File size: 7,159 Bytes
8b4c6c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import logging

import torch
from hydra import compose
from hydra.utils import instantiate
from omegaconf import OmegaConf


def build_sam2(
    config_file,
    ckpt_path=None,
    device="cuda",
    mode="eval",
    hydra_overrides_extra=[],
    apply_postprocessing=True,
    bbox_mask_matting_token = False,
    matting_logits_res_add = False,
    upscaled_embedding_res_add = True,
):

    if apply_postprocessing:
        hydra_overrides_extra = hydra_overrides_extra.copy()
        hydra_overrides_extra += [
            # dynamically fall back to multi-mask if the single mask is not stable
            "++model.sam_mask_decoder_extra_args.dynamic_multimask_via_stability=true",
            "++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_delta=0.05",
            "++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_thresh=0.98",
        ]
    
    if bbox_mask_matting_token:
        hydra_overrides_extra = hydra_overrides_extra.copy()
        hydra_overrides_extra += [
            "++model.mask_decoder_matting_token=true",
            "++model.image_encoder.trunk._target_=sam2.modeling.backbones.hieradet.HieraBBoxMask",
            "++model.matting_logits_res_add=true" if matting_logits_res_add else "++model.matting_logits_res_add=false",
            "++model.upscaled_embedding_res_add=true" if upscaled_embedding_res_add else "++model.upscaled_embedding_res_add=false",
        ]

    # Read config and init model
    cfg = compose(config_name=config_file, overrides=hydra_overrides_extra)
    OmegaConf.resolve(cfg)
    model = instantiate(cfg.model, _recursive_=True)
    _load_checkpoint(model, ckpt_path, add_new_layer_weights=True)

    model = model.to(device)
    if mode == "eval":
        model.eval()
    
    if bbox_mask_matting_token:
        for n, p in model.named_parameters():
            if 'matting' in n or 'bbox_mask' in n:
                p.requires_grad = True
            else:
                p.requires_grad = False

    return model


def build_sam2_video_predictor(
    config_file,
    ckpt_path=None,
    device="cuda",
    mode="eval",
    hydra_overrides_extra=[],
    apply_postprocessing=True,
):
    hydra_overrides = [
        "++model._target_=sam2.sam2_video_predictor.SAM2VideoPredictor",
    ]
    if apply_postprocessing:
        hydra_overrides_extra = hydra_overrides_extra.copy()
        hydra_overrides_extra += [
            # dynamically fall back to multi-mask if the single mask is not stable
            "++model.sam_mask_decoder_extra_args.dynamic_multimask_via_stability=true",
            "++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_delta=0.05",
            "++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_thresh=0.98",
            # the sigmoid mask logits on interacted frames with clicks in the memory encoder so that the encoded masks are exactly as what users see from clicking
            "++model.binarize_mask_from_pts_for_mem_enc=true",
            # fill small holes in the low-res masks up to `fill_hole_area` (before resizing them to the original video resolution)
            "++model.fill_hole_area=8",
        ]
    hydra_overrides.extend(hydra_overrides_extra)

    # Read config and init model
    cfg = compose(config_name=config_file, overrides=hydra_overrides)
    OmegaConf.resolve(cfg)
    model = instantiate(cfg.model, _recursive_=True)
    _load_checkpoint(model, ckpt_path)
    model = model.to(device)
    if mode == "eval":
        model.eval()
    return model


def build_sam2_hf(model_id, **kwargs):

    from huggingface_hub import hf_hub_download

    model_id_to_filenames = {
        "facebook/sam2-hiera-tiny": ("sam2_hiera_t.yaml", "sam2_hiera_tiny.pt"),
        "facebook/sam2-hiera-small": ("sam2_hiera_s.yaml", "sam2_hiera_small.pt"),
        "facebook/sam2-hiera-base-plus": (
            "sam2_hiera_b+.yaml",
            "sam2_hiera_base_plus.pt",
        ),
        "facebook/sam2-hiera-large": ("sam2_hiera_l.yaml", "sam2_hiera_large.pt"),
    }
    config_name, checkpoint_name = model_id_to_filenames[model_id]
    ckpt_path = hf_hub_download(repo_id=model_id, filename=checkpoint_name)
    return build_sam2(config_file=config_name, ckpt_path=ckpt_path, **kwargs)


def build_sam2_video_predictor_hf(model_id, **kwargs):

    from huggingface_hub import hf_hub_download

    model_id_to_filenames = {
        "facebook/sam2-hiera-tiny": ("sam2_hiera_t.yaml", "sam2_hiera_tiny.pt"),
        "facebook/sam2-hiera-small": ("sam2_hiera_s.yaml", "sam2_hiera_small.pt"),
        "facebook/sam2-hiera-base-plus": (
            "sam2_hiera_b+.yaml",
            "sam2_hiera_base_plus.pt",
        ),
        "facebook/sam2-hiera-large": ("sam2_hiera_l.yaml", "sam2_hiera_large.pt"),
    }
    config_name, checkpoint_name = model_id_to_filenames[model_id]
    ckpt_path = hf_hub_download(repo_id=model_id, filename=checkpoint_name)
    return build_sam2_video_predictor(
        config_file=config_name, ckpt_path=ckpt_path, **kwargs
    )


def _load_checkpoint(model, ckpt_path, add_new_layer_weights=False):
    # if add_new_layer_weights:
    #     assert ckpt_path is not None
    if ckpt_path is not None:
        sd = torch.load(ckpt_path, map_location="cpu")["model"]
        if add_new_layer_weights:

            # bbox patch embed
            sd['image_encoder.trunk.bbox_mask_patch_embed.proj.weight'] = torch.concat((
                sd['image_encoder.trunk.patch_embed.proj.weight'], 
                torch.mean(sd['image_encoder.trunk.patch_embed.proj.weight'], dim=1, keepdim=True)
            ), dim=1)
            sd['image_encoder.trunk.bbox_mask_patch_embed.proj.bias'] = sd['image_encoder.trunk.patch_embed.proj.bias']

            # matting token
            sd['sam_mask_decoder.matting_mask_tokens.weight'] = torch.mean(sd['sam_mask_decoder.mask_tokens.weight'], dim=0, keepdim=True).repeat(model.sam_mask_decoder.matting_token_num, 1)
            
            output_hypernetworks_mlps_0_keys = [key for key in sd.keys() if 'output_hypernetworks_mlps.0' in key]
            for i in range(model.sam_mask_decoder.matting_token_num):
                for key in output_hypernetworks_mlps_0_keys:
                    target_key = key.replace('output_hypernetworks_mlps.0', 'matting_output_hypernetworks_mlps.{}'.format(i))
                    sd[target_key] = sd[key]

            output_upscaling_keys = [key for key in sd.keys() if 'output_upscaling' in key]
            for key in output_upscaling_keys:
                target_key = key.replace('output_upscaling', 'matting_output_upscaling')
                sd[target_key] = sd[key]

        missing_keys, unexpected_keys = model.load_state_dict(sd)
        if missing_keys:
            logging.error(missing_keys)
            raise RuntimeError()
        if unexpected_keys:
            logging.error(unexpected_keys)
            raise RuntimeError()
        logging.info("Loaded checkpoint sucessfully")