
| 721 |
+
body_background_fill="#1f1f1f",
|
| 722 |
+
body_text_color="#f5f5f5",
|
| 723 |
+
block_background_fill="#262626",
|
| 724 |
+
block_border_color="#333333",
|
| 725 |
+
button_primary_background_fill="#5ac8fa",
|
| 726 |
+
button_primary_background_fill_hover="#48b5eb",
|
| 727 |
+
button_primary_border_color="#38bdf8",
|
| 728 |
+
button_primary_text_color="#0f172a",
|
| 729 |
+
button_secondary_background_fill="#3f3f46",
|
| 730 |
+
button_secondary_text_color="#f5f5f5",
|
| 731 |
+
)
|
| 732 |
+
with gr.Blocks(title="Fault Classification - PMU Data", theme=theme) as demo:
|
| 733 |
+
gr.Markdown("# Fault Classification for PMU & PV Data")
|
| 734 |
+
gr.Markdown(
|
| 735 |
+
"🖥️ TensorFlow is locked to CPU execution so the Space can run without CUDA drivers."
|
| 736 |
+
)
|
| 737 |
if MODEL is None or SCALER is None:
|
| 738 |
gr.Markdown(
|
| 739 |
+
"⚠️ **Artifacts Missing** — Upload `pmu_cnn_lstm_model.keras`, "
|
| 740 |
+
"`pmu_feature_scaler.pkl`, and `pmu_metadata.json` to enable inference, "
|
| 741 |
+
"or configure the Hugging Face Hub environment variables so they can be downloaded."
|
| 742 |
)
|
| 743 |
else:
|
| 744 |
+
class_count = len(LABEL_CLASSES) if LABEL_CLASSES else "unknown"
|
| 745 |
gr.Markdown(
|
| 746 |
+
f"Loaded a **{MODEL_TYPE.upper()}** model ({MODEL_FORMAT.upper()}) with "
|
| 747 |
+
f"{len(FEATURE_COLUMNS)} features, sequence length **{SEQUENCE_LENGTH}**, and "
|
| 748 |
+
f"{class_count} target classes. Use the tabs below to run inference or fine-tune "
|
| 749 |
+
"the model with your own CSV files."
|
| 750 |
)
|
| 751 |
|
| 752 |
+
with gr.Accordion("Feature Reference", open=False):
|
| 753 |
gr.Markdown(
|
| 754 |
+
f"Each time window expects **{len(FEATURE_COLUMNS)} features** ordered as follows:\n"
|
| 755 |
+ "\n".join(f"- {name}" for name in FEATURE_COLUMNS)
|
| 756 |
)
|
| 757 |
gr.Markdown(
|
| 758 |
+
f"Default training parameters: **sequence length = {SEQUENCE_LENGTH}**, "
|
| 759 |
+
f"**stride = {DEFAULT_WINDOW_STRIDE}**. Adjust them in the tabs as needed."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 760 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 761 |
|
| 762 |
+
with gr.Tabs():
|
| 763 |
+
with gr.Tab("Overview"):
|
| 764 |
+
gr.Markdown(PROJECT_OVERVIEW_MD)
|
| 765 |
+
with gr.Tab("Inference"):
|
| 766 |
+
gr.Markdown("## Run Inference")
|
| 767 |
+
with gr.Row():
|
| 768 |
+
file_in = gr.File(label="Upload PMU CSV", file_types=[".csv"])
|
| 769 |
+
text_in = gr.Textbox(
|
| 770 |
+
lines=4,
|
| 771 |
+
label="Or paste a single window (comma separated)",
|
| 772 |
+
placeholder="49.97772,1.215825E-38,...",
|
| 773 |
+
)
|
| 774 |
+
|
| 775 |
+
with gr.Row():
|
| 776 |
+
sequence_length_input = gr.Slider(
|
| 777 |
+
minimum=1,
|
| 778 |
+
maximum=max(1, SEQUENCE_LENGTH * 2),
|
| 779 |
+
step=1,
|
| 780 |
+
value=SEQUENCE_LENGTH,
|
| 781 |
+
label="Sequence length (timesteps)",
|
| 782 |
+
)
|
| 783 |
+
stride_input = gr.Slider(
|
| 784 |
+
minimum=1,
|
| 785 |
+
maximum=max(1, SEQUENCE_LENGTH),
|
| 786 |
+
step=1,
|
| 787 |
+
value=max(1, DEFAULT_WINDOW_STRIDE),
|
| 788 |
+
label="CSV window stride",
|
| 789 |
+
)
|
| 790 |
+
|
| 791 |
+
predict_btn = gr.Button("🚀 Run Inference", variant="primary")
|
| 792 |
+
status_out = gr.Textbox(label="Status", interactive=False)
|
| 793 |
+
table_out = gr.Dataframe(
|
| 794 |
+
headers=["window", "predicted_label", "confidence", "top3"],
|
| 795 |
+
label="Predictions",
|
| 796 |
+
interactive=False,
|
| 797 |
+
)
|
| 798 |
+
probs_out = gr.JSON(label="Per-window probabilities")
|
| 799 |
+
|
| 800 |
+
def _run_prediction(file_obj, text, sequence_length, stride):
|
| 801 |
+
sequence_length = int(sequence_length)
|
| 802 |
+
stride = int(stride)
|
| 803 |
+
try:
|
| 804 |
+
if file_obj is not None:
|
| 805 |
+
return predict_from_csv(file_obj, sequence_length, stride)
|
| 806 |
+
if text and text.strip():
|
| 807 |
+
return predict_from_text(text, sequence_length)
|
| 808 |
+
return "Please upload a CSV file or provide feature values.", pd.DataFrame(), []
|
| 809 |
+
except Exception as exc:
|
| 810 |
+
return f"Prediction failed: {exc}", pd.DataFrame(), []
|
| 811 |
+
|
| 812 |
+
predict_btn.click(
|
| 813 |
+
_run_prediction,
|
| 814 |
+
inputs=[file_in, text_in, sequence_length_input, stride_input],
|
| 815 |
+
outputs=[status_out, table_out, probs_out],
|
| 816 |
+
concurrency_limit=EVENT_CONCURRENCY_LIMIT,
|
| 817 |
+
)
|
| 818 |
+
|
| 819 |
+
with gr.Tab("Training"):
|
| 820 |
+
gr.Markdown("## Train or Fine-tune the Model")
|
| 821 |
+
gr.Markdown(
|
| 822 |
+
"Upload one or more PMU CSV files to create a combined training dataset. "
|
| 823 |
+
"The files will be concatenated in upload order before generating sliding windows."
|
| 824 |
+
)
|
| 825 |
+
|
| 826 |
+
training_files_state = gr.State([])
|
| 827 |
+
with gr.Row():
|
| 828 |
+
training_file_drop = gr.Files(
|
| 829 |
+
label="Drag and drop PMU training CSVs",
|
| 830 |
+
file_types=[".csv"],
|
| 831 |
+
file_count="multiple",
|
| 832 |
+
type="filepath",
|
| 833 |
+
)
|
| 834 |
+
with gr.Column(scale=1, min_width=180):
|
| 835 |
+
training_upload = gr.UploadButton(
|
| 836 |
+
"📂 Add training CSVs",
|
| 837 |
+
file_types=[".csv"],
|
| 838 |
+
file_count="multiple",
|
| 839 |
+
type="filepath",
|
| 840 |
+
variant="primary",
|
| 841 |
+
)
|
| 842 |
+
clear_training = gr.Button("Clear list", variant="secondary")
|
| 843 |
+
|
| 844 |
+
training_files_summary = gr.Textbox(
|
| 845 |
+
label="Selected training CSVs",
|
| 846 |
+
value="No training files selected.",
|
| 847 |
+
lines=4,
|
| 848 |
+
interactive=False,
|
| 849 |
+
)
|
| 850 |
+
|
| 851 |
+
with gr.Row():
|
| 852 |
+
label_input = gr.Dropdown(
|
| 853 |
+
value=LABEL_COLUMN,
|
| 854 |
+
choices=[LABEL_COLUMN],
|
| 855 |
+
allow_custom_value=True,
|
| 856 |
+
label="Label column name",
|
| 857 |
+
)
|
| 858 |
+
model_selector = gr.Radio(
|
| 859 |
+
choices=["CNN-LSTM", "TCN", "SVM"],
|
| 860 |
+
value=(
|
| 861 |
+
"TCN"
|
| 862 |
+
if MODEL_TYPE == "tcn"
|
| 863 |
+
else ("SVM" if MODEL_TYPE == "svm" else "CNN-LSTM")
|
| 864 |
+
),
|
| 865 |
+
label="Model architecture",
|
| 866 |
+
)
|
| 867 |
+
sequence_length_train = gr.Slider(
|
| 868 |
+
minimum=4,
|
| 869 |
+
maximum=max(32, SEQUENCE_LENGTH * 2),
|
| 870 |
+
step=1,
|
| 871 |
+
value=SEQUENCE_LENGTH,
|
| 872 |
+
label="Sequence length",
|
| 873 |
+
)
|
| 874 |
+
stride_train = gr.Slider(
|
| 875 |
+
minimum=1,
|
| 876 |
+
maximum=max(32, SEQUENCE_LENGTH * 2),
|
| 877 |
+
step=1,
|
| 878 |
+
value=max(1, DEFAULT_WINDOW_STRIDE),
|
| 879 |
+
label="Stride",
|
| 880 |
+
)
|
| 881 |
+
|
| 882 |
+
model_default = (
|
| 883 |
+
str(MODEL_PATH)
|
| 884 |
+
if MODEL_PATH
|
| 885 |
+
else MODEL_FILENAME_BY_TYPE.get(MODEL_TYPE, LOCAL_MODEL_FILE)
|
| 886 |
+
)
|
| 887 |
+
|
| 888 |
+
with gr.Row():
|
| 889 |
+
validation_train = gr.Slider(
|
| 890 |
+
minimum=0.05,
|
| 891 |
+
maximum=0.4,
|
| 892 |
+
step=0.05,
|
| 893 |
+
value=0.2,
|
| 894 |
+
label="Validation split",
|
| 895 |
+
)
|
| 896 |
+
batch_train = gr.Slider(
|
| 897 |
+
minimum=32,
|
| 898 |
+
maximum=512,
|
| 899 |
+
step=32,
|
| 900 |
+
value=128,
|
| 901 |
+
label="Batch size",
|
| 902 |
+
)
|
| 903 |
+
epochs_train = gr.Slider(
|
| 904 |
+
minimum=5,
|
| 905 |
+
maximum=100,
|
| 906 |
+
step=5,
|
| 907 |
+
value=50,
|
| 908 |
+
label="Epochs",
|
| 909 |
+
)
|
| 910 |
+
|
| 911 |
+
with gr.Row():
|
| 912 |
+
model_name = gr.Textbox(value=model_default, label="Model output filename")
|
| 913 |
+
scaler_name = gr.Textbox(
|
| 914 |
+
value=str(SCALER_PATH or LOCAL_SCALER_FILE),
|
| 915 |
+
label="Scaler output filename",
|
| 916 |
+
)
|
| 917 |
+
metadata_name = gr.Textbox(
|
| 918 |
+
value=str(METADATA_PATH or LOCAL_METADATA_FILE),
|
| 919 |
+
label="Metadata output filename",
|
| 920 |
+
)
|
| 921 |
+
|
| 922 |
+
tensorboard_toggle = gr.Checkbox(
|
| 923 |
+
value=True,
|
| 924 |
+
label="Enable TensorBoard logging (creates downloadable archive)",
|
| 925 |
+
)
|
| 926 |
+
|
| 927 |
+
def _suggest_model_filename(choice: str, current_value: str):
|
| 928 |
+
choice_key = (choice or "cnn_lstm").lower().replace("-", "_")
|
| 929 |
+
suggested = MODEL_FILENAME_BY_TYPE.get(choice_key, LOCAL_MODEL_FILE)
|
| 930 |
+
known_defaults = {Path(name).name for name in MODEL_FILENAME_BY_TYPE.values()}
|
| 931 |
+
current_name = Path(current_value).name if current_value else ""
|
| 932 |
+
if current_name and current_name not in known_defaults:
|
| 933 |
+
return gr.update()
|
| 934 |
+
return gr.update(value=suggested)
|
| 935 |
+
|
| 936 |
+
model_selector.change(
|
| 937 |
+
_suggest_model_filename,
|
| 938 |
+
inputs=[model_selector, model_name],
|
| 939 |
+
outputs=model_name,
|
| 940 |
+
)
|
| 941 |
+
|
| 942 |
+
with gr.Row():
|
| 943 |
+
train_button = gr.Button("🛠️ Start Training", variant="primary")
|
| 944 |
+
progress_button = gr.Button("📊 Check Progress", variant="secondary")
|
| 945 |
+
|
| 946 |
+
# Training status display
|
| 947 |
+
training_status = gr.Textbox(label="Training Status", interactive=False)
|
| 948 |
+
report_output = gr.Dataframe(label="Classification report", interactive=False)
|
| 949 |
+
history_output = gr.JSON(label="Training history")
|
| 950 |
+
confusion_output = gr.Dataframe(label="Confusion matrix", interactive=False)
|
| 951 |
+
tensorboard_file = gr.File(
|
| 952 |
+
label="TensorBoard logs (.zip)",
|
| 953 |
+
interactive=False,
|
| 954 |
+
)
|
| 955 |
+
|
| 956 |
+
# Message area at the bottom for progress updates
|
| 957 |
+
with gr.Accordion("📋 Progress Messages", open=True):
|
| 958 |
+
progress_messages = gr.Textbox(
|
| 959 |
+
label="Training Messages",
|
| 960 |
+
lines=8,
|
| 961 |
+
max_lines=20,
|
| 962 |
+
interactive=False,
|
| 963 |
+
autoscroll=True,
|
| 964 |
+
placeholder="Click 'Check Progress' to see training updates..."
