File size: 22,700 Bytes
1a864fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed063d7
 
 
 
 
1a864fd
 
 
 
 
 
 
 
 
0533ede
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a864fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fdbc193
0533ede
e0a2fb5
 
 
 
0533ede
e0a2fb5
 
 
 
1be0f87
e0a2fb5
1a864fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17f4940
1a864fd
 
 
 
 
 
 
 
e0a2fb5
 
 
 
 
 
1a864fd
e0a2fb5
 
1a864fd
 
 
 
 
 
 
 
0533ede
1a864fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc41128
1a864fd
 
 
 
e0a2fb5
 
 
 
 
 
0533ede
e0a2fb5
 
0533ede
1a864fd
 
 
 
 
 
 
0533ede
1a864fd
 
 
 
 
 
 
 
 
 
 
 
 
e0a2fb5
1a864fd
e0a2fb5
1a864fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0533ede
1a864fd
 
 
 
 
 
0533ede
 
 
 
 
1a864fd
0533ede
 
1a864fd
 
0533ede
 
1a864fd
0533ede
 
 
1a864fd
0533ede
 
 
 
1a864fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1be0f87
1a864fd
e0a2fb5
1a864fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6c18a3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
import gradio as gr
import torch
from diffusers import DiffusionPipeline
import random
import os
import sys
import time

# Set PyTorch MPS fallback for Apple Silicon compatibility
os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1'

# Check for dev mode
DEV_MODE = "--dev" in sys.argv

# Import spaces for HuggingFace deployment
try:
    import spaces
    HF_SPACES = True
    print("🚀 Running on HuggingFace Spaces with ZeroGPU")
    
    # Optimize for ZeroGPU performance
    torch.set_float32_matmul_precision('high')  # Enable TensorFloat32 for better performance
    torch.backends.cudnn.allow_tf32 = True     # Enable TF32 on cuDNN
    
except ImportError:
    HF_SPACES = False
    print("🏠 Running locally - spaces module not available")

# MCP is always enabled
print("🔌 MCP protocol enabled - tools available for external access")

MAX_SEED = 2**32 - 1

# Liste des catégories pour le chatbot (100+ catégories variées)
CHAT_CATEGORIES = [
    # Animaux et créatures
    "animal", "bird", "sea creature", "insect", "mythical creature", "prehistoric creature",
    
    # Couleurs et teintes  
    "color", "shade", "metallic color", "gemstone color",
    
    # Objets et artefacts
    "weapon", "tool", "musical instrument", "piece of furniture", "ancient artifact", "modern gadget",
    
    # Émotions et traits
    "emotion", "personality trait", "mood", "mental state", "virtue", "flaw",
    
    # Nature et éléments
    "natural element", "weather phenomenon", "season", "time of day", "celestial body", "landscape",
    
    # Plantes et végétaux
    "flower", "tree", "herb", "fruit", "vegetable", "mushroom",
    
    # Arts et culture
    "art style", "musical genre", "dance style", "literary genre", "architectural style", "fashion style",
    
    # Matériaux et textures
    "fabric", "metal", "stone", "wood type", "crystal", "texture",
    
    # Géographie et lieux
    "country", "city type", "building", "room", "natural landmark", "climate zone",
    
    # Histoire et époques
    "historical period", "ancient civilization", "mythology", "legend", "cultural tradition",
    
    # Sciences et cosmos
    "planet", "star type", "galaxy", "chemical element", "geometric shape", "mathematical concept",
    
    # Sens et perceptions
    "scent", "taste", "sound", "touch sensation", "visual effect", "temperature",
    
    # Énergies et forces
    "type of energy", "natural force", "magical power", "spiritual element", "life force",
    
    # Professions et rôles
    "profession", "fantasy role", "mythical being", "guardian spirit", "mentor figure",
    
    # Activités et actions
    "hobby", "sport", "art form", "ritual", "celebration", "journey type",
    
    # Abstractions et concepts
    "philosophical concept", "virtue", "sin", "dream", "fear", "hope", "memory type",
    
    # Objets magiques et fantastiques
    "magical item", "enchanted object", "potion ingredient", "spell component", "rune",
    
    # Environnements spéciaux
    "mystical place", "hidden realm", "sacred space", "forbidden zone", "lost city"
]

# Variable globale pour tracking des catégories utilisées dans la conversation
used_categories = []

def get_next_category():
    """Retourne une catégorie aléatoire non utilisée"""
    available_categories = [cat for cat in CHAT_CATEGORIES if cat not in used_categories]
    
    if not available_categories:
        # Si toutes les catégories ont été utilisées, reset
        used_categories.clear()
        available_categories = CHAT_CATEGORIES.copy()
    
    category = random.choice(available_categories)
    used_categories.append(category)
    return category

def simple_chat_response(user_message, history):
    """Logique simple de chat sans LLM - pose juste la question suivante"""
    if not user_message.strip():
        return "Please type your answer."
    
