Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torchaudio
|
3 |
+
import torch
|
4 |
+
from transformers import WhisperProcessor, WhisperForConditionalGeneration, AutomaticSpeechRecognitionPipeline
|
5 |
+
import numpy as np
|
6 |
+
import tempfile
|
7 |
+
import os
|
8 |
+
|
9 |
+
# 全域變數存儲模型
|
10 |
+
processor = None
|
11 |
+
model = None
|
12 |
+
asr_pipeline = None
|
13 |
+
|
14 |
+
def load_model():
|
15 |
+
"""載入 Breeze ASR 25 模型"""
|
16 |
+
global processor, model, asr_pipeline
|
17 |
+
|
18 |
+
try:
|
19 |
+
processor = WhisperProcessor.from_pretrained("MediaTek-Research/Breeze-ASR-25")
|
20 |
+
model = WhisperForConditionalGeneration.from_pretrained("MediaTek-Research/Breeze-ASR-25")
|
21 |
+
|
22 |
+
# 檢查是否有 CUDA
|
23 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
24 |
+
model = model.to(device).eval()
|
25 |
+
|
26 |
+
# 建立 pipeline
|
27 |
+
asr_pipeline = AutomaticSpeechRecognitionPipeline(
|
28 |
+
model=model,
|
29 |
+
tokenizer=processor.tokenizer,
|
30 |
+
feature_extractor=processor.feature_extractor,
|
31 |
+
chunk_length_s=0
|
32 |
+
)
|
33 |
+
|
34 |
+
return f"✅ 模型載入成功!使用設備: {device}"
|
35 |
+
except Exception as e:
|
36 |
+
return f"❌ 模型載入失敗: {str(e)}"
|
37 |
+
|
38 |
+
def preprocess_audio(audio_path):
|
39 |
+
"""音訊預處理"""
|
40 |
+
# 載入音訊
|
41 |
+
waveform, sample_rate = torchaudio.load(audio_path)
|
42 |
+
|
43 |
+
# 轉為單聲道
|
44 |
+
if waveform.shape[0] > 1:
|
45 |
+
waveform = waveform.mean(dim=0)
|
46 |
+
|
47 |
+
waveform = waveform.squeeze().numpy()
|
48 |
+
|
49 |
+
# 重採樣到 16kHz
|
50 |
+
if sample_rate != 16000:
|
51 |
+
resampler = torchaudio.transforms.Resample(sample_rate, 16000)
|
52 |
+
waveform = resampler(torch.tensor(waveform)).numpy()
|
53 |
+
|
54 |
+
return waveform
|
55 |
+
|
56 |
+
def transcribe_audio(audio_input):
|
57 |
+
"""語音辨識主函數"""
|
58 |
+
global asr_pipeline
|
59 |
+
|
60 |
+
try:
|
61 |
+
# 檢查模型是否已載入
|
62 |
+
if asr_pipeline is None:
|
63 |
+
status = load_model()
|
64 |
+
if "失敗" in status:
|
65 |
+
return status, "", "", ""
|
66 |
+
|
67 |
+
# 檢查音訊輸入
|
68 |
+
if audio_input is None:
|
69 |
+
return "❌ 請先上傳音訊檔案或進行錄音", "", "", ""
|
70 |
+
|
71 |
+
# 處理不同的音訊輸入格式
|
72 |
+
if isinstance(audio_input, str):
|
73 |
+
# 檔案路徑
|
74 |
+
audio_path = audio_input
|
75 |
+
elif isinstance(audio_input, tuple):
|
76 |
+
# Gradio 錄音格式 (sample_rate, audio_data)
|
77 |
+
sample_rate, audio_data = audio_input
|
78 |
+
|
79 |
+
# 建立臨時檔案
|
80 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
|
81 |
+
# 確保音訊數據格式正確
|
82 |
+
if audio_data.dtype != np.float32:
|
83 |
+
audio_data = audio_data.astype(np.float32)
|
84 |
+
|
85 |
+
# 正規化音訊
|
86 |
+
if audio_data.max() > 1.0:
|
87 |
+
audio_data = audio_data / 32768.0
|
88 |
+
|
89 |
+
# 儲存為 wav 檔案
|
90 |
+
torchaudio.save(tmp_file.name, torch.tensor(audio_data).unsqueeze(0), sample_rate)
|
91 |
+
audio_path = tmp_file.name
|
92 |
+
else:
|
93 |
+
return "❌ 不支援的音訊格式", "", "", ""
|
94 |
+
|
95 |
+
# 預處理音訊
|
96 |
+
waveform = preprocess_audio(audio_path)
|
97 |
+
|
98 |
+
# 執行語音辨識
|
99 |
+
result = asr_pipeline(waveform, return_timestamps=True)
|
100 |
+
|
101 |
+
# 清理臨時檔案
|
102 |
+
if isinstance(audio_input, tuple) and os.path.exists(audio_path):
|
103 |
+
os.unlink(audio_path)
|
104 |
+
|
105 |
+
# 格式化結果
|
106 |
+
transcription = result["text"].strip()
|
107 |
+
|
108 |
+
# 格式化時間戳記顯示
|
109 |
+
formatted_text = ""
|
110 |
+
pure_text = ""
|
111 |
+
srt_text = ""
|
112 |
+
|
113 |
+
if "chunks" in result and result["chunks"]:
|
114 |
+
for i, chunk in enumerate(result["chunks"], 1):
|
115 |
+
start_time = chunk["timestamp"][0] if chunk["timestamp"][0] is not None else 0