|
| 965 |
+
)
|
| 966 |
+
with gr.Row():
|
| 967 |
+
gr.Button("🗑️ Clear Messages", variant="secondary").click(
|
| 968 |
+
lambda: "",
|
| 969 |
+
outputs=[progress_messages]
|
| 970 |
+
)
|
| 971 |
+
|
| 972 |
+
def _run_training(
|
| 973 |
+
file_paths,
|
| 974 |
+
label_column,
|
| 975 |
+
model_choice,
|
| 976 |
+
sequence_length,
|
| 977 |
+
stride,
|
| 978 |
+
validation_split,
|
| 979 |
+
batch_size,
|
| 980 |
+
epochs,
|
| 981 |
+
model_filename,
|
| 982 |
+
scaler_filename,
|
| 983 |
+
metadata_filename,
|
| 984 |
+
enable_tensorboard,
|
| 985 |
+
):
|
| 986 |
+
try:
|
| 987 |
+
# Create status file path for progress tracking
|
| 988 |
+
status_file = Path(model_filename).parent / "training_status.txt"
|
| 989 |
+
|
| 990 |
+
# Initialize status
|
| 991 |
+
with open(status_file, 'w') as f:
|
| 992 |
+
f.write("Starting training setup...")
|
| 993 |
+
|
| 994 |
+
if not file_paths:
|
| 995 |
+
raise ValueError("Add at least one training CSV via the uploader before starting.")
|
| 996 |
+
|
| 997 |
+
with open(status_file, 'w') as f:
|
| 998 |
+
f.write("Loading and validating CSV files...")
|
| 999 |
+
|
| 1000 |
+
available_paths = [path for path in file_paths if Path(path).exists()]
|
| 1001 |
+
missing_paths = [Path(path).name for path in file_paths if not Path(path).exists()]
|
| 1002 |
+
if not available_paths:
|
| 1003 |
+
raise ValueError("None of the referenced CSV files are available. Please upload them again.")
|
| 1004 |
+
|
| 1005 |
+
dfs = [load_measurement_csv(path) for path in available_paths]
|
| 1006 |
+
combined = pd.concat(dfs, ignore_index=True)
|
| 1007 |
+
|
| 1008 |
+
# Validate data size and provide recommendations
|
| 1009 |
+
total_samples = len(combined)
|
| 1010 |
+
if total_samples < 100:
|
| 1011 |
+
print(f"Warning: Only {total_samples} samples. Recommend at least 1000 for good results.")
|
| 1012 |
+
print("Automatically switching to SVM for small dataset compatibility.")
|
| 1013 |
+
if model_choice in ["cnn_lstm", "tcn"]:
|
| 1014 |
+
model_choice = "svm"
|
| 1015 |
+
print(f"Model type changed to SVM for better small dataset performance.")
|
| 1016 |
+
if total_samples < 10:
|
| 1017 |
+
raise ValueError(f"Insufficient data: {total_samples} samples. Need at least 10 samples for training.")
|
| 1018 |
+
|
| 1019 |
+
label_column = (label_column or LABEL_COLUMN).strip()
|
| 1020 |
+
if not label_column:
|
| 1021 |
+
raise ValueError("Label column name cannot be empty.")
|
| 1022 |
+
|
| 1023 |
+
model_choice = (model_choice or "CNN-LSTM").lower().replace("-", "_")
|
| 1024 |
+
if model_choice not in {"cnn_lstm", "tcn", "svm"}:
|
| 1025 |
+
raise ValueError("Select CNN-LSTM, TCN, or SVM for the model architecture.")
|
| 1026 |
+
|
| 1027 |
+
with open(status_file, 'w') as f:
|
| 1028 |
+
f.write(f"Starting {model_choice.upper()} training with {len(combined)} samples...")
|
| 1029 |
+
|
| 1030 |
+
# Start training
|
| 1031 |
+
result = train_from_dataframe(
|
| 1032 |
+
combined,
|
| 1033 |
+
label_column=label_column,
|
| 1034 |
+
feature_columns=None,
|
| 1035 |
+
sequence_length=int(sequence_length),
|
| 1036 |
+
stride=int(stride),
|
| 1037 |
+
validation_split=float(validation_split),
|
| 1038 |
+
batch_size=int(batch_size),
|
| 1039 |
+
epochs=int(epochs),
|
| 1040 |
+
model_type=model_choice,
|
| 1041 |
+
model_path=Path(model_filename),
|
| 1042 |
+
scaler_path=Path(scaler_filename),
|
| 1043 |
+
metadata_path=Path(metadata_filename),
|
| 1044 |
+
enable_tensorboard=bool(enable_tensorboard),
|
| 1045 |
+
)
|
| 1046 |
+
|
| 1047 |
+
refresh_artifacts(
|
| 1048 |
+
Path(result["model_path"]),
|
| 1049 |
+
Path(result["scaler_path"]),
|
| 1050 |
+
Path(result["metadata_path"]),
|
| 1051 |
+
)
|
| 1052 |
+
|
| 1053 |
+
report_df = classification_report_to_dataframe(result["classification_report"])
|
| 1054 |
+
confusion_df = confusion_matrix_to_dataframe(result["confusion_matrix"], result["class_names"])
|
| 1055 |
+
tensorboard_dir = result.get("tensorboard_log_dir")
|
| 1056 |
+
tensorboard_zip = result.get("tensorboard_zip_path")
|
| 1057 |
+
|
| 1058 |
+
architecture = result["model_type"].replace("_", "-").upper()
|
| 1059 |
+
status = (
|
| 1060 |
+
f"Training complete using a {architecture} architecture. "
|
| 1061 |
+
f"{result['num_sequences']} windows derived from "
|
| 1062 |
+
f"{result['num_samples']} rows across {len(available_paths)} file(s)."
|
| 1063 |
+
f" Artifacts saved to:"
|
| 1064 |
+
f"\n• Model: {result['model_path']}\n"
|
| 1065 |
+
f"• Scaler: {result['scaler_path']}\n"
|
| 1066 |
+
f"• Metadata: {result['metadata_path']}"
|
| 1067 |
+
)
|
| 1068 |
+
|
| 1069 |
+
status += f"\nLabel column used: {result.get('label_column', label_column)}"
|
| 1070 |
+
|
| 1071 |
+
if tensorboard_dir:
|
| 1072 |
+
status += (
|
| 1073 |
+
f"\nTensorBoard logs directory: {tensorboard_dir}"
|
| 1074 |
+
f"\nRun `tensorboard --logdir \"{tensorboard_dir}\"` to inspect the training curves."
|
| 1075 |
+
"\nDownload the archive below to explore the run offline."
|
| 1076 |
+
)
|
| 1077 |
+
|
| 1078 |
+
if missing_paths:
|
| 1079 |
+
skipped = ", ".join(missing_paths)
|
| 1080 |
+
status = f"⚠️ Skipped missing files: {skipped}\n" + status
|
| 1081 |
+
|
| 1082 |
+
return (
|
| 1083 |
+
status,
|
| 1084 |
+
report_df,
|
| 1085 |
+
result["history"],
|
| 1086 |
+
confusion_df,
|
| 1087 |
+
tensorboard_zip,
|
| 1088 |
+
gr.update(value=result.get("label_column", label_column)),
|
| 1089 |
+
)
|
| 1090 |
+
except Exception as exc:
|
| 1091 |
+
return (
|
| 1092 |
+
f"Training failed: {exc}",
|
| 1093 |
+
pd.DataFrame(),
|
| 1094 |
+
{},
|
| 1095 |
+
pd.DataFrame(),
|
| 1096 |
+
None,
|
| 1097 |
+
gr.update(),
|
| 1098 |
+
)
|
| 1099 |
+
|
| 1100 |
+
def _check_progress(model_filename, current_messages):
|
| 1101 |
+
"""Check training progress by reading status file and accumulate messages."""
