Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
|
3 |
+
from PIL import Image
|
4 |
+
import torch
|
5 |
+
import cv2
|
6 |
+
import tempfile
|
7 |
+
|
8 |
+
def load_model_and_processor():
|
9 |
+
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct")
|
10 |
+
model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct")
|
11 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
12 |
+
model.to(device)
|
13 |
+
return processor, model, device
|
14 |
+
|
15 |
+
def process_image(uploaded_file):
|
16 |
+
image = Image.open(uploaded_file)
|
17 |
+
image = image.resize((512, 512))
|
18 |
+
return image
|
19 |
+
|
20 |
+
def process_video(uploaded_file):
|
21 |
+
tfile = tempfile.NamedTemporaryFile(delete=False)
|
22 |
+
tfile.write(uploaded_file.read())
|
23 |
+
cap = cv2.VideoCapture(tfile.name)
|
24 |
+
ret, frame = cap.read()
|
25 |
+
cap.release()
|
26 |
+
if not ret:
|
27 |
+
return None
|
28 |
+
image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
29 |
+
image = image.resize((512, 512))
|
30 |
+
return image
|
31 |
+
|
32 |
+
def generate_description(processor, model, device, image, user_question):
|
33 |
+
messages = [
|
34 |
+
{
|
35 |
+
"role": "user",
|
36 |
+
"content": [
|
37 |
+
{
|
38 |
+
"type": "image",
|
39 |
+
"image": image,
|
40 |
+
},
|
41 |
+
{"type": "text", "text": user_question},
|
42 |
+
],
|
43 |
+
}
|
44 |
+
]
|
45 |
+
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
46 |
+
inputs = processor(text=[text], images=[image], padding=True, return_tensors="pt")
|
47 |
+
inputs = inputs.to(device)
|
48 |
+
generated_ids = model.generate(**inputs, max_new_tokens=1024)
|
49 |
+
generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
|
50 |
+
output_text = processor.batch_decode(generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
51 |
+
return output_text[0]
|
52 |
+
|
53 |
+
def main():
|
54 |
+
st.title("Media Description Generator")
|
55 |
+
processor, model, device = load_model_and_processor()
|
56 |
+
uploaded_files = st.file_uploader("Choose images or videos...", type=["jpg", "jpeg", "png", "mp4", "avi", "mov"], accept_multiple_files=True)
|
57 |
+
|
58 |
+
if uploaded_files:
|
59 |
+
user_question = st.text_input("Ask a question about the images or videos:")
|
60 |
+
if user_question:
|
61 |
+
for uploaded_file in uploaded_files:
|
62 |
+
file_type = uploaded_file.type.split('/')[0]
|
63 |
+
if file_type == 'image':
|
64 |
+
image = process_image(uploaded_file)
|
65 |
+
st.image(image, caption='Uploaded Image.', use_column_width=True)
|
66 |
+
st.write("Generating description...")
|
67 |
+
elif file_type == 'video':
|
68 |
+
image = process_video(uploaded_file)
|
69 |
+
if image is None:
|
70 |
+
st.error("Failed to read the video file.")
|
71 |
+
continue
|
72 |
+
st.image(image, caption='First Frame of Uploaded Video.', use_column_width=True)
|
73 |
+
st.write("Generating description...")
|
74 |
+
else:
|
75 |
+
st.error("Unsupported file type.")
|
76 |
+
continue
|
77 |
+
description = generate_description(processor, model, device, image, user_question)
|
78 |
+
st.write("Description:")
|
79 |
+
st.write(description)
|
80 |
+
|
81 |
+
if __name__ == "__main__":
|
82 |
+
main()
|