    # Si c'est le début de la conversation
    if len(history) == 0 or user_message.lower().strip() in ["ready", "start", "begin"]:
        used_categories.clear()  # Reset les catégories
        category = get_next_category()
        return f"If you were {category}, what would you be?"
    
    # Sinon, poser la question suivante
    category = get_next_category()
    return f"If you were {category}, what would you be?"

def load_flux_model():
    dtype = torch.bfloat16
    
    # For HuggingFace Spaces, prioritize CUDA
    if HF_SPACES and torch.cuda.is_available():
        device = "cuda"
    # For local development, prioritize MPS for Apple Silicon
    elif torch.backends.mps.is_available():
        device = "mps"
    elif torch.cuda.is_available():
        device = "cuda"
    else:
        device = "cpu"
    
    print(f"Using device for FLUX: {device}")
    
    pipe = DiffusionPipeline.from_pretrained(
        "black-forest-labs/FLUX.1-schnell", 
        torch_dtype=dtype
    ).to(device)
    
    return pipe

flux_pipe = load_flux_model()

def generate_simple_flux_prompt(user_responses):
    """Generate simple FLUX prompt by concatenating user responses"""
    # Extraire seulement les réponses utilisateur (pas les "si j'étais")
    responses = [response.strip() for response in user_responses if response.strip()]
    
    # Concatener avec des virgules
    if responses:
        concatenated = ", ".join(responses)
        return f"digital portrait with the following criteria: {concatenated}"
    else:
        return "digital portrait with the following criteria: artistic avatar"

# Multilingual support
def get_translations():
    return {
        "en": {
            "title": "🎭 Avatar Generator - Chinese Portrait",
            "subtitle": "Complete at least the first 3 groups to generate your personalized avatar.",
            "portrait_title": "📝 Chinese Portrait (first 3 groups required)",
            "group": "Group",
            "required": "Required",
            "optional": "Optional",
            "if_i_was": "If I was",
            "i_would_be": "I would be",
            "generate_btn": "🎨 Generate Avatar",
            "avatar_title": "🖼️ Generated Avatar",
            "your_avatar": "Your Avatar",
            "information": "Information",
            "error_required": "Error: The first 3 groups of fields are required.",
            "success": "Avatar generated successfully!",
            "prompt_used": "Prompt used:",
            "error_generation": "Error during generation:",
            "footer": "Avatar generated with FLUX.1-schnell",
            "quality_normal": "Normal Quality (4 steps, 512x512)",
            "quality_high": "High Quality (8 steps, 512x512)",
            "quality_label": "Quality:",
            "tab_form": "📝 Form Mode",
            "tab_chat": "💬 Chat Mode",
            "chat_title": "🤖 AI Assistant - Avatar Creator",
            "chat_subtitle": "Let me guide you through creating your Chinese portrait!",
            "thinking": "Thinking...",
            "placeholders": {
                "animal": "an animal...",
                "animal_answer": "a lion...",
                "color": "a color...",
                "color_answer": "red...",
                "object": "an object...",
                "object_answer": "a sword...",
                "feeling": "a feeling...",
                "feeling_answer": "joy...",
                "element": "an element...",
                "element_answer": "fire..."
            }
        },
        "fr": {
            "title": "🎭 Générateur d'Avatar - Portrait Chinois",
            "subtitle": "Complétez au minimum les 3 premiers groupes pour générer votre avatar personnalisé.",
            "portrait_title": "📝 Portrait Chinois (3 premiers groupes obligatoires)",
            "group": "Groupe",
            "required": "Obligatoire",
            "optional": "Optionnel",
            "if_i_was": "Si j'étais",
            "i_would_be": "Je serais",
            "generate_btn": "🎨 Générer l'Avatar",
            "avatar_title": "🖼️ Avatar Généré",
            "your_avatar": "Votre Avatar",
            "information": "Informations",
            "error_required": "Erreur: Les 3 premiers groupes de champs sont obligatoires.",
            "success": "Avatar généré avec succès!",
            "prompt_used": "Prompt utilisé:",
            "error_generation": "Erreur lors de la génération:",
            "footer": "Avatar généré avec FLUX.1-schnell",
            "quality_normal": "Qualité Normale (4 étapes, 512x512)",
            "quality_high": "Haute Qualité (8 étapes, 512x512)",
            "quality_label": "Qualité:",
            "tab_form": "📝 Mode Formulaire",
            "tab_chat": "💬 Mode Chat",
            "chat_title": "🤖 Assistant IA - Créateur d'Avatar",
            "chat_subtitle": "Laissez-moi vous guider pour créer votre portrait chinois!",
            "thinking": "Réflexion...",
            "placeholders": {
                "animal": "un animal...",
                "animal_answer": "un lion...",
                "color": "une couleur...",
                "color_answer": "rouge...",
                "object": "un objet...",
                "object_answer": "une épée...",
                "feeling": "un sentiment...",
                "feeling_answer": "la joie...",
                "element": "un élément...",
                "element_answer": "le feu..."
            }
        }
    }