|
| 1102 |
+
status_file = Path(model_filename).parent / "training_status.txt"
|
| 1103 |
+
status_message = read_training_status(str(status_file))
|
| 1104 |
+
|
| 1105 |
+
# Add timestamp to the message
|
| 1106 |
+
from datetime import datetime
|
| 1107 |
+
timestamp = datetime.now().strftime("%H:%M:%S")
|
| 1108 |
+
new_message = f"[{timestamp}] {status_message}"
|
| 1109 |
+
|
| 1110 |
+
# Accumulate messages, keeping last 50 lines to prevent overflow
|
| 1111 |
+
if current_messages:
|
| 1112 |
+
lines = current_messages.split('\n')
|
| 1113 |
+
lines.append(new_message)
|
| 1114 |
+
# Keep only last 50 lines
|
| 1115 |
+
if len(lines) > 50:
|
| 1116 |
+
lines = lines[-50:]
|
| 1117 |
+
accumulated_messages = '\n'.join(lines)
|
| 1118 |
+
else:
|
| 1119 |
+
accumulated_messages = new_message
|
| 1120 |
+
|
| 1121 |
+
return accumulated_messages
|
| 1122 |
+
|
| 1123 |
+
train_button.click(
|
| 1124 |
+
_run_training,
|
| 1125 |
+
inputs=[
|
| 1126 |
+
training_files_state,
|
| 1127 |
+
label_input,
|
| 1128 |
+
model_selector,
|
| 1129 |
+
sequence_length_train,
|
| 1130 |
+
stride_train,
|
| 1131 |
+
validation_train,
|
| 1132 |
+
batch_train,
|
| 1133 |
+
epochs_train,
|
| 1134 |
+
model_name,
|
| 1135 |
+
scaler_name,
|
| 1136 |
+
metadata_name,
|
| 1137 |
+
tensorboard_toggle,
|
| 1138 |
+
],
|
| 1139 |
+
outputs=[
|
| 1140 |
+
training_status,
|
| 1141 |
+
report_output,
|
| 1142 |
+
history_output,
|
| 1143 |
+
confusion_output,
|
| 1144 |
+
tensorboard_file,
|
| 1145 |
+
label_input,
|
| 1146 |
+
],
|
| 1147 |
+
concurrency_limit=EVENT_CONCURRENCY_LIMIT,
|
| 1148 |
+
)
|
| 1149 |
+
|
| 1150 |
+
progress_button.click(
|
| 1151 |
+
_check_progress,
|
| 1152 |
+
inputs=[model_name, progress_messages],
|
| 1153 |
+
outputs=[progress_messages],
|
| 1154 |
+
)
|
| 1155 |
+
|
| 1156 |
+
training_upload.upload(
|
| 1157 |
+
append_training_files,
|
| 1158 |
+
inputs=[training_upload, training_files_state, label_input],
|
| 1159 |
+
outputs=[training_files_state, training_files_summary, label_input],
|
| 1160 |
+
concurrency_limit=EVENT_CONCURRENCY_LIMIT,
|
| 1161 |
+
)
|
| 1162 |
+
training_file_drop.upload(
|
| 1163 |
+
append_training_files,
|
| 1164 |
+
inputs=[training_file_drop, training_files_state, label_input],
|
| 1165 |
+
outputs=[training_files_state, training_files_summary, label_input],
|
| 1166 |
+
concurrency_limit=EVENT_CONCURRENCY_LIMIT,
|
| 1167 |
+
)
|
| 1168 |
+
clear_training.click(
|
| 1169 |
+
clear_training_files,
|
| 1170 |
+
outputs=[training_files_state, training_files_summary, label_input, training_file_drop],
|
| 1171 |
+
)
|
| 1172 |
|
| 1173 |
return demo
|
| 1174 |
|
|
|
|
| 1177 |
# Launch helpers
|
| 1178 |
# --------------------------------------------------------------------------------------
|
| 1179 |
|
| 1180 |
+
def resolve_server_port() -> int:
|
| 1181 |
+
for env_var in ("PORT", "GRADIO_SERVER_PORT"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1182 |
value = os.environ.get(env_var)
|
| 1183 |
if value:
|
| 1184 |
try:
|
| 1185 |
return int(value)
|
| 1186 |
except ValueError:
|
| 1187 |
+
print(f"Ignoring invalid port value from {env_var}: {value}")
|
| 1188 |
+
return 7860
|
| 1189 |
|
| 1190 |
|
| 1191 |
def main():
|
| 1192 |
+
print("Building Gradio interface...")
|
| 1193 |
+
try:
|
| 1194 |
+
demo = build_interface()
|
| 1195 |
+
print("Interface built successfully")
|
| 1196 |
+
except Exception as e:
|
| 1197 |
+
print(f"Failed to build interface: {e}")
|
| 1198 |
+
import traceback
|
| 1199 |
+
traceback.print_exc()
|
| 1200 |
+
return
|
| 1201 |
+
|
| 1202 |
+
print("Setting up queue...")
|
| 1203 |
try:
|
| 1204 |
+
demo.queue(max_size=QUEUE_MAX_SIZE)
|
| 1205 |
+
print("Queue configured")
|
| 1206 |
+
except Exception as e:
|
| 1207 |
+
print(f"Failed to configure queue: {e}")
|
| 1208 |
+
|
| 1209 |
+
try:
|
| 1210 |
+
port = resolve_server_port()
|
| 1211 |
print(f"Launching Gradio app on port {port}")
|
| 1212 |
+
demo.launch(server_name="0.0.0.0", server_port=port, show_error=True)
|
| 1213 |
except OSError as exc:
|
| 1214 |
print("Failed to launch on requested port:", exc)
|
| 1215 |
+
try:
|
| 1216 |
+
demo.launch(server_name="0.0.0.0", show_error=True)
|
| 1217 |
+
except Exception as e:
|
| 1218 |
+
print(f"Failed to launch completely: {e}")
|
| 1219 |
+
except Exception as e:
|
| 1220 |
+
print(f"Unexpected launch error: {e}")
|
| 1221 |
+
import traceback
|
| 1222 |
+
traceback.print_exc()
|
| 1223 |
|
| 1224 |
|
| 1225 |
if __name__ == "__main__":
|
| 1226 |
+
print("="*50)
|
| 1227 |
+
print("PMU Fault Classification App Starting")
|
| 1228 |
+
print(f"Python version: {os.sys.version}")
|
| 1229 |
+
print(f"Working directory: {os.getcwd()}")
|
| 1230 |
+
print(f"HUB_REPO: {HUB_REPO}")
|
| 1231 |
+
print(f"Model available: {MODEL is not None}")
|
| 1232 |
+
print(f"Scaler available: {SCALER is not None}")
|
| 1233 |
+
print("="*50)
|
| 1234 |
main()
|
fault_classification_pmu.py
CHANGED
|
@@ -1,17 +1,19 @@
|
|
| 1 |
-
"""Fault classification training utilities for PMU
|
| 2 |
|
| 3 |
-
This module trains
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
|
|
|
| 8 |
|
| 9 |
Example
|
| 10 |
-------
|
| 11 |
python fault_classification_pmu.py \
|
| 12 |
--data-path data/Fault_Classification_PMU_Data.csv \
|
| 13 |
--label-column FaultType \
|
| 14 |
-
--model-
|
|
|
|
| 15 |
--scaler-out pmu_feature_scaler.pkl \
|
| 16 |
--metadata-out pmu_metadata.json
|
| 17 |
|
|
@@ -22,24 +24,200 @@ via the ``--feature-columns`` argument. Data is automatically standardised
|
|
| 22 |
and windowed to create temporal sequences that feed into the neural network.
|
| 23 |
|
| 24 |
The exported metadata JSON file contains the feature ordering, label names,
|
| 25 |
-
sequence length, and
|
| 26 |
-
replicate the same preprocessing steps during inference.
|
| 27 |
"""
|
| 28 |
from __future__ import annotations
|
| 29 |
|
| 30 |
import argparse
|
| 31 |
import json
|
|
|
|
|
|
|
|
|
|
| 32 |
from pathlib import Path
|
| 33 |
-
from typing import List, Sequence, Tuple
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
import joblib
|
| 36 |
import numpy as np
|
| 37 |
import pandas as pd
|
| 38 |
-
from
|
|
|
|
| 39 |
from sklearn.model_selection import train_test_split
|
| 40 |
from sklearn.preprocessing import LabelEncoder, StandardScaler
|
|
|
|
| 41 |
from tensorflow.keras import callbacks, layers, models, optimizers
|
| 42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
# Default PMU feature set as described in the user provided table. Timestamp is
|
| 44 |
# intentionally omitted because it is not a model input feature.
|
| 45 |
DEFAULT_FEATURE_COLUMNS: List[str] = [
|
|
@@ -60,6 +238,47 @@ DEFAULT_FEATURE_COLUMNS: List[str] = [
|
|
| 60 |
"[339] UPMU_SUB22-C3:ANG",
|
| 61 |
]
|
| 62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
def _resolve_features(df: pd.DataFrame, feature_columns: Sequence[str] | None, label_column: str) -> List[str]:
|
| 65 |
if feature_columns:
|
|
@@ -85,7 +304,7 @@ def load_dataset(
|
|
| 85 |
*,
|
| 86 |
feature_columns: Sequence[str] | None,
|
| 87 |
label_column: str,
|
| 88 |
-
) -> Tuple[np.ndarray, np.ndarray, List[str]]:
|
| 89 |
"""Load the dataset from CSV.
|
| 90 |
|
| 91 |
Parameters
|
|
@@ -105,15 +324,32 @@ def load_dataset(
|
|
| 105 |
1-D array of label strings.
|
| 106 |
columns: list[str]
|
| 107 |
Actual feature ordering used.
