VinitT commited on
Commit
9e1b840
·
verified ·
1 Parent(s): 21e3fb1

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +82 -0
app.py ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
3
+ from PIL import Image
4
+ import torch
5
+ import cv2
6
+ import tempfile
7
+
8
+ def load_model_and_processor():
9
+ processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct")
10
+ model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct")
11
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
12
+ model.to(device)
13
+ return processor, model, device
14
+
15
+ def process_image(uploaded_file):
16
+ image = Image.open(uploaded_file)
17
+ image = image.resize((512, 512))
18
+ return image
19
+
20
+ def process_video(uploaded_file):
21
+ tfile = tempfile.NamedTemporaryFile(delete=False)
22
+ tfile.write(uploaded_file.read())
23
+ cap = cv2.VideoCapture(tfile.name)
24
+ ret, frame = cap.read()
25
+ cap.release()
26
+ if not ret:
27
+ return None
28
+ image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
29
+ image = image.resize((512, 512))
30
+ return image
31
+
32
+ def generate_description(processor, model, device, image, user_question):
33
+ messages = [
34
+ {
35
+ "role": "user",
36
+ "content": [
37
+ {
38
+ "type": "image",
39
+ "image": image,
40
+ },
41
+ {"type": "text", "text": user_question},
42
+ ],
43
+ }
44
+ ]
45
+ text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
46
+ inputs = processor(text=[text], images=[image], padding=True, return_tensors="pt")
47
+ inputs = inputs.to(device)
48
+ generated_ids = model.generate(**inputs, max_new_tokens=1024)
49
+ generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
50
+ output_text = processor.batch_decode(generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False)
51
+ return output_text[0]
52
+
53
+ def main():
54
+ st.title("Media Description Generator")
55
+ processor, model, device = load_model_and_processor()
56
+ uploaded_files = st.file_uploader("Choose images or videos...", type=["jpg", "jpeg", "png", "mp4", "avi", "mov"], accept_multiple_files=True)
57
+
58
+ if uploaded_files:
59
+ user_question = st.text_input("Ask a question about the images or videos:")
60
+ if user_question:
61
+ for uploaded_file in uploaded_files:
62
+ file_type = uploaded_file.type.split('/')[0]
63
+ if file_type == 'image':
64
+ image = process_image(uploaded_file)
65
+ st.image(image, caption='Uploaded Image.', use_column_width=True)
66
+ st.write("Generating description...")
67
+ elif file_type == 'video':
68
+ image = process_video(uploaded_file)
69
+ if image is None:
70
+ st.error("Failed to read the video file.")
71
+ continue
72
+ st.image(image, caption='First Frame of Uploaded Video.', use_column_width=True)
73
+ st.write("Generating description...")
74
+ else:
75
+ st.error("Unsupported file type.")
76
+ continue
77
+ description = generate_description(processor, model, device, image, user_question)
78
+ st.write("Description:")
79
+ st.write(description)
80
+
81
+ if __name__ == "__main__":
82
+ main()