# Dev mode default values
def get_dev_defaults():
    return {
        "if1": "an animal", "would1": "a majestic wolf",
        "if2": "a color", "would2": "deep purple",
        "if3": "an object", "would3": "an ancient sword",
        "if4": "a feeling", "would4": "fierce determination",
        "if5": "an element", "would5": "lightning"
    }

# Apply ZeroGPU decorator if available
if HF_SPACES:
    @spaces.GPU()
    def generate_avatar(if1: str, would1: str, if2: str, would2: str, if3: str, would3: str, if4: str = "", would4: str = "", if5: str = "", would5: str = "", language: str = "en", quality: str = "normal"):
        return _generate_avatar_impl(if1, would1, if2, would2, if3, would3, if4, would4, if5, would5, language, quality)
else:
    def generate_avatar(if1: str, would1: str, if2: str, would2: str, if3: str, would3: str, if4: str = "", would4: str = "", if5: str = "", would5: str = "", language: str = "en", quality: str = "normal"):
        return _generate_avatar_impl(if1, would1, if2, would2, if3, would3, if4, would4, if5, would5, language, quality)

@spaces.GPU() if HF_SPACES else lambda x: x
def _generate_avatar_impl(if1, would1, if2, would2, if3, would3, if4, would4, if5, would5, language, quality):
    translations = get_translations()
    t = translations.get(language, translations["en"])
    
    # Validation des champs obligatoires
    if not if1 or not would1 or not if2 or not would2 or not if3 or not would3:
        return None, t["error_required"]
    
    # Collecter toutes les réponses utilisateur
    user_responses = [would1, would2, would3]
    if would4:
        user_responses.append(would4)
    if would5:
        user_responses.append(would5)
    
    # Générer le prompt simple
    prompt = generate_simple_flux_prompt(user_responses)
    
    try:
        # Configuration selon la qualité
        if quality == "high":
            width, height, steps = 512, 512, 8
        else:
            width, height, steps = 512, 512, 4
            
        
        # Génération avec seed aléatoire
        seed = random.randint(0, MAX_SEED)
        generator = torch.Generator(device=flux_pipe.device).manual_seed(seed)
        
        image = flux_pipe(
            prompt=prompt,
            width=width,
            height=height,
            num_inference_steps=steps,
            guidance_scale=0.0,
            generator=generator
        ).images[0]
        
        return image, f"{t['success']}\n{t['prompt_used']} {prompt}\nSeed: {seed}\nQuality: {quality} ({steps} steps, {width}x{height})"
    
    except Exception as e:
        return None, f"{t['error_generation']} {str(e)}"

@spaces.GPU() if HF_SPACES else lambda x: x
def generate_avatar_from_chat(history: list, language: str = "en", quality: str = "normal"):
    """
    Generate avatar from conversation history with AI assistant.
    """
    # Extraire directement les réponses utilisateur de la conversation
    user_responses = []
    for user_msg, assistant_msg in history:
        if user_msg and user_msg.strip() and not user_msg.lower().strip() in ["ready", "start", "begin", "let's start the chinese portrait game!"]:
            # Ajouter la réponse de l'utilisateur
            user_responses.append(user_msg.strip())
    
    # Générer le prompt simple
    prompt = generate_simple_flux_prompt(user_responses)
    
    try:
        # Configuration selon la qualité
        if quality == "high":
            width, height, steps = 512, 512, 8
        else:
            width, height, steps = 512, 512, 4
            