|
|
|
|
|
|
|
| 108 |
"""
|
| 109 |
-
df = pd.read_csv(csv_path)
|
| 110 |
-
|
| 111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
|
| 113 |
-
|
|
|
|
|
|
|
| 114 |
features = df[columns].astype(np.float32).values
|
| 115 |
-
labels = df[
|
| 116 |
-
return features, labels, columns
|
| 117 |
|
| 118 |
|
| 119 |
def create_sequences(
|
|
@@ -175,6 +411,56 @@ def build_cnn_lstm(
|
|
| 175 |
return model
|
| 176 |
|
| 177 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
def train_model(
|
| 179 |
sequences: np.ndarray,
|
| 180 |
labels: np.ndarray,
|
|
@@ -182,40 +468,216 @@ def train_model(
|
|
| 182 |
validation_split: float,
|
| 183 |
batch_size: int,
|
| 184 |
epochs: int,
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
X_train, X_val, y_train, y_val = train_test_split(
|
| 191 |
-
sequences, y, test_size=validation_split, stratify=y, random_state=42
|
| 192 |
-
)
|
| 193 |
|
| 194 |
-
|
|
|
|
|
|
|
| 195 |
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
callbacks.EarlyStopping(monitor="val_loss", patience=10, restore_best_weights=True),
|
| 199 |
-
]
|
| 200 |
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
y_train,
|
| 204 |
-
validation_data=(X_val, y_val),
|
| 205 |
-
epochs=epochs,
|
| 206 |
-
batch_size=batch_size,
|
| 207 |
-
callbacks=callbacks_list,
|
| 208 |
-
verbose=2,
|
| 209 |
-
)
|
| 210 |
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 214 |
"validation": {
|
| 215 |
"y_true": y_val,
|
| 216 |
"y_pred": y_pred,
|
| 217 |
"class_names": label_encoder.classes_.tolist(),
|
|
|
|
| 218 |
},
|
|
|
|
|
|
|
|
|
|
| 219 |
}
|
| 220 |
return model, label_encoder, metrics
|
| 221 |
|
|
@@ -230,7 +692,7 @@ def standardise_sequences(sequences: np.ndarray) -> Tuple[np.ndarray, StandardSc
|
|
| 230 |
|
| 231 |
def export_artifacts(
|
| 232 |
*,
|
| 233 |
-
model:
|
| 234 |
scaler: StandardScaler,
|
| 235 |
label_encoder: LabelEncoder,
|
| 236 |
feature_columns: Sequence[str],
|
|
@@ -246,9 +708,21 @@ def export_artifacts(
|
|
| 246 |
model_path.parent.mkdir(parents=True, exist_ok=True)
|
| 247 |
scaler_path.parent.mkdir(parents=True, exist_ok=True)
|
| 248 |
metadata_path.parent.mkdir(parents=True, exist_ok=True)
|
| 249 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 250 |
joblib.dump(scaler, scaler_path)
|
| 251 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 252 |
metadata = {
|
| 253 |
"feature_columns": list(feature_columns),
|
| 254 |
"label_classes": label_encoder.classes_.tolist(),
|
|
@@ -258,28 +732,184 @@ def export_artifacts(
|
|
| 258 |
"model_path": str(model_path),
|
| 259 |
"scaler_path": str(scaler_path),
|
| 260 |
"training_history": metrics["history"],
|
| 261 |
-
"classification_report":
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
"
|
| 265 |
-
|
| 266 |
-
else None,
|
| 267 |
}
|
| 268 |
-
|
| 269 |
-
if
|
| 270 |
-
|
| 271 |
-
|
| 272 |
|
| 273 |
metadata_path.write_text(json.dumps(metadata, indent=2))
|
| 274 |
|
| 275 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 276 |
def run_training(args: argparse.Namespace) -> None:
|
| 277 |
csv_path = Path(args.data_path)
|
| 278 |
model_out = Path(args.model_out)
|
| 279 |
scaler_out = Path(args.scaler_out)
|
| 280 |
metadata_out = Path(args.metadata_out)
|
| 281 |
|
| 282 |
-
features, labels, feature_columns = load_dataset(
|
| 283 |
csv_path, feature_columns=args.feature_columns, label_column=args.label_column
|
| 284 |
)
|
| 285 |
|
|
@@ -291,12 +921,21 @@ def run_training(args: argparse.Namespace) -> None:
|
|
| 291 |
)
|
| 292 |
|
| 293 |
sequences, scaler = standardise_sequences(sequences)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 294 |
model, label_encoder, metrics = train_model(
|
| 295 |
sequences,
|
| 296 |
seq_labels,
|
| 297 |
validation_split=args.validation_split,
|
| 298 |
batch_size=args.batch_size,
|
| 299 |
epochs=args.epochs,
|
|
|
|
|
|
|
|
|
|
| 300 |
)
|
| 301 |
|
| 302 |
export_artifacts(
|
|
@@ -304,7 +943,7 @@ def run_training(args: argparse.Namespace) -> None:
|
|
| 304 |
scaler=scaler,
|
| 305 |
label_encoder=label_encoder,
|
| 306 |
feature_columns=feature_columns,
|
| 307 |
-
label_column=
|
| 308 |
sequence_length=args.sequence_length,
|
| 309 |
stride=args.stride,
|
| 310 |
model_path=model_out,
|
|
@@ -314,6 +953,7 @@ def run_training(args: argparse.Namespace) -> None:
|
|
| 314 |
)
|
| 315 |
|
| 316 |
print("Training complete")
|
|
|
|
| 317 |
print(f"Model saved to : {model_out}")
|
| 318 |
print(f"Scaler saved to : {scaler_out}")
|
| 319 |
print(f"Metadata saved to : {metadata_out}")
|
|
@@ -322,10 +962,14 @@ def run_training(args: argparse.Namespace) -> None:
|
|
| 322 |
metrics["validation"]["y_true"], metrics["validation"]["y_pred"], target_names=metrics["validation"]["class_names"]
|
| 323 |
)
|
| 324 |
print(report)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 325 |
|
| 326 |
|
| 327 |
def parse_args(argv: Sequence[str] | None = None) -> argparse.Namespace:
|
| 328 |
-
parser = argparse.ArgumentParser(description="Train a
|
| 329 |
parser.add_argument("--data-path", required=True, help="Path to Fault_Classification_PMU_Data CSV")
|
| 330 |
parser.add_argument(
|
| 331 |
"--label-column",
|
|
@@ -343,9 +987,27 @@ def parse_args(argv: Sequence[str] | None = None) -> argparse.Namespace:
|
|
| 343 |
parser.add_argument("--validation-split", type=float, default=0.2, help="Validation set fraction")
|
| 344 |
parser.add_argument("--batch-size", type=int, default=128, help="Training batch size")
|
| 345 |
parser.add_argument("--epochs", type=int, default=50, help="Maximum number of training epochs")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 346 |
parser.add_argument("--model-out", default="pmu_cnn_lstm_model.keras", help="Path to save trained Keras model")
|
| 347 |
parser.add_argument("--scaler-out", default="pmu_feature_scaler.pkl", help="Path to save fitted StandardScaler")
|
| 348 |
parser.add_argument("--metadata-out", default="pmu_metadata.json", help="Path to save metadata JSON")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 349 |
return parser.parse_args(argv)
|
| 350 |
|
| 351 |
|
|
|
|
| 1 |
+
"""Fault classification training utilities for PMU and PV datasets.
|
| 2 |
|
| 3 |
+
This module trains deep learning models on high-frequency PMU measurements and
|
| 4 |
+
supports classical machine learning baselines so the resulting artefacts can be
|
| 5 |
+
served via the Gradio app in this repository or on Hugging Face Spaces. It
|
| 6 |
+
implements a full training pipeline including preprocessing, sequence
|
| 7 |
+
generation, model definition (CNN-LSTM, Temporal Convolutional Network, or
|
| 8 |
+
Support Vector Machine), evaluation, and export of deployment metadata.
|
| 9 |
|
| 10 |
Example
|
| 11 |
-------
|
| 12 |
python fault_classification_pmu.py \
|
| 13 |
--data-path data/Fault_Classification_PMU_Data.csv \
|
| 14 |
--label-column FaultType \
|
| 15 |
+
--model-type tcn \
|
| 16 |
+
--model-out pmu_tcn_model.keras \
|
| 17 |
--scaler-out pmu_feature_scaler.pkl \
|
| 18 |
--metadata-out pmu_metadata.json
|
| 19 |
|
|
|
|
| 24 |
and windowed to create temporal sequences that feed into the neural network.
|
| 25 |
|
| 26 |
The exported metadata JSON file contains the feature ordering, label names,
|
| 27 |
+
sequence length, stride, and chosen architecture. The Gradio front-end
|
| 28 |
+
consumes this file to replicate the same preprocessing steps during inference.
|
| 29 |
"""
|
| 30 |
from __future__ import annotations
|
| 31 |
|
| 32 |
import argparse
|
| 33 |
import json
|
| 34 |
+
import os
|
| 35 |
+
import shutil
|
| 36 |
+
from datetime import datetime
|
| 37 |
from pathlib import Path
|
| 38 |
+
from typing import Dict, List, Optional, Sequence, Tuple
|
| 39 |
+
|
| 40 |
+
import math
|
| 41 |
+
|
| 42 |
+
os.environ.setdefault("CUDA_VISIBLE_DEVICES", "-1")
|
| 43 |
+
os.environ.setdefault("TF_CPP_MIN_LOG_LEVEL", "2")
|
| 44 |
+
os.environ.setdefault("TF_ENABLE_ONEDNN_OPTS", "0")
|
| 45 |
|
| 46 |
import joblib
|
| 47 |
import numpy as np
|
| 48 |
import pandas as pd
|
| 49 |
+
from pandas.api.types import is_numeric_dtype
|
| 50 |
+
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
|
| 51 |
from sklearn.model_selection import train_test_split
|
| 52 |
from sklearn.preprocessing import LabelEncoder, StandardScaler
|
| 53 |
+
from sklearn.svm import SVC
|
| 54 |
from tensorflow.keras import callbacks, layers, models, optimizers
|
| 55 |
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
class ProgressCallback(callbacks.Callback):
|
| 59 |
+
"""Custom callback to provide training progress updates."""