|
116 |
+
end_time = chunk["timestamp"][1] if chunk["timestamp"][1] is not None else 0
|
117 |
+
text = chunk['text'].strip()
|
118 |
+
|
119 |
+
if text: # 只處理非空文字
|
120 |
+
# 格式化顯示文字
|
121 |
+
#formatted_text += f"[{start_time:.2f}s - {end_time:.2f}s]: {text}\n"
|
122 |
+
|
123 |
+
# 純文字(不含時間戳記)
|
124 |
+
pure_text += f"{text}\n"
|
125 |
+
|
126 |
+
# SRT 格式
|
127 |
+
start_srt = f"{int(start_time//3600):02d}:{int((start_time%3600)//60):02d}:{int(start_time%60):02d},{int((start_time%1)*1000):03d}"
|
128 |
+
end_srt = f"{int(end_time//3600):02d}:{int((end_time%3600)//60):02d}:{int(end_time%60):02d},{int((end_time%1)*1000):03d}"
|
129 |
+
srt_text += f"{i}\n{start_srt} --> {end_srt}\n{text}\n\n"
|
130 |
+
else:
|
131 |
+
# 如果沒有時間戳記,只顯示文字
|
132 |
+
#formatted_text = transcription
|
133 |
+
pure_text = transcription
|
134 |
+
srt_text = f"1\n00:00:00,000 --> 00:00:10,000\n{transcription}\n\n"
|
135 |
+
|
136 |
+
return "✅ 辨識完成", pure_text.strip(), srt_text.strip()
|
137 |
+
|
138 |
+
except Exception as e:
|
139 |
+
return f"❌ 辨識過程發生錯誤: {str(e)}", ""
|
140 |
+
|
141 |
+
def clear_all():
|
142 |
+
"""清除所有內容"""
|
143 |
+
return None, "🔄 已清除所有內容", "", "", ""
|
144 |
+
|
145 |
+
# 建立 Gradio 介面
|
146 |
+
with gr.Blocks(title="語音辨識系統", theme=gr.themes.Soft()) as demo:
|
147 |
+
|
148 |
+
gr.Markdown("""
|
149 |
+
# 🎤 語音辨識系統 - Breeze ASR 25
|
150 |
+
|
151 |
+
### 功能特色:
|
152 |
+
- 🔧 使用 Breeze ASR 25 模型,專為繁體中文優化
|
153 |
+
- ⏰ 顯示時間戳記
|
154 |
+
- 🌐 強化中英混用辨識能力
|
155 |
+
- 感謝[MediaTek-Research/Breeze-ASR-25](https://huggingface.co/MediaTek-Research/Breeze-ASR-25)
|
156 |
+
""")
|
157 |
+
|
158 |
+
with gr.Row():
|
159 |
+
with gr.Column(scale=1):
|
160 |
+
# 音訊輸入區域
|
161 |
+
gr.Markdown("### 📂 音訊輸入(wav)")
|
162 |
+
|
163 |
+
with gr.Tab("檔案上傳"):
|
164 |
+
audio_file = gr.Audio(
|
165 |
+
label="上傳音訊檔案",
|
166 |
+
type="filepath",
|
167 |
+
format="wav"
|
168 |
+
)
|
169 |
+
|
170 |
+
with gr.Tab("即時錄音"):
|
171 |
+
audio_mic = gr.Audio(
|
172 |
+
label="點擊開始錄音",
|
173 |
+
type="numpy",
|
174 |
+
format="wav"
|
175 |
+
)
|
176 |
+
|
177 |
+
# 控制按鈕
|
178 |
+
with gr.Row():
|
179 |
+
transcribe_btn = gr.Button("🚀 開始辨識", variant="primary", size="lg")
|
180 |
+
clear_btn = gr.Button("🗑️ 清除", variant="secondary")
|
181 |
+
|
182 |
+
with gr.Column(scale=1):
|
183 |
+
# 狀態顯示
|
184 |
+
status_output = gr.Textbox(
|
185 |
+
label="📊 狀態",
|
186 |
+
placeholder="等待操作...",
|
187 |
+
interactive=False,
|
188 |
+
lines=2
|
189 |
+
)
|
190 |
+
|
191 |
+
|
192 |
+
# 純文字結果
|
193 |
+
pure_text_output = gr.Textbox(
|
194 |
+
label="📄 純文字結果",
|
195 |
+
placeholder="純文字結果...",
|
196 |
+
lines=4,
|
197 |
+
max_lines=10,
|
198 |
+
show_copy_button=True
|
199 |
+
)
|
200 |
+
|
201 |
+
# SRT 字幕格式
|
202 |
+
srt_output = gr.Textbox(
|
203 |
+
label="🎬 SRT 字幕格式",
|
204 |
+
placeholder="SRT 格式字幕...",
|
205 |
+
lines=6,
|
206 |
+
max_lines=15,
|
207 |
+
show_copy_button=True
|
208 |
+
)
|
209 |
+
|
210 |
+
|
211 |
+
# 修正事件綁定
|
212 |
+
def transcribe_wrapper(audio_file_val, audio_mic_val):
|
213 |
+
audio_input = audio_file_val if audio_file_val else audio_mic_val
|
214 |
+
return transcribe_audio(audio_input)
|
215 |
+
|
216 |
+
transcribe_btn.click(
|
217 |
+
fn=transcribe_wrapper,
|
218 |
+
inputs=[audio_file, audio_mic],
|
219 |
+
outputs=[status_output, pure_text_output, srt_output]
|
220 |
+
)
|
221 |
+
|
222 |
+
clear_btn.click(
|
223 |
+
fn=clear_all,
|
224 |
+
outputs=[audio_file, status_output, pure_text_output, srt_output]
|
225 |
+
)
|
226 |
+
|
227 |
+
# 啟動應用
|
228 |
+
if __name__ == "__main__":
|
229 |
+
demo.launch()
|