File size: 12,324 Bytes
8b4c6c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
import os
import torch
import numpy as np
import cv2
from torch.utils.data import Dataset
from torchvision import transforms
import math
import torch.nn.functional as F
class GenBBox(object):
def __init__(self, bbox_offset_factor = 0.1, random_crop_bbox = None, train_or_test = 'train', dataset_type = None, random_auto_matting=None):
self.bbox_offset_factor = bbox_offset_factor
self.random_crop_bbox = random_crop_bbox
self.train_or_test = train_or_test
self.dataset_type = dataset_type
self.random_auto_matting = random_auto_matting
def __call__(self, sample):
alpha = sample['alpha'] # [1, H, W] 0.0 ~ 1.0
indices = torch.nonzero(alpha[0], as_tuple=True)
if len(indices[0]) > 0:
min_x, min_y = torch.min(indices[1]), torch.min(indices[0])
max_x, max_y = torch.max(indices[1]), torch.max(indices[0])
if self.random_crop_bbox is not None and np.random.uniform(0, 1) < self.random_crop_bbox:
ori_h_w = (sample['alpha'].shape[-2], sample['alpha'].shape[-1])
sample['alpha'] = F.interpolate(sample['alpha'][None, :, min_y: max_y + 1, min_x: max_x + 1], size=ori_h_w, mode='bilinear', align_corners=False)[0]
sample['image'] = F.interpolate(sample['image'][None, :, min_y: max_y + 1, min_x: max_x + 1], size=ori_h_w, mode='bilinear', align_corners=False)[0]
sample['trimap'] = F.interpolate(sample['trimap'][None, :, min_y: max_y + 1, min_x: max_x + 1], size=ori_h_w, mode='nearest')[0]
bbox = torch.tensor([[0, 0, ori_h_w[1] - 1, ori_h_w[0] - 1]])
elif self.bbox_offset_factor != 0:
bbox_w = max(1, max_x - min_x)
bbox_h = max(1, max_y - min_y)
offset_w = math.ceil(self.bbox_offset_factor * bbox_w)
offset_h = math.ceil(self.bbox_offset_factor * bbox_h)
min_x = max(0, min_x + np.random.randint(-offset_w, offset_w))
max_x = min(alpha.shape[2] - 1, max_x + np.random.randint(-offset_w, offset_w))
min_y = max(0, min_y + np.random.randint(-offset_h, offset_h))
max_y = min(alpha.shape[1] - 1, max_y + np.random.randint(-offset_h, offset_h))
bbox = torch.tensor([[min_x, min_y, max_x, max_y]])
else:
bbox = torch.tensor([[min_x, min_y, max_x, max_y]])
if self.random_auto_matting is not None and np.random.uniform(0, 1) < self.random_auto_matting:
bbox = torch.tensor([[0, 0, alpha.shape[2] - 1, alpha.shape[1] - 1]])
else:
bbox = torch.zeros(1, 4)
sample['bbox'] = bbox.float()
return sample
def random_interp():
return np.random.choice([cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_LANCZOS4])
class SplitConcatImage(object):
def __init__(self, concat_num=4, wo_mask_to_mattes=False):
self.concat_num = concat_num
self.wo_mask_to_mattes = wo_mask_to_mattes
if self.wo_mask_to_mattes:
assert self.concat_num == 5
def __call__(self, concat_image):
if isinstance(concat_image, list):
concat_image, image_path = concat_image[0], concat_image[1]
else:
image_path = None
H, W, _ = concat_image.shape
concat_num = self.concat_num
if image_path is not None:
if '06-14' in image_path:
concat_num = 4
elif 'ori_mask' in image_path or 'SEMat' in image_path:
concat_num = 3
else:
concat_num = 5
assert W % concat_num == 0
W = W // concat_num
image = concat_image[:H, :W]
if self.concat_num != 3:
trimap = concat_image[:H, (concat_num - 2) * W: (concat_num - 1) * W]
if self.wo_mask_to_mattes:
alpha = concat_image[:H, 2 * W: 3 * W]
else:
alpha = concat_image[:H, (concat_num - 1) * W: concat_num * W]
else:
trimap = concat_image[:H, (concat_num - 1) * W: concat_num * W]
alpha = concat_image[:H, (concat_num - 2) * W: (concat_num - 1) * W]