|
| 60 |
+
|
| 61 |
+
def __init__(
|
| 62 |
+
self,
|
| 63 |
+
total_epochs,
|
| 64 |
+
status_file_path=None,
|
| 65 |
+
*,
|
| 66 |
+
status_update_interval: float = 10.0,
|
| 67 |
+
batch_log_frequency: int = 10,
|
| 68 |
+
):
|
| 69 |
+
super().__init__()
|
| 70 |
+
self.total_epochs = total_epochs
|
| 71 |
+
self.status_file_path = status_file_path
|
| 72 |
+
self.status_update_interval = max(1.0, float(status_update_interval))
|
| 73 |
+
self.batch_log_frequency = max(1, int(batch_log_frequency))
|
| 74 |
+
self.current_epoch = 0
|
| 75 |
+
self.train_start_time: Optional[float] = None
|
| 76 |
+
self.last_status_report: Optional[float] = None
|
| 77 |
+
self.total_batches_per_epoch = 0
|
| 78 |
+
self.batches_seen = 0
|
| 79 |
+
|
| 80 |
+
# ------------------------------------------------------------------
|
| 81 |
+
# Internal helpers
|
| 82 |
+
# ------------------------------------------------------------------
|
| 83 |
+
def _now(self) -> float:
|
| 84 |
+
import time
|
| 85 |
+
|
| 86 |
+
return time.perf_counter()
|
| 87 |
+
|
| 88 |
+
def _training_elapsed(self, now: Optional[float] = None) -> float:
|
| 89 |
+
if self.train_start_time is None:
|
| 90 |
+
return 0.0
|
| 91 |
+
if now is None:
|
| 92 |
+
now = self._now()
|
| 93 |
+
return max(0.0, now - self.train_start_time)
|
| 94 |
+
|
| 95 |
+
def _report_status(self, message: str, *, force: bool = False) -> None:
|
| 96 |
+
now = self._now()
|
| 97 |
+
if not force and self.last_status_report is not None:
|
| 98 |
+
if now - self.last_status_report < self.status_update_interval:
|
| 99 |
+
return
|
| 100 |
+
|
| 101 |
+
print(message, flush=True)
|
| 102 |
+
|
| 103 |
+
if self.status_file_path:
|
| 104 |
+
try:
|
| 105 |
+
with open(self.status_file_path, "w") as f:
|
| 106 |
+
f.write(message)
|
| 107 |
+
except Exception:
|
| 108 |
+
# Silently ignore status file failures; progress should still stream to stdout
|
| 109 |
+
pass
|
| 110 |
+
|
| 111 |
+
self.last_status_report = now
|
| 112 |
+
|
| 113 |
+
# ------------------------------------------------------------------
|
| 114 |
+
# Keras callback overrides
|
| 115 |
+
# ------------------------------------------------------------------
|
| 116 |
+
def on_train_begin(self, logs=None):
|
| 117 |
+
params = self.params or {}
|
| 118 |
+
steps = params.get("steps") or params.get("steps_per_epoch")
|
| 119 |
+
if steps:
|
| 120 |
+
self.total_batches_per_epoch = int(steps)
|
| 121 |
+
else:
|
| 122 |
+
samples = params.get("samples")
|
| 123 |
+
batch_size = params.get("batch_size") or 0
|
| 124 |
+
if samples and batch_size:
|
| 125 |
+
self.total_batches_per_epoch = math.ceil(samples / batch_size)
|
| 126 |
+
else:
|
| 127 |
+
self.total_batches_per_epoch = 0
|
| 128 |
+
|
| 129 |
+
self.batches_seen = 0
|
| 130 |
+
self.last_status_report = None
|
| 131 |
+
self.train_start_time = self._now()
|
| 132 |
+
|
| 133 |
+
def on_epoch_begin(self, epoch, logs=None):
|
| 134 |
+
import time
|
| 135 |
+
|
| 136 |
+
now = self._now()
|
| 137 |
+
if self.train_start_time is None:
|
| 138 |
+
self.train_start_time = now
|
| 139 |
+
|
| 140 |
+
self.current_epoch = epoch + 1
|
| 141 |
+
self.batches_seen = 0
|
| 142 |
+
|
| 143 |
+
progress_pct = (self.current_epoch / self.total_epochs) * 100
|
| 144 |
+
elapsed_time = self._training_elapsed(now)
|
| 145 |
+
status_msg = (
|
| 146 |
+
f"Training epoch {self.current_epoch}/{self.total_epochs} "
|
| 147 |
+
f"({progress_pct:.1f}%) - {elapsed_time:.1f}s elapsed"
|
| 148 |
+
)
|
| 149 |
+
self._report_status(status_msg, force=True)
|
| 150 |
+
|
| 151 |
+
if self.current_epoch == 1:
|
| 152 |
+
wall_clock = time.strftime("%H:%M:%S")
|
| 153 |
+
print(f"Starting first epoch at {wall_clock}", flush=True)
|
| 154 |
+
|
| 155 |
+
def on_batch_begin(self, batch, logs=None):
|
| 156 |
+
if self.current_epoch == 1 and batch % self.batch_log_frequency == 0:
|
| 157 |
+
elapsed = self._training_elapsed()
|
| 158 |
+
print(f"Epoch {self.current_epoch}, Batch {batch} started - {elapsed:.1f}s elapsed", flush=True)
|
| 159 |
+
|
| 160 |
+
def on_batch_end(self, batch, logs=None):
|
| 161 |
+
self.batches_seen = batch + 1
|
| 162 |
+
|
| 163 |
+
if self.current_epoch == 1 and batch % self.batch_log_frequency == 0:
|
| 164 |
+
logs = logs or {}
|
| 165 |
+
loss = logs.get("loss", 0)
|
| 166 |
+
elapsed = self._training_elapsed()
|
| 167 |
+
print(
|
| 168 |
+
f"Epoch {self.current_epoch}, Batch {batch} completed - Loss: {loss:.4f}, {elapsed:.1f}s elapsed",
|
| 169 |
+
flush=True,
|
| 170 |
+
)
|
| 171 |
+
|
| 172 |
+
total_batches = self.total_batches_per_epoch or 0
|
| 173 |
+
if not total_batches:
|
| 174 |
+
params = self.params or {}
|
| 175 |
+
total_batches = (
|
| 176 |
+
params.get("steps")
|
| 177 |
+
or params.get("steps_per_epoch")
|
| 178 |
+
or 0
|
| 179 |
+
)
|
| 180 |
+
|
| 181 |
+
if total_batches:
|
| 182 |
+
epoch_fraction = min(1.0, (batch + 1) / total_batches)
|
| 183 |
+
else:
|
| 184 |
+
epoch_fraction = 0.0
|
| 185 |
+
|
| 186 |
+
overall_progress = (
|
| 187 |
+
(self.current_epoch - 1 + epoch_fraction) / self.total_epochs * 100
|
| 188 |
+
)
|
| 189 |
+
elapsed_time = self._training_elapsed()
|
| 190 |
+
status_msg = (
|
| 191 |
+
f"Epoch {self.current_epoch}/{self.total_epochs} - Batch {batch + 1}/{total_batches or '?'} "
|
| 192 |
+
f"({overall_progress:.1f}%) - {elapsed_time:.1f}s elapsed"
|
| 193 |
+
)
|
| 194 |
+
self._report_status(status_msg)
|
| 195 |
+
|
| 196 |
+
def on_epoch_end(self, epoch, logs=None):
|
| 197 |
+
logs = logs or {}
|
| 198 |
+
loss = logs.get("loss", 0)
|
| 199 |
+
val_loss = logs.get("val_loss", 0)
|
| 200 |
+
accuracy = logs.get("accuracy", logs.get("acc", 0))
|
| 201 |
+
val_accuracy = logs.get("val_accuracy", logs.get("val_acc", 0))
|
| 202 |
+
_ = epoch # Suppress unused variable warning
|
| 203 |
+
|
| 204 |
+
elapsed_time = self._training_elapsed()
|
| 205 |
+
status_msg = (
|
| 206 |
+
f"Epoch {self.current_epoch}/{self.total_epochs} completed - "
|
| 207 |
+
f"Loss: {loss:.4f}, Val Loss: {val_loss:.4f}, "
|
| 208 |
+
f"Acc: {accuracy:.4f}, Val Acc: {val_accuracy:.4f} - {elapsed_time:.1f}s total"
|
| 209 |
+
)
|
| 210 |
+
self._report_status(status_msg, force=True)
|
| 211 |
+
|
| 212 |
+
def on_train_end(self, logs=None):
|
| 213 |
+
total_elapsed = self._training_elapsed()
|
| 214 |
+
final_message = (
|
| 215 |
+
f"Training finished after {self.total_epochs} epoch(s) - "
|
| 216 |
+
f"{total_elapsed:.1f}s total elapsed"
|
| 217 |
+
)
|
| 218 |
+
self._report_status(final_message, force=True)
|
| 219 |
+
|
| 220 |
+
|
| 221 |
# Default PMU feature set as described in the user provided table. Timestamp is
|
| 222 |
# intentionally omitted because it is not a model input feature.
|
| 223 |
DEFAULT_FEATURE_COLUMNS: List[str] = [
|
|
|
|
| 238 |
"[339] UPMU_SUB22-C3:ANG",
|
| 239 |
]
|
| 240 |
|
| 241 |
+
LABEL_GUESS_CANDIDATES: Tuple[str, ...] = ("Fault", "FaultType", "Label", "Target", "Class")
|
| 242 |
+
|
| 243 |
+
|
| 244 |
+
def _normalise_column_name(name: str) -> str:
|
| 245 |
+
return str(name).strip().lower()
|
| 246 |
+
|
| 247 |
+
|
| 248 |
+
def _resolve_label_column(df: pd.DataFrame, requested: str) -> str:
|
| 249 |
+
columns = [str(col) for col in df.columns]
|
| 250 |
+
if not columns:
|
| 251 |
+
raise ValueError("Provided dataframe does not contain any columns.")
|
| 252 |
+
|
| 253 |
+
requested = str(requested or "").strip()
|
| 254 |
+
if requested and requested in df.columns:
|
| 255 |
+
return requested
|
| 256 |
+
|
| 257 |
+
if requested:
|
| 258 |
+
for col in df.columns:
|
| 259 |
+
if str(col).strip() == requested:
|
| 260 |
+
return str(col)
|
| 261 |
+
lowered = requested.lower()
|
| 262 |
+
lowered_map = {_normalise_column_name(col): str(col) for col in df.columns}
|
| 263 |
+
if lowered in lowered_map:
|
| 264 |
+
return lowered_map[lowered]
|
| 265 |
+
|
| 266 |
+
lowered_map = {_normalise_column_name(col): str(col) for col in df.columns}
|
| 267 |
+
for guess in LABEL_GUESS_CANDIDATES:
|
| 268 |
+
key = guess.lower()
|
| 269 |
+
if key in lowered_map:
|
| 270 |
+
return lowered_map[key]
|
| 271 |
+
|
| 272 |
+
for col in reversed(df.columns):
|
| 273 |
+
if not is_numeric_dtype(df[col]):
|
| 274 |
+
return str(col)
|
| 275 |
+
|
| 276 |
+
available = ", ".join(columns)
|
| 277 |
+
raise ValueError(
|
| 278 |
+
f"Label column '{requested or ' '}' not found in provided dataframe. "
|
| 279 |
+
f"Available columns: {available}"
|
| 280 |
+
)
|
| 281 |
+
|
| 282 |
|
| 283 |
def _resolve_features(df: pd.DataFrame, feature_columns: Sequence[str] | None, label_column: str) -> List[str]:
|
| 284 |
if feature_columns:
|
|
|
|
| 304 |
*,
|
| 305 |
feature_columns: Sequence[str] | None,
|
| 306 |
label_column: str,
|
| 307 |
+
) -> Tuple[np.ndarray, np.ndarray, List[str], str]:
|
| 308 |
"""Load the dataset from CSV.
|
| 309 |
|
| 310 |
Parameters
|
|
|
|
| 324 |
1-D array of label strings.
|
| 325 |
columns: list[str]
|
| 326 |
Actual feature ordering used.
|
| 327 |
+
resolved_label: str
|
| 328 |
+
The column name that supplied the labels.
|
| 329 |
"""
|
| 330 |
+
df = pd.read_csv(csv_path, sep=None, engine="python")
|
| 331 |
+
resolved_label = _resolve_label_column(df, label_column)
|
| 332 |
+
|
| 333 |
+
columns = _resolve_features(df, feature_columns, resolved_label)
|
| 334 |
+
features = df[columns].astype(np.float32).values
|
| 335 |
+
labels = df[resolved_label].astype(str).values
|
| 336 |
+
return features, labels, columns, resolved_label
|
| 337 |
+
|
| 338 |
+
|
| 339 |
+
def load_dataset_from_dataframe(
|
| 340 |
+
df: pd.DataFrame,
|
| 341 |
+
*,
|
| 342 |
+
feature_columns: Sequence[str] | None,
|
| 343 |
+
label_column: str,
|
| 344 |
+
) -> Tuple[np.ndarray, np.ndarray, List[str], str]:
|
| 345 |
+
"""Load dataset arrays directly from a DataFrame."""
|
| 346 |
|
| 347 |
+
resolved_label = _resolve_label_column(df, label_column)
|
| 348 |
+
|
| 349 |
+
columns = _resolve_features(df, feature_columns, resolved_label)
|
| 350 |
features = df[columns].astype(np.float32).values
|
| 351 |
+
labels = df[resolved_label].astype(str).values
|
| 352 |
+
return features, labels, columns, resolved_label
|
| 353 |
|
| 354 |
|
| 355 |
def create_sequences(
|
|
|
|
| 411 |
return model
|
| 412 |
|
| 413 |
|
| 414 |
+
def build_tcn(
|
| 415 |
+
input_shape: Tuple[int, int],
|
| 416 |
+
num_classes: int,
|
| 417 |
+
*,
|
| 418 |
+
filters: int = 64,
|
| 419 |
+
kernel_size: int = 3,
|
| 420 |
+
dilations: Sequence[int] = (1, 2, 4, 8),
|
| 421 |
+
dropout: float = 0.2,
|
| 422 |
+
) -> models.Model:
|
| 423 |
+
"""Construct a lightweight Temporal Convolutional Network."""
