Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,17 +1,12 @@
|
|
1 |
-
import os
|
2 |
import gradio as gr
|
3 |
from huggingface_hub import InferenceClient
|
4 |
-
from transformers import AutoTokenizer, AutoModelForImageTextToText
|
5 |
|
6 |
-
#
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
# (※ローカル推論は使わない場合、以下のモデルロードは不要です)
|
13 |
-
tokenizer = AutoTokenizer.from_pretrained("mlabonne/gemma-3-27b-it-abliterated")
|
14 |
-
model = AutoModelForImageTextToText.from_pretrained("mlabonne/gemma-3-27b-it-abliterated")
|
15 |
|
16 |
def respond(
|
17 |
message,
|
@@ -21,21 +16,18 @@ def respond(
|
|
21 |
temperature,
|
22 |
top_p,
|
23 |
):
|
24 |
-
#
|
25 |
messages = [{"role": "system", "content": system_message}]
|
26 |
-
# 過去のやり取りを追加
|
27 |
for u, a in history:
|
28 |
if u:
|
29 |
messages.append({"role": "user", "content": u})
|
30 |
if a:
|
31 |
messages.append({"role": "assistant", "content": a})
|
32 |
-
# 最新ユーザー入力
|
33 |
messages.append({"role": "user", "content": message})
|
34 |
|
|
|
35 |
response = ""
|
36 |
-
# ── ③ モデル指定で chat_completion を呼び出し
|
37 |
for chunk in client.chat_completion(
|
38 |
-
model="mlabonne/gemma-3-27b-it-abliterated",
|
39 |
messages=messages,
|
40 |
max_tokens=max_tokens,
|
41 |
temperature=temperature,
|
@@ -46,14 +38,20 @@ def respond(
|
|
46 |
response += delta
|
47 |
yield response
|
48 |
|
49 |
-
#
|
50 |
demo = gr.ChatInterface(
|
51 |
respond,
|
52 |
additional_inputs=[
|
53 |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
54 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
55 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
56 |
-
gr.Slider(
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
],
|
58 |
)
|
59 |
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
|
|
3 |
|
4 |
+
# ★ モデルを gemma-3-27b-it-abliterated に変更
|
5 |
+
# provider="hf-inference" でHugging Face Inference APIを明示的に指定
|
6 |
+
client = InferenceClient(
|
7 |
+
model="mlabonne/gemma-3-27b-it-abliterated",
|
8 |
+
provider="hf-inference"
|
9 |
+
) # :contentReference[oaicite:0]{index=0}
|
|
|
|
|
|
|
10 |
|
11 |
def respond(
|
12 |
message,
|
|
|
16 |
temperature,
|
17 |
top_p,
|
18 |
):
|
19 |
+
# system_message→history→最新ユーザー発話 の順に messages を構築
|
20 |
messages = [{"role": "system", "content": system_message}]
|
|
|
21 |
for u, a in history:
|
22 |
if u:
|
23 |
messages.append({"role": "user", "content": u})
|
24 |
if a:
|
25 |
messages.append({"role": "assistant", "content": a})
|
|
|
26 |
messages.append({"role": "user", "content": message})
|
27 |
|
28 |
+
# chat_completion を呼び出し(stream=True でトークン毎に返す)
|
29 |
response = ""
|
|
|
30 |
for chunk in client.chat_completion(
|
|
|
31 |
messages=messages,
|
32 |
max_tokens=max_tokens,
|
33 |
temperature=temperature,
|
|
|
38 |
response += delta
|
39 |
yield response
|
40 |
|
41 |
+
# GradioのチャットUIをそのまま利用
|
42 |
demo = gr.ChatInterface(
|
43 |
respond,
|
44 |
additional_inputs=[
|
45 |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
46 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
47 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
48 |
+
gr.Slider(
|
49 |
+
minimum=0.1,
|
50 |
+
maximum=1.0,
|
51 |
+
value=0.95,
|
52 |
+
step=0.05,
|
53 |
+
label="Top-p (nucleus sampling)",
|
54 |
+
),
|
55 |
],
|
56 |
)
|
57 |
|