        
        # Génération avec seed aléatoire
        seed = random.randint(0, MAX_SEED)
        generator = torch.Generator(device=flux_pipe.device).manual_seed(seed)
        
        image = flux_pipe(
            prompt=prompt,
            width=width,
            height=height,
            num_inference_steps=steps,
            guidance_scale=0.0,
            generator=generator
        ).images[0]
        
        responses_text = "\n".join([f"- {response}" for response in user_responses])
        
        return image, f"Avatar generated from conversation!\n\nUser responses:\n{responses_text}\n\nPrompt: {prompt}\nSeed: {seed}\nQuality: {quality} ({steps} steps, {width}x{height})"
    
    except Exception as e:
        return None, f"Error during generation: {str(e)}"

def create_form_interface(language="en"):
    translations = get_translations()
    t = translations.get(language, translations["en"])
    dev_defaults = get_dev_defaults() if DEV_MODE else {}
    
    with gr.Column() as form_interface:
        gr.Markdown(f"### {t['portrait_title']}")
        
        # Commutateur de qualité
        quality_radio = gr.Radio(
            choices=["normal", "high"],
            value="normal",
            label=t["quality_label"]
        )
        
        # Groupe 1 (obligatoire)
        gr.Markdown(f"**{t['group']} 1** ⭐ *{t['required']}*")
        with gr.Row():
            if1 = gr.Textbox(label=t["if_i_was"], placeholder=t["placeholders"]["animal"], 
                           value=dev_defaults.get("if1", ""), scale=1)
            would1 = gr.Textbox(label=t["i_would_be"], placeholder=t["placeholders"]["animal_answer"], 
                              value=dev_defaults.get("would1", ""), scale=1)
        
        # Groupe 2 (obligatoire)
        gr.Markdown(f"**{t['group']} 2** ⭐ *{t['required']}*")
        with gr.Row():
            if2 = gr.Textbox(label=t["if_i_was"], placeholder=t["placeholders"]["color"], 
                           value=dev_defaults.get("if2", ""), scale=1)
            would2 = gr.Textbox(label=t["i_would_be"], placeholder=t["placeholders"]["color_answer"], 
                              value=dev_defaults.get("would2", ""), scale=1)
        
        # Groupe 3 (obligatoire)
        gr.Markdown(f"**{t['group']} 3** ⭐ *{t['required']}*")
        with gr.Row():
            if3 = gr.Textbox(label=t["if_i_was"], placeholder=t["placeholders"]["object"], 
                           value=dev_defaults.get("if3", ""), scale=1)
            would3 = gr.Textbox(label=t["i_would_be"], placeholder=t["placeholders"]["object_answer"], 
                              value=dev_defaults.get("would3", ""), scale=1)
        
        # Groupe 4 (optionnel)
        gr.Markdown(f"**{t['group']} 4** ✨ *{t['optional']}*")
        with gr.Row():
            if4 = gr.Textbox(label=t["if_i_was"], placeholder=t["placeholders"]["feeling"], 
                           value=dev_defaults.get("if4", ""), scale=1)
            would4 = gr.Textbox(label=t["i_would_be"], placeholder=t["placeholders"]["feeling_answer"], 
                              value=dev_defaults.get("would4", ""), scale=1)
        
        # Groupe 5 (optionnel)
        gr.Markdown(f"**{t['group']} 5** ✨ *{t['optional']}*")
        with gr.Row():
            if5 = gr.Textbox(label=t["if_i_was"], placeholder=t["placeholders"]["element"], 
                           value=dev_defaults.get("if5", ""), scale=1)
            would5 = gr.Textbox(label=t["i_would_be"], placeholder=t["placeholders"]["element_answer"], 
                              value=dev_defaults.get("would5", ""), scale=1)
        
        generate_btn = gr.Button(t["generate_btn"], variant="primary", size="lg")
        
        gr.Markdown(f"### {t['avatar_title']}")
        output_image = gr.Image(label=t["your_avatar"], height=400)
        output_text = gr.Textbox(label=t["information"], lines=4, interactive=False)
        
        # Hidden state for language
        lang_state = gr.State(value=language)
        
        generate_btn.click(
            fn=generate_avatar,
            inputs=[if1, would1, if2, would2, if3, would3, if4, would4, if5, would5, lang_state, quality_radio],
            outputs=[output_image, output_text]
        )
        
    return form_interface

def create_chat_interface(language="en"):
    translations = get_translations()
    t = translations.get(language, translations["en"])
    
    with gr.Column() as chat_interface:
        gr.Markdown(f"### {t['chat_title']}")
        gr.Markdown(t["chat_subtitle"])
        
        chatbot = gr.Chatbot(height=400, show_copy_button=True)
        