|
| 424 |
+
|
| 425 |
+
inputs = layers.Input(shape=input_shape)
|
| 426 |
+
x = inputs
|
| 427 |
+
for dilation in dilations:
|
| 428 |
+
residual = x
|
| 429 |
+
x = layers.Conv1D(
|
| 430 |
+
filters,
|
| 431 |
+
kernel_size,
|
| 432 |
+
padding="causal",
|
| 433 |
+
activation="relu",
|
| 434 |
+
dilation_rate=dilation,
|
| 435 |
+
)(x)
|
| 436 |
+
x = layers.BatchNormalization()(x)
|
| 437 |
+
x = layers.Dropout(dropout)(x)
|
| 438 |
+
x = layers.Conv1D(
|
| 439 |
+
filters,
|
| 440 |
+
kernel_size,
|
| 441 |
+
padding="causal",
|
| 442 |
+
activation="relu",
|
| 443 |
+
dilation_rate=dilation,
|
| 444 |
+
)(x)
|
| 445 |
+
x = layers.BatchNormalization()(x)
|
| 446 |
+
if residual.shape[-1] != filters:
|
| 447 |
+
residual = layers.Conv1D(filters, 1, padding="same")(residual)
|
| 448 |
+
x = layers.Add()([x, residual])
|
| 449 |
+
x = layers.Activation("relu")(x)
|
| 450 |
+
|
| 451 |
+
x = layers.GlobalAveragePooling1D()(x)
|
| 452 |
+
x = layers.Dropout(dropout)(x)
|
| 453 |
+
outputs = layers.Dense(num_classes, activation="softmax")(x)
|
| 454 |
+
|
| 455 |
+
model = models.Model(inputs, outputs)
|
| 456 |
+
model.compile(
|
| 457 |
+
optimizer=optimizers.Adam(learning_rate=1e-3),
|
| 458 |
+
loss="sparse_categorical_crossentropy",
|
| 459 |
+
metrics=["accuracy"],
|
| 460 |
+
)
|
| 461 |
+
return model
|
| 462 |
+
|
| 463 |
+
|
| 464 |
def train_model(
|
| 465 |
sequences: np.ndarray,
|
| 466 |
labels: np.ndarray,
|
|
|
|
| 468 |
validation_split: float,
|
| 469 |
batch_size: int,
|
| 470 |
epochs: int,
|
| 471 |
+
model_type: str = "cnn_lstm",
|
| 472 |
+
tensorboard_log_dir: Optional[Path] = None,
|
| 473 |
+
status_file_path: Optional[Path] = None,
|
| 474 |
+
) -> Tuple[object, LabelEncoder, Dict[str, object]]:
|
| 475 |
+
"""Train a sequence model and return training history and validation outputs."""
|
|
|
|
|
|
|
|
|
|
| 476 |
|
| 477 |
+
model_type = model_type.lower().strip()
|
| 478 |
+
if model_type not in {"cnn_lstm", "tcn", "svm"}:
|
| 479 |
+
raise ValueError("model_type must be either 'cnn_lstm', 'tcn', or 'svm'")
|
| 480 |
|
| 481 |
+
# Handle status file for progress tracking
|
| 482 |
+
status_file = status_file_path if status_file_path else None
|
|
|
|
|
|
|
| 483 |
|
| 484 |
+
label_encoder = LabelEncoder()
|
| 485 |
+
y = label_encoder.fit_transform(labels)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 486 |
|
| 487 |
+
if model_type == "svm":
|
| 488 |
+
features = sequences.reshape(sequences.shape[0], -1)
|
| 489 |
+
else:
|
| 490 |
+
features = sequences
|
| 491 |
+
|
| 492 |
+
tb_dir: Optional[str] = None
|
| 493 |
+
if model_type != "svm" and tensorboard_log_dir is not None:
|
| 494 |
+
tensorboard_log_dir.mkdir(parents=True, exist_ok=True)
|
| 495 |
+
tb_dir = str(tensorboard_log_dir.resolve())
|
| 496 |
+
else:
|
| 497 |
+
tensorboard_log_dir = None
|
| 498 |
+
|
| 499 |
+
# Check if we can use stratification (each class needs at least 2 samples)
|
| 500 |
+
unique_labels, label_counts = np.unique(y, return_counts=True)
|
| 501 |
+
min_samples_per_class = np.min(label_counts)
|
| 502 |
+
|
| 503 |
+
print(f"Label distribution: {dict(zip(unique_labels, label_counts))}")
|
| 504 |
+
print(f"Minimum samples per class: {min_samples_per_class}")
|
| 505 |
+
print(f"Total sequences: {len(sequences)}, Features per sequence: {sequences.shape[1:]}")
|
| 506 |
+
|
| 507 |
+
# Check for potential memory issues
|
| 508 |
+
import sys
|
| 509 |
+
data_size_mb = sequences.nbytes / (1024 * 1024)
|
| 510 |
+
print(f"Data size: {data_size_mb:.2f} MB")
|
| 511 |
+
if data_size_mb > 1000: # > 1GB
|
| 512 |
+
print("Warning: Large dataset detected. Consider reducing batch size or sequence length.")
|
| 513 |
+
|
| 514 |
+
# Validate data ranges
|
| 515 |
+
if np.any(np.isnan(sequences)) or np.any(np.isinf(sequences)):
|
| 516 |
+
print("Warning: NaN or Inf values detected in sequences")
|
| 517 |
+
sequences = np.nan_to_num(sequences, nan=0.0, posinf=1e6, neginf=-1e6)
|
| 518 |
+
|
| 519 |
+
# Use stratification only if each class has at least 2 samples
|
| 520 |
+
if min_samples_per_class >= 2:
|
| 521 |
+
X_train, X_val, y_train, y_val = train_test_split(
|
| 522 |
+
features, y, test_size=validation_split, stratify=y, random_state=42
|
| 523 |
+
)
|
| 524 |
+
else:
|
| 525 |
+
print(f"Warning: Some classes have only {min_samples_per_class} sample(s). Using simple random split instead of stratified split.")
|
| 526 |
+
|
| 527 |
+
# If validation split would result in empty validation set for some classes,
|
| 528 |
+
# reduce validation split or use a minimum number of samples
|
| 529 |
+
total_samples = len(y)
|
| 530 |
+
if validation_split * total_samples < len(unique_labels):
|
| 531 |
+
# Ensure at least one sample per class in validation if possible
|
| 532 |
+
adjusted_split = max(0.1, len(unique_labels) / total_samples)
|
| 533 |
+
adjusted_split = min(adjusted_split, 0.3) # Cap at 30%
|
| 534 |
+
print(f"Adjusting validation split from {validation_split} to {adjusted_split}")
|
| 535 |
+
validation_split = adjusted_split
|
| 536 |
+
|
| 537 |
+
X_train, X_val, y_train, y_val = train_test_split(
|
| 538 |
+
features, y, test_size=validation_split, random_state=42
|
| 539 |
+
)
|
| 540 |
+
|
| 541 |
+
if model_type == "cnn_lstm":
|
| 542 |
+
print("Building CNN-LSTM model...")
|
| 543 |
+
|
| 544 |
+
# Optimize model for large datasets
|
| 545 |
+
if len(sequences) > 100000:
|
| 546 |
+
print("Using lightweight CNN-LSTM for large dataset")
|
| 547 |
+
model = build_cnn_lstm(
|
| 548 |
+
input_shape=sequences.shape[1:],
|
| 549 |
+
num_classes=len(label_encoder.classes_),
|
| 550 |
+
conv_filters=64, # Reduce from 128
|
| 551 |
+
lstm_units=64, # Reduce from 128
|
| 552 |
+
dropout=0.2 # Reduce dropout
|
| 553 |
+
)
|
| 554 |
+
else:
|
| 555 |
+
model = build_cnn_lstm(
|
| 556 |
+
input_shape=sequences.shape[1:], num_classes=len(label_encoder.classes_)
|
| 557 |
+
)
|
| 558 |
+
print(f"CNN-LSTM model built. Input shape: {sequences.shape[1:]}, Classes: {len(label_encoder.classes_)}")
|
| 559 |
+
print(f"Model parameters: {model.count_params():,}")
|
| 560 |
+
|
| 561 |
+
# Adjust callbacks for dataset size
|
| 562 |
+
if len(sequences) > 100000:
|
| 563 |
+
callbacks_list = [
|
| 564 |
+
ProgressCallback(total_epochs=epochs, status_file_path=str(status_file) if status_file else None),
|
| 565 |
+
callbacks.ReduceLROnPlateau(monitor="val_loss", factor=0.5, patience=2, min_lr=1e-5),
|
| 566 |
+
callbacks.EarlyStopping(monitor="val_loss", patience=3, restore_best_weights=True), # More aggressive
|
| 567 |
+
]
|
| 568 |
+
print("Using aggressive callbacks for large dataset")
|
| 569 |
+
else:
|
| 570 |
+
callbacks_list = [
|
| 571 |
+
ProgressCallback(total_epochs=epochs, status_file_path=str(status_file) if status_file else None),
|
| 572 |
+
callbacks.ReduceLROnPlateau(monitor="val_loss", factor=0.5, patience=3, min_lr=1e-5),
|
| 573 |
+
callbacks.EarlyStopping(monitor="val_loss", patience=6, restore_best_weights=True),
|
| 574 |
+
]
|
| 575 |
+
if tensorboard_log_dir is not None:
|
| 576 |
+
callbacks_list.insert(-2, callbacks.TensorBoard(log_dir=tb_dir, histogram_freq=0, write_graph=False)) # Reduce TensorBoard overhead
|
| 577 |
+
|
| 578 |
+
print(f"Starting CNN-LSTM training with {len(X_train)} training samples, {len(X_val)} validation samples")
|
| 579 |
+
print(f"Batch size: {batch_size}, Epochs: {epochs}")
|
| 580 |
+
|
| 581 |
+
if status_file:
|
| 582 |
+
with open(status_file, 'w') as f:
|
| 583 |
+
f.write(f"CNN-LSTM training started - {len(X_train)} train, {len(X_val)} val samples, batch_size={batch_size}")
|
| 584 |
+
|
| 585 |
+
history = model.fit(
|
| 586 |
+
X_train,
|
| 587 |
+
y_train,
|
| 588 |
+
validation_data=(X_val, y_val),
|
| 589 |
+
epochs=epochs,
|
| 590 |
+
batch_size=batch_size,
|
| 591 |
+
callbacks=callbacks_list,
|
| 592 |
+
verbose=2,
|
| 593 |
+
)
|
| 594 |
+
|
| 595 |
+
print("CNN-LSTM training completed, starting prediction...")
|
| 596 |
+
if status_file:
|
| 597 |
+
with open(status_file, 'w') as f:
|
| 598 |
+
f.write("CNN-LSTM training completed, evaluating model...")
|
| 599 |
+
|
| 600 |
+
print(f"Making predictions on {len(X_val)} validation samples...")
|
| 601 |
+
if status_file:
|
| 602 |
+
with open(status_file, 'w') as f:
|
| 603 |
+
f.write(f"Making predictions on {len(X_val)} validation samples...")
|
| 604 |
+
y_pred = model.predict(X_val, verbose=0).argmax(axis=1)
|
| 605 |
+
print("Predictions completed")
|
| 606 |
+
training_history: Dict[str, object] = history.history
|
| 607 |
+
elif model_type == "tcn":
|
| 608 |
+
print("Building TCN model...")