return {'image': image, 'trimap': trimap, 'alpha': alpha}
class RandomHorizontalFlip(object):
def __init__(self, prob=0.5):
self.prob = prob
def __call__(self, sample):
if np.random.uniform(0, 1) < self.prob:
for key in sample.keys():
sample[key] = cv2.flip(sample[key], 1)
return sample
class EmptyAug(object):
def __call__(self, sample):
return sample
class RandomReszieCrop(object):
def __init__(self, output_size=1024, aug_scale_min=0.5, aug_scale_max=1.5):
self.desired_size = output_size
self.aug_scale_min = aug_scale_min
self.aug_scale_max = aug_scale_max
def __call__(self, sample):
H, W, _ = sample['image'].shape
sample['trimap'] = sample['trimap'][:, :, None].repeat(3, axis=-1)
sample['alpha'] = sample['alpha'][:, :, None].repeat(3, axis=-1)
if self.aug_scale_min == 1.0 and self.aug_scale_max == 1.0:
crop_H, crop_W = H, W
crop_y1, crop_y2 = 0, crop_H
crop_x1, crop_x2 = 0, crop_W
scale_W, scaled_H = W, H
elif self.aug_scale_min == -1.0 and self.aug_scale_max == -1.0:
scale = min(self.desired_size / H, self.desired_size / W)
scaled_H, scale_W = round(H * scale), round(W * scale)
crop_H, crop_W = scaled_H, scale_W
crop_y1, crop_y2 = 0, crop_H
crop_x1, crop_x2 = 0, crop_W
else:
# random size
random_scale = np.random.uniform(0, 1) * (self.aug_scale_max - self.aug_scale_min) + self.aug_scale_min # random_val: 0.5 ~ 1.5
scaled_size = round(random_scale * self.desired_size)
scale = min(scaled_size / H, scaled_size / W)
scaled_H, scale_W = round(H * scale), round(W * scale)
# random crop
crop_H, crop_W = min(self.desired_size, scaled_H), min(self.desired_size, scale_W) # crop_size
margin_H, margin_W = max(scaled_H - crop_H, 0), max(scale_W - crop_W, 0)
offset_H, offset_W = np.random.randint(0, margin_H + 1), np.random.randint(0, margin_W + 1)
crop_y1, crop_y2 = offset_H, offset_H + crop_H
crop_x1, crop_x2 = offset_W, offset_W + crop_W
for key in sample.keys():
sample[key] = cv2.resize(sample[key], (scale_W, scaled_H), interpolation=random_interp())[crop_y1: crop_y2, crop_x1: crop_x2, :] # resize and crop
padding = np.zeros(shape=(self.desired_size, self.desired_size, 3), dtype=sample[key].dtype) # pad to desired_size
padding[: crop_H, : crop_W, :] = sample[key]
sample[key] = padding
return sample
class RandomJitter(object):
"""
Random change the hue of the image
"""
def __call__(self, sample):
image = sample['image']
# convert to HSV space, convert to float32 image to keep precision during space conversion.
image = cv2.cvtColor(image.astype(np.float32)/255.0, cv2.COLOR_BGR2HSV)
# Hue noise
hue_jitter = np.random.randint(-40, 40)
image[:, :, 0] = np.remainder(image[:, :, 0].astype(np.float32) + hue_jitter, 360)
# Saturation noise
sat_bar = image[:, :, 1].mean()
sat_jitter = np.random.rand()*(1.1 - sat_bar)/5 - (1.1 - sat_bar) / 10
sat = image[:, :, 1]
sat = np.abs(sat + sat_jitter)
sat[sat>1] = 2 - sat[sat>1]
image[:, :, 1] = sat
# Value noise
val_bar = image[:, :, 2].mean()
val_jitter = np.random.rand()*(1.1 - val_bar)/5-(1.1 - val_bar) / 10
val = image[:, :, 2]
val = np.abs(val + val_jitter)
val[val>1] = 2 - val[val>1]
image[:, :, 2] = val
# convert back to BGR space
image = cv2.cvtColor(image, cv2.COLOR_HSV2BGR)
sample['image'] = image * 255
return sample
class ToTensor(object):
def __call__(self, sample):
image, alpha, trimap = sample['image'][:, :, ::-1], sample['alpha'], sample['trimap']
# image
image = image.transpose((2, 0, 1)) / 255.
sample['image'] = torch.from_numpy(image).float()
# alpha
alpha = alpha.transpose((