AulaSirius / app.py
carolcarneiro's picture
app.py carol
69b2598 verified
from transformers import pipeline
import gradio as gr
import base64
import io
# calling pipeline to get_completion
get_completion = pipeline("image-to-text",model="carolcarneiro/keras-dummy-sequential-demo") #"sashakunitsyn/vlrm-blip2-opt-2.7b") #"Salesforce/blip2-opt-6.7b") # "Salesforce/blip-image-captioning-large" "nlpconnect/vit-gpt2-image-captioning"
def summarize(input):
output = get_completion(input)
return output[0]['generated_text']
def image_to_base64_str(pil_image):
byte_arr = io.BytesIO()
pil_image.save(byte_arr, format='PNG')
byte_arr = byte_arr.getvalue()
return str(base64.b64encode(byte_arr).decode('utf-8'))
def captioner(image):
#base64_image = image_to_base64_str(image)
result = get_completion(image)
return result[0]['generated_text']
gr.close_all()
demo = gr.Interface(fn=captioner,
inputs=[gr.Image(label="Upload image", type="pil")],
outputs=[gr.Textbox(label="Caption")],
title="Image Captioning Application",
description="Caption the image you'd like to upload",
allow_flagging="never")
demo.launch()