|
| 609 |
+
model = build_tcn(input_shape=sequences.shape[1:], num_classes=len(label_encoder.classes_))
|
| 610 |
+
print(f"TCN model built. Input shape: {sequences.shape[1:]}, Classes: {len(label_encoder.classes_)}")
|
| 611 |
+
|
| 612 |
+
callbacks_list = [
|
| 613 |
+
ProgressCallback(total_epochs=epochs, status_file_path=str(status_file) if status_file else None),
|
| 614 |
+
callbacks.ReduceLROnPlateau(monitor="val_loss", factor=0.5, patience=3, min_lr=1e-5),
|
| 615 |
+
callbacks.EarlyStopping(monitor="val_loss", patience=6, restore_best_weights=True),
|
| 616 |
+
]
|
| 617 |
+
if tensorboard_log_dir is not None:
|
| 618 |
+
callbacks_list.insert(-2, callbacks.TensorBoard(log_dir=tb_dir, histogram_freq=0, write_graph=False)) # Reduce TensorBoard overhead
|
| 619 |
+
|
| 620 |
+
print(f"Starting TCN training with {len(X_train)} training samples, {len(X_val)} validation samples")
|
| 621 |
+
print(f"Batch size: {batch_size}, Epochs: {epochs}")
|
| 622 |
+
|
| 623 |
+
if status_file:
|
| 624 |
+
with open(status_file, 'w') as f:
|
| 625 |
+
f.write(f"TCN training started - {len(X_train)} train, {len(X_val)} val samples, batch_size={batch_size}")
|
| 626 |
+
|
| 627 |
+
history = model.fit(
|
| 628 |
+
X_train,
|
| 629 |
+
y_train,
|
| 630 |
+
validation_data=(X_val, y_val),
|
| 631 |
+
epochs=epochs,
|
| 632 |
+
batch_size=batch_size,
|
| 633 |
+
callbacks=callbacks_list,
|
| 634 |
+
verbose=2,
|
| 635 |
+
)
|
| 636 |
+
|
| 637 |
+
print("TCN training completed, starting prediction...")
|
| 638 |
+
if status_file:
|
| 639 |
+
with open(status_file, 'w') as f:
|
| 640 |
+
f.write("TCN training completed, evaluating model...")
|
| 641 |
+
|
| 642 |
+
print(f"Making TCN predictions on {len(X_val)} validation samples...")
|
| 643 |
+
if status_file:
|
| 644 |
+
with open(status_file, 'w') as f:
|
| 645 |
+
f.write(f"Making TCN predictions on {len(X_val)} validation samples...")
|
| 646 |
+
y_pred = model.predict(X_val, verbose=0).argmax(axis=1)
|
| 647 |
+
print("TCN predictions completed")
|
| 648 |
+
training_history = history.history
|
| 649 |
+
else: # svm
|
| 650 |
+
print("Training SVM model...", flush=True)
|
| 651 |
+
if status_file:
|
| 652 |
+
with open(status_file, 'w') as f:
|
| 653 |
+
f.write("Training SVM model...")
|
| 654 |
+
|
| 655 |
+
model = SVC(kernel="rbf", probability=True, class_weight="balanced")
|
| 656 |
+
model.fit(X_train, y_train)
|
| 657 |
+
|
| 658 |
+
print("SVM training completed. Evaluating...", flush=True)
|
| 659 |
+
if status_file:
|
| 660 |
+
with open(status_file, 'w') as f:
|
| 661 |
+
f.write("SVM training completed. Evaluating...")
|
| 662 |
+
|
| 663 |
+
y_pred = model.predict(X_val)
|
| 664 |
+
training_history = {
|
| 665 |
+
"train_accuracy": float(model.score(X_train, y_train)),
|
| 666 |
+
"val_accuracy": float(accuracy_score(y_val, y_pred)),
|
| 667 |
+
}
|
| 668 |
+
|
| 669 |
+
cm = confusion_matrix(y_val, y_pred)
|
| 670 |
+
metrics: Dict[str, object] = {
|
| 671 |
+
"history": training_history,
|
| 672 |
"validation": {
|
| 673 |
"y_true": y_val,
|
| 674 |
"y_pred": y_pred,
|
| 675 |
"class_names": label_encoder.classes_.tolist(),
|
| 676 |
+
"confusion_matrix": cm,
|
| 677 |
},
|
| 678 |
+
"model_type": model_type,
|
| 679 |
+
"input_shape": list(sequences.shape[1:]),
|
| 680 |
+
"tensorboard_log_dir": tb_dir,
|
| 681 |
}
|
| 682 |
return model, label_encoder, metrics
|
| 683 |
|
|
|
|
| 692 |
|
| 693 |
def export_artifacts(
|
| 694 |
*,
|
| 695 |
+
model: object,
|
| 696 |
scaler: StandardScaler,
|
| 697 |
label_encoder: LabelEncoder,
|
| 698 |
feature_columns: Sequence[str],
|
|
|
|
| 708 |
model_path.parent.mkdir(parents=True, exist_ok=True)
|
| 709 |
scaler_path.parent.mkdir(parents=True, exist_ok=True)
|
| 710 |
metadata_path.parent.mkdir(parents=True, exist_ok=True)
|
| 711 |
+
model_type = str(metrics.get("model_type", "cnn_lstm"))
|
| 712 |
+
if model_type == "svm":
|
| 713 |
+
joblib.dump(model, model_path)
|
| 714 |
+
else:
|
| 715 |
+
model.save(model_path)
|
| 716 |
joblib.dump(scaler, scaler_path)
|
| 717 |
|
| 718 |
+
validation = metrics["validation"]
|
| 719 |
+
report_dict = classification_report(
|
| 720 |
+
validation["y_true"],
|
| 721 |
+
validation["y_pred"],
|
| 722 |
+
target_names=label_encoder.classes_,
|
| 723 |
+
output_dict=True,
|
| 724 |
+
)
|
| 725 |
+
|
| 726 |
metadata = {
|
| 727 |
"feature_columns": list(feature_columns),
|
| 728 |
"label_classes": label_encoder.classes_.tolist(),
|
|
|
|
| 732 |
"model_path": str(model_path),
|
| 733 |
"scaler_path": str(scaler_path),
|
| 734 |
"training_history": metrics["history"],
|
| 735 |
+
"classification_report": report_dict,
|
| 736 |
+
"model_type": model_type,
|
| 737 |
+
"model_format": "joblib" if model_type == "svm" else "keras",
|
| 738 |
+
"input_shape": metrics.get("input_shape"),
|
| 739 |
+
"tensorboard_log_dir": metrics.get("tensorboard_log_dir"),
|
|
|
|
| 740 |
}
|
| 741 |
+
confusion = validation.get("confusion_matrix")
|
| 742 |
+
if confusion is None:
|
| 743 |
+
confusion = confusion_matrix(validation["y_true"], validation["y_pred"])
|
| 744 |
+
metadata["confusion_matrix"] = np.asarray(confusion).tolist()
|
| 745 |
|
| 746 |
metadata_path.write_text(json.dumps(metadata, indent=2))
|
| 747 |
|
| 748 |
|
| 749 |
+
def train_from_dataframe(
|
| 750 |
+
df: pd.DataFrame,
|
| 751 |
+
*,
|
| 752 |
+
label_column: str,
|
| 753 |
+
feature_columns: Sequence[str] | None = None,
|
| 754 |
+
sequence_length: int = 32,
|
| 755 |
+
stride: int = 4,
|
| 756 |
+
validation_split: float = 0.2,
|
| 757 |
+
batch_size: int = 128,
|
| 758 |
+
epochs: int = 50,
|
| 759 |
+
model_type: str = "cnn_lstm",
|
| 760 |
+
model_path: Path | str = "pmu_cnn_lstm_model.keras",
|
| 761 |
+
scaler_path: Path | str = "pmu_feature_scaler.pkl",
|
| 762 |
+
metadata_path: Path | str = "pmu_metadata.json",
|
| 763 |
+
enable_tensorboard: bool = True,
|
| 764 |
+
tensorboard_root: Path | str | None = None,
|
| 765 |
+
) -> dict:
|
| 766 |
+
"""Train a PMU fault classification model using an in-memory dataframe."""
|
| 767 |
+
|
| 768 |
+
model_path = Path(model_path)
|
| 769 |
+
scaler_path = Path(scaler_path)
|
| 770 |
+
metadata_path = Path(metadata_path)
|
| 771 |
+
|
| 772 |
+
# Create status file for progress tracking
|
| 773 |
+
status_file = model_path.parent / "training_status.txt"
|
| 774 |
+
print(f"Training progress will be written to: {status_file}")
|
| 775 |
+
|
| 776 |
+
tensorboard_log_dir: Optional[Path] = None
|
| 777 |
+
if enable_tensorboard and model_type.lower() != "svm":
|
| 778 |
+
base_dir = Path(tensorboard_root) if tensorboard_root is not None else Path("tensorboard_runs")
|
| 779 |
+
timestamp = datetime.utcnow().strftime("%Y%m%d-%H%M%S")
|
| 780 |
+
tensorboard_log_dir = base_dir / f"run-{timestamp}"
|
| 781 |
+
|
| 782 |
+
features, labels, used_columns, resolved_label = load_dataset_from_dataframe(
|
| 783 |
+
df, feature_columns=feature_columns, label_column=label_column
|
| 784 |
+
)
|
| 785 |
+
|
| 786 |
+
print(f"Input data: {len(features)} samples")
|
| 787 |
+
print(f"Creating sequences with length={sequence_length}, stride={stride}")
|
| 788 |
+
|
| 789 |
+
sequences, seq_labels = create_sequences(
|
| 790 |
+
features,
|
| 791 |
+
labels,
|
| 792 |
+
sequence_length=sequence_length,
|
| 793 |
+
stride=stride,
|
| 794 |
+
)
|
| 795 |
+
|
| 796 |
+
print(f"Generated {len(sequences)} sequences")
|
| 797 |
+
|
| 798 |
+
# Validate sequence count and adjust parameters if necessary
|
| 799 |
+
if len(sequences) < 10:
|
| 800 |
+
raise ValueError(
|
| 801 |
+
f"Only {len(sequences)} sequences generated. Need at least 10 for training. "
|
| 802 |
+
f"Try reducing sequence_length (currently {sequence_length}) or stride (currently {stride}), "
|
| 803 |
+
"or provide more data."
|
| 804 |
+
)
|
| 805 |
+
|
| 806 |
+
# If very few sequences, recommend SVM instead of deep learning
|
| 807 |
+
if len(sequences) < 100 and model_type in ['cnn_lstm', 'tcn']:
|
| 808 |
+
print(f"Warning: Only {len(sequences)} sequences available. Consider using SVM for small datasets.")
|
| 809 |
+
|
| 810 |
+
sequences, scaler = standardise_sequences(sequences)
|
| 811 |
+
|
| 812 |
+
# Adjust training parameters based on data size
|
| 813 |
+
original_batch_size = batch_size
|
| 814 |
+
original_epochs = epochs
|
| 815 |
+
original_validation_split = validation_split
|
| 816 |
+
|
| 817 |
+
# Handle large datasets (>100K sequences) - optimize for memory and speed
|
| 818 |
+
if len(sequences) > 100000:
|
| 819 |
+
print(f"Large dataset detected ({len(sequences)} sequences). Optimizing parameters...")