        # Zone de message avec bouton d'envoi
        with gr.Row():
            msg = gr.Textbox(label="Message", placeholder="Type your response here...", visible=False, scale=4)
            send_btn = gr.Button("📤", visible=False, scale=1, min_width=50)
        
        # Boutons de contrôle - en dessous du chat
        with gr.Row():
            start_btn = gr.Button("🚀 Start New Conversation", variant="primary", scale=1)
            avatar_btn = gr.Button("🎨 Get My Avatar", variant="secondary", scale=1)
            quality_chat = gr.Radio(choices=["normal", "high"], value="normal", label="Quality", scale=1)
        
        # Résultats de génération d'avatar
        avatar_output = gr.Image(label="Generated Avatar", visible=False)
        avatar_info = gr.Textbox(label="Avatar Info", lines=4, interactive=False, visible=False)
        
        # Hidden state for language
        lang_state = gr.State(value=language)
        
        def respond(message: str, history: list, language: str = "en"):
            """
            Process user message and generate simple response using get_next_category().
            """
            
            # Convert history format if needed
            if history is None:
                history = []
            
            # Use simple chat logic instead of Gemma
            response = simple_chat_response(message, history)
            
            # Update history with user message and bot response
            updated_history = history + [[message, response]]
            
            # Yield the updated history (no streaming needed for simple logic)
            yield "", updated_history
        
        def start_conversation(language):
            """Démarre la conversation avec une question simple sans LLM"""
            used_categories.clear()  # Reset les catégories
            
            # Générer la première question directement
            first_category = get_next_category()
            first_question = f"If you were {first_category}, what would you be?"
            
            # Créer l'historique initial
            initial_history = [["Let's start the Chinese Portrait game!", first_question]]
            
            return initial_history, gr.update(visible=True), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)
        
        def show_avatar_interface():
            """Affiche immédiatement l'interface avatar pour montrer que ça calcule"""
            return gr.update(visible=True), gr.update(visible=True, value="Generating your avatar...")
        
        def generate_avatar_from_conversation(history, language, quality):
            if not history:
                return None, "No conversation found. Please start a conversation first."
            
            image, info = generate_avatar_from_chat(history, language, quality)
            return image, info
        
        # Événements
        start_btn.click(
            fn=start_conversation,
            inputs=[lang_state],
            outputs=[chatbot, msg, send_btn, avatar_output, avatar_info]
        )
        
        # Envoi via Enter ou bouton
        msg.submit(
            respond, 
            [msg, chatbot, lang_state], 
            [msg, chatbot], 
            queue=True
        )
        
        send_btn.click(
            respond,
            [msg, chatbot, lang_state],
            [msg, chatbot],
            queue=True
        )
        
        # Affichage immédiat de l'interface puis génération
        avatar_btn.click(
            show_avatar_interface,
            outputs=[avatar_output, avatar_info]
        ).then(
            generate_avatar_from_conversation,
            inputs=[chatbot, lang_state, quality_chat],
            outputs=[avatar_output, avatar_info]
        )
        
        gr.Markdown("*Click 'Start New Conversation' to begin, then 'Get My Avatar' when you've completed your portrait!*")
    
    return chat_interface

# Create the main web interface with MCP tools integrated
with gr.Blocks(title="🎭 Avatar Generator") as demo:
    gr.Markdown("# 🎭 Avatar Generator - Chinese Portrait")
    gr.Markdown("Generate personalized avatars from Chinese portrait descriptions using FLUX.1-schnell")
    
    with gr.Tabs():
        # Main application tabs
        with gr.Tab("📝 Form Mode"):
            create_form_interface("en")
        
        with gr.Tab("💬 Chat Mode"):
            create_chat_interface("en")
    
    gr.Markdown("---")
    gr.Markdown("🔌 **MCP Integration**: This app exposes tools via MCP protocol at `/gradio_api/mcp/sse`")
    gr.Markdown("*Avatar generated with FLUX.1-schnell*")

if __name__ == "__main__":
    if DEV_MODE:
        print("🚀 Running in DEV MODE with pre-filled values")
    
    print("🔌 Starting server with MCP support...")
    print("📡 MCP endpoint available at: http://localhost:7860/gradio_api/mcp/sse")
    print("🌐 Web interface available at: http://localhost:7860")
    
    demo.launch(mcp_server=True, show_api=True)