Spaces:
Sleeping
Sleeping
ekhatskevich
commited on
Commit
·
3175ce6
1
Parent(s):
6400d6a
deal with mask
Browse files- app.py +38 -4
- config/simple_faceswap.yaml +0 -17
- requirements.txt +4 -1
app.py
CHANGED
|
@@ -1,6 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
| 3 |
-
from scepter.modules.utils.file_system import FS
|
| 4 |
from huggingface_hub import hf_hub_download, snapshot_download
|
| 5 |
|
| 6 |
def resolve_hf_path(path):
|
|
@@ -40,12 +42,44 @@ from modules.flux import FluxMRModiACEPlus
|
|
| 40 |
from inference.registry import INFERENCES
|
| 41 |
|
| 42 |
|
| 43 |
-
config_path = os.path.join("config", "
|
| 44 |
cfg = Config(load=True, cfg_file=config_path)
|
| 45 |
|
| 46 |
# Instantiate the ACEInference object.
|
| 47 |
ace_infer = ACEInference(cfg)
|
| 48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
def face_swap_app(target_img, face_img):
|
| 50 |
if target_img is None or face_img is None:
|
| 51 |
raise ValueError("Both a target image and a face image must be provided.")
|
|
@@ -57,14 +91,14 @@ def face_swap_app(target_img, face_img):
|
|
| 57 |
output_img, edit_image, change_image, mask, seed = ace_infer(
|
| 58 |
reference_image=target_img,
|
| 59 |
edit_image=face_img,
|
| 60 |
-
edit_mask=None,
|
| 61 |
prompt="Face swap",
|
| 62 |
output_height=1024,
|
| 63 |
output_width=1024,
|
| 64 |
sampler='flow_euler',
|
| 65 |
sample_steps=28,
|
| 66 |
guide_scale=50,
|
| 67 |
-
seed=-1
|
| 68 |
)
|
| 69 |
return output_img
|
| 70 |
|
|
|
|
| 1 |
+
import cv2
|
| 2 |
+
import numpy as np
|
| 3 |
+
from PIL import Image
|
| 4 |
import os
|
| 5 |
import gradio as gr
|
|
|
|
| 6 |
from huggingface_hub import hf_hub_download, snapshot_download
|
| 7 |
|
| 8 |
def resolve_hf_path(path):
|
|
|
|
| 42 |
from inference.registry import INFERENCES
|
| 43 |
|
| 44 |
|
| 45 |
+
config_path = os.path.join("config", "ace_plus_fft.yaml")
|
| 46 |
cfg = Config(load=True, cfg_file=config_path)
|
| 47 |
|
| 48 |
# Instantiate the ACEInference object.
|
| 49 |
ace_infer = ACEInference(cfg)
|
| 50 |
|
| 51 |
+
def create_face_mask(pil_image):
|
| 52 |
+
"""
|
| 53 |
+
Create a binary mask (PIL Image) from a PIL image by detecting the face region.
|
| 54 |
+
The mask will be white (255) on the detected face area and black (0) elsewhere.
|
| 55 |
+
"""
|
| 56 |
+
# Convert PIL image to a numpy array in RGB format
|
| 57 |
+
image_np = np.array(pil_image.convert("RGB"))
|
| 58 |
+
# Convert to grayscale for face detection
|
| 59 |
+
gray = cv2.cvtColor(image_np, cv2.COLOR_RGB2GRAY)
|
| 60 |
+
|
| 61 |
+
# Load the Haar cascade for face detection (make sure opencv data is installed)
|
| 62 |
+
cascade_path = cv2.data.haarcascades + "haarcascade_frontalface_default.xml"
|
| 63 |
+
face_cascade = cv2.CascadeClassifier(cascade_path)
|
| 64 |
+
|
| 65 |
+
# Detect faces in the image
|
| 66 |
+
faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5)
|
| 67 |
+
|
| 68 |
+
# Create an empty mask with the same dimensions as the image
|
| 69 |
+
mask = np.zeros_like(gray, dtype=np.uint8)
|
| 70 |
+
|
| 71 |
+
# For each detected face, draw a white rectangle (or a more refined shape)
|
| 72 |
+
for (x, y, w, h) in faces:
|
| 73 |
+
# Optionally expand the bounding box slightly
|
| 74 |
+
padding = 0.2
|
| 75 |
+
x1 = max(0, int(x - w * padding))
|
| 76 |
+
y1 = max(0, int(y - h * padding))
|
| 77 |
+
x2 = min(gray.shape[1], int(x + w * (1 + padding)))
|
| 78 |
+
y2 = min(gray.shape[0], int(y + h * (1 + padding)))
|
| 79 |
+
mask[y1:y2, x1:x2] = 255
|
| 80 |
+
|
| 81 |
+
return Image.fromarray(mask)
|
| 82 |
+
|
| 83 |
def face_swap_app(target_img, face_img):
|
| 84 |
if target_img is None or face_img is None:
|
| 85 |
raise ValueError("Both a target image and a face image must be provided.")
|
|
|
|
| 91 |
output_img, edit_image, change_image, mask, seed = ace_infer(
|
| 92 |
reference_image=target_img,
|
| 93 |
edit_image=face_img,
|
| 94 |
+
edit_mask=None,
|
| 95 |
prompt="Face swap",
|
| 96 |
output_height=1024,
|
| 97 |
output_width=1024,
|
| 98 |
sampler='flow_euler',
|
| 99 |
sample_steps=28,
|
| 100 |
guide_scale=50,
|
| 101 |
+
seed=-1
|
| 102 |
)
|
| 103 |
return output_img
|
| 104 |
|
config/simple_faceswap.yaml
DELETED
|
@@ -1,17 +0,0 @@
|
|
| 1 |
-
NAME: SimpleFaceSwapConfig
|
| 2 |
-
MODEL:
|
| 3 |
-
LOCAL_EDITING:
|
| 4 |
-
MODEL_PATH: ${LOCAL_MODEL_PATH}
|
| 5 |
-
REPAINTING_SCALE: 0.5
|
| 6 |
-
PREPROCESSOR:
|
| 7 |
-
- NAME: CannyAnnotator
|
| 8 |
-
TYPE: canny_repainting
|
| 9 |
-
LOW_THRESHOLD: 100
|
| 10 |
-
HIGH_THRESHOLD: 200
|
| 11 |
-
- NAME: ColorAnnotator
|
| 12 |
-
TYPE: mosaic_repainting
|
| 13 |
-
RATIO: 64
|
| 14 |
-
DTYPE: bfloat16
|
| 15 |
-
MAX_SEQ_LEN: 77
|
| 16 |
-
SAMPLE_ARGS:
|
| 17 |
-
prompt: "Face swap"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
|
@@ -4,4 +4,7 @@ scepter
|
|
| 4 |
torch
|
| 5 |
torchvision
|
| 6 |
transformers
|
| 7 |
-
huggingface_hub
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
torch
|
| 5 |
torchvision
|
| 6 |
transformers
|
| 7 |
+
huggingface_hub
|
| 8 |
+
Pillow
|
| 9 |
+
numpy
|
| 10 |
+
opencv-python
|