import gradio as gr from datasets import load_dataset, Dataset from datetime import datetime, date import os from PIL import Image, ImageDraw, ImageFont from huggingface_hub import login from transformers import pipeline # Authenticate with Hugging Face login(token=os.environ["HUGGINGFACE_TOKEN"]) # Constants SCORES_DATASET = "agents-course/unit4-students-scores" CERTIFICATES_DATASET = "agents-course/course-certificates-of-excellence" THRESHOLD_SCORE = 30 # Load text-generation pipeline (FLAN-T5) qa_pipeline = pipeline("text2text-generation", model="google/flan-t5-base") # Process question using model def process_question(question): if not question or not isinstance(question, str): return "I don't understand the question." result = qa_pipeline(question, max_new_tokens=50) return result[0]["generated_text"].strip() # Function to check user score def check_user_score(username): score_data = load_dataset(SCORES_DATASET, split="train", download_mode="force_redownload") matches = [row for row in score_data if row["username"] == username] return matches[0] if matches else None # Check if user already has certificate def has_certificate_entry(username): cert_data = load_dataset(CERTIFICATES_DATASET, split="train", download_mode="force_redownload") return any(row["username"] == username for row in cert_data) # Add certificate entry def add_certificate_entry(username, name, score): ds = load_dataset(CERTIFICATES_DATASET, split="train", download_mode="force_redownload") filtered_rows = [row for row in ds if row["username"] != username] new_entry = { "username": username, "score": score, "timestamp": datetime.now().isoformat() } filtered_rows.append(new_entry) updated_ds = Dataset.from_list(filtered_rows) updated_ds.push_to_hub(CERTIFICATES_DATASET) # Generate certificate def generate_certificate(name, score): certificate_path = os.path.join(os.path.dirname(__file__), "templates", "certificate.png") im = Image.open(certificate_path) d = ImageDraw.Draw(im) name_font = ImageFont.truetype("Quattrocento-Regular.ttf", 100) date_font = ImageFont.truetype("Quattrocento-Regular.ttf", 48) name = name.title() d.text((1000, 740), name, fill="black", anchor="mm", font=name_font) d.text((1480, 1170), str(date.today()), fill="black", anchor="mm", font=date_font) pdf = im.convert("RGB") pdf.save("certificate.pdf") return im, "certificate.pdf" # Handle certificate logic def handle_certificate(name, profile: gr.OAuthProfile): if profile is None: return "You must be logged in with your Hugging Face account.", None, None username = profile.username user_score = check_user_score(username) if not user_score: return "You need to complete Unit 4 first.", None, None score = user_score["score"] if score < THRESHOLD_SCORE: return f"Your score is {score}. You need at least {THRESHOLD_SCORE} to pass.", None, None certificate_image, certificate_pdf = generate_certificate(name, score) add_certificate_entry(username, name, score) return "🎉 Congratulations! Here's your certificate:", certificate_image, certificate_pdf # Gradio UI with gr.Blocks() as demo: gr.Markdown("# 🎓 Agents Course - Get Your Final Certificate") gr.Markdown("Welcome! Follow the steps below to receive your official certificate:") gr.Markdown("⚠️ **Note**: Due to high demand, you might experience occasional bugs. If something doesn't work, please try again after a moment!") with gr.Group(): gr.Markdown("## ✅ How it works") gr.Markdown(""" 1. **Sign in** with your Hugging Face account using the button below. 2. **Enter your full name** (this will appear on the certificate). 3. Click **'Get My Certificate'** to check your score and download your certificate. """) gr.Markdown("---") gr.Markdown("📝 **Note**: You must have completed [Unit 4](https://huggingface.co/learn/agents-course/unit4/introduction) and your Agent must have scored **above 30** to get your certificate.") gr.LoginButton() with gr.Row(): name_input = gr.Text(label="Enter your name (this will appear on the certificate)") generate_btn = gr.Button("Get my certificate") output_text = gr.Textbox(label="Result") cert_image = gr.Image(label="Your Certificate") cert_file = gr.File(label="Download Certificate (PDF)", file_types=[".pdf"]) generate_btn.click( fn=handle_certificate, inputs=[name_input], outputs=[output_text, cert_image, cert_file] ) demo.launch()