|
| 820 |
+
batch_size = min(batch_size * 2, 512) # Increase batch size for efficiency
|
| 821 |
+
epochs = min(epochs, 30) # Reduce epochs for large datasets
|
| 822 |
+
print(f"Adjusted parameters for large dataset:")
|
| 823 |
+
print(f" Batch size: {original_batch_size} -> {batch_size}")
|
| 824 |
+
print(f" Epochs: {original_epochs} -> {epochs}")
|
| 825 |
+
|
| 826 |
+
# Force garbage collection
|
| 827 |
+
import gc
|
| 828 |
+
gc.collect()
|
| 829 |
+
|
| 830 |
+
elif len(sequences) < 100:
|
| 831 |
+
# For very small datasets
|
| 832 |
+
batch_size = max(min(batch_size, len(sequences) // 4), 4) # Ensure batch_size >= 4
|
| 833 |
+
epochs = min(epochs, 20) # Reduce epochs to prevent overfitting
|
| 834 |
+
validation_split = min(validation_split, 0.3) # Reduce validation split
|
| 835 |
+
print(f"Adjusted parameters for small dataset:")
|
| 836 |
+
print(f" Batch size: {original_batch_size} -> {batch_size}")
|
| 837 |
+
print(f" Epochs: {original_epochs} -> {epochs}")
|
| 838 |
+
print(f" Validation split: {original_validation_split} -> {validation_split}")
|
| 839 |
+
|
| 840 |
+
model, label_encoder, metrics = train_model(
|
| 841 |
+
sequences,
|
| 842 |
+
seq_labels,
|
| 843 |
+
validation_split=validation_split,
|
| 844 |
+
batch_size=batch_size,
|
| 845 |
+
epochs=epochs,
|
| 846 |
+
model_type=model_type,
|
| 847 |
+
tensorboard_log_dir=tensorboard_log_dir,
|
| 848 |
+
status_file_path=status_file,
|
| 849 |
+
)
|
| 850 |
+
|
| 851 |
+
export_artifacts(
|
| 852 |
+
model=model,
|
| 853 |
+
scaler=scaler,
|
| 854 |
+
label_encoder=label_encoder,
|
| 855 |
+
feature_columns=used_columns,
|
| 856 |
+
label_column=resolved_label,
|
| 857 |
+
sequence_length=sequence_length,
|
| 858 |
+
stride=stride,
|
| 859 |
+
model_path=model_path,
|
| 860 |
+
scaler_path=scaler_path,
|
| 861 |
+
metadata_path=metadata_path,
|
| 862 |
+
metrics=metrics,
|
| 863 |
+
)
|
| 864 |
+
|
| 865 |
+
tensorboard_zip_path: Optional[str] = None
|
| 866 |
+
if tensorboard_log_dir and tensorboard_log_dir.exists():
|
| 867 |
+
try:
|
| 868 |
+
tensorboard_zip_path = shutil.make_archive(
|
| 869 |
+
base_name=str(tensorboard_log_dir.parent / tensorboard_log_dir.name),
|
| 870 |
+
format="zip",
|
| 871 |
+
root_dir=str(tensorboard_log_dir.parent),
|
| 872 |
+
base_dir=tensorboard_log_dir.name,
|
| 873 |
+
)
|
| 874 |
+
tensorboard_zip_path = str(Path(tensorboard_zip_path).resolve())
|
| 875 |
+
except Exception:
|
| 876 |
+
tensorboard_zip_path = None
|
| 877 |
+
|
| 878 |
+
report_dict = classification_report(
|
| 879 |
+
metrics["validation"]["y_true"],
|
| 880 |
+
metrics["validation"]["y_pred"],
|
| 881 |
+
target_names=metrics["validation"]["class_names"],
|
| 882 |
+
output_dict=True,
|
| 883 |
+
)
|
| 884 |
+
confusion = metrics["validation"].get("confusion_matrix")
|
| 885 |
+
if confusion is None:
|
| 886 |
+
confusion = confusion_matrix(metrics["validation"]["y_true"], metrics["validation"]["y_pred"])
|
| 887 |
+
|
| 888 |
+
return {
|
| 889 |
+
"num_samples": int(df.shape[0]),
|
| 890 |
+
"num_sequences": int(sequences.shape[0]),
|
| 891 |
+
"feature_columns": used_columns,
|
| 892 |
+
"class_names": label_encoder.classes_.tolist(),
|
| 893 |
+
"model_path": str(model_path.resolve()),
|
| 894 |
+
"scaler_path": str(scaler_path.resolve()),
|
| 895 |
+
"metadata_path": str(metadata_path.resolve()),
|
| 896 |
+
"history": metrics["history"],
|
| 897 |
+
"model_type": metrics.get("model_type", model_type),
|
| 898 |
+
"classification_report": report_dict,
|
| 899 |
+
"confusion_matrix": np.asarray(confusion).tolist(),
|
| 900 |
+
"tensorboard_log_dir": metrics.get("tensorboard_log_dir"),
|
| 901 |
+
"tensorboard_zip_path": tensorboard_zip_path,
|
| 902 |
+
"label_column": resolved_label,
|
| 903 |
+
}
|
| 904 |
+
|
| 905 |
+
|
| 906 |
def run_training(args: argparse.Namespace) -> None:
|
| 907 |
csv_path = Path(args.data_path)
|
| 908 |
model_out = Path(args.model_out)
|
| 909 |
scaler_out = Path(args.scaler_out)
|
| 910 |
metadata_out = Path(args.metadata_out)
|
| 911 |
|
| 912 |
+
features, labels, feature_columns, resolved_label = load_dataset(
|
| 913 |
csv_path, feature_columns=args.feature_columns, label_column=args.label_column
|
| 914 |
)
|
| 915 |
|
|
|
|
| 921 |
)
|
| 922 |
|
| 923 |
sequences, scaler = standardise_sequences(sequences)
|
| 924 |
+
tensorboard_log_dir: Optional[Path] = None
|
| 925 |
+
if args.tensorboard and args.model_type != "svm":
|
| 926 |
+
if args.tensorboard_log_dir:
|
| 927 |
+
tensorboard_log_dir = Path(args.tensorboard_log_dir)
|
| 928 |
+
else:
|
| 929 |
+
tensorboard_log_dir = Path("tensorboard_runs") / datetime.utcnow().strftime("%Y%m%d-%H%M%S")
|
| 930 |
model, label_encoder, metrics = train_model(
|
| 931 |
sequences,
|
| 932 |
seq_labels,
|
| 933 |
validation_split=args.validation_split,
|
| 934 |
batch_size=args.batch_size,
|
| 935 |
epochs=args.epochs,
|
| 936 |
+
model_type=args.model_type,
|
| 937 |
+
tensorboard_log_dir=tensorboard_log_dir,
|
| 938 |
+
status_file_path=None, # No status file for CLI usage
|
| 939 |
)
|
| 940 |
|
| 941 |
export_artifacts(
|
|
|
|
| 943 |
scaler=scaler,
|
| 944 |
label_encoder=label_encoder,
|
| 945 |
feature_columns=feature_columns,
|
| 946 |
+
label_column=resolved_label,
|
| 947 |
sequence_length=args.sequence_length,
|
| 948 |
stride=args.stride,
|
| 949 |
model_path=model_out,
|
|
|
|
| 953 |
)
|
| 954 |
|
| 955 |
print("Training complete")
|
| 956 |
+
print(f"Model architecture : {args.model_type}")
|
| 957 |
print(f"Model saved to : {model_out}")
|
| 958 |
print(f"Scaler saved to : {scaler_out}")
|
| 959 |
print(f"Metadata saved to : {metadata_out}")
|
|
|
|
| 962 |
metrics["validation"]["y_true"], metrics["validation"]["y_pred"], target_names=metrics["validation"]["class_names"]
|
| 963 |
)
|
| 964 |
print(report)
|
| 965 |
+
if metrics.get("tensorboard_log_dir"):
|
| 966 |
+
tb_dir = metrics["tensorboard_log_dir"]
|
| 967 |
+
print(f"TensorBoard logs written to: {tb_dir}")
|
| 968 |
+
print(f"Launch TensorBoard with: tensorboard --logdir \"{tb_dir}\"")
|
| 969 |
|
| 970 |
|
| 971 |
def parse_args(argv: Sequence[str] | None = None) -> argparse.Namespace:
|
| 972 |
+
parser = argparse.ArgumentParser(description="Train a sequence model for PMU fault classification")
|
| 973 |
parser.add_argument("--data-path", required=True, help="Path to Fault_Classification_PMU_Data CSV")
|
| 974 |
parser.add_argument(
|
| 975 |
"--label-column",
|
|
|
|
| 987 |
parser.add_argument("--validation-split", type=float, default=0.2, help="Validation set fraction")
|
| 988 |
parser.add_argument("--batch-size", type=int, default=128, help="Training batch size")
|
| 989 |
parser.add_argument("--epochs", type=int, default=50, help="Maximum number of training epochs")
|
| 990 |
+
parser.add_argument(
|
| 991 |
+
"--model-type",
|
| 992 |
+
choices=["cnn_lstm", "tcn", "svm"],
|
| 993 |
+
default="cnn_lstm",
|
| 994 |
+
help="Model architecture to train (choices: cnn_lstm, tcn, svm)",
|
| 995 |
+
)
|
| 996 |
parser.add_argument("--model-out", default="pmu_cnn_lstm_model.keras", help="Path to save trained Keras model")
|
| 997 |
parser.add_argument("--scaler-out", default="pmu_feature_scaler.pkl", help="Path to save fitted StandardScaler")
|
| 998 |
parser.add_argument("--metadata-out", default="pmu_metadata.json", help="Path to save metadata JSON")
|
| 999 |
+
parser.add_argument(
|
| 1000 |
+
"--tensorboard-log-dir",
|
| 1001 |
+
default=None,
|
| 1002 |
+
help="Optional directory to write TensorBoard logs (defaults to tensorboard_runs/<timestamp>)",
|
| 1003 |
+
)
|
| 1004 |
+
parser.add_argument(
|
| 1005 |
+
"--no-tensorboard",
|
| 1006 |
+
dest="tensorboard",
|
| 1007 |
+
action="store_false",
|
| 1008 |
+
help="Disable TensorBoard logging for neural network models",
|
| 1009 |
+
)
|
| 1010 |
+
parser.set_defaults(tensorboard=True)
|
| 1011 |
return parser.parse_args(argv)
|
| 1012 |
|
| 1013 |
|
lstm_cnn_gradio_notebook.ipynb
CHANGED
|
File without changes
|
requirements.txt
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
gradio>=
|
| 2 |
tensorflow>=2.6
|
| 3 |
numpy
|
| 4 |
pandas
|
|
|
|
| 1 |
+
gradio>=4.44,<5
|
| 2 |
tensorflow>=2.6
|
| 3 |
numpy
|
| 4 |
pandas
|
tcn_app.py
CHANGED
|
File without changes
|
tcn_gradio_notebook.ipynb
CHANGED
|
File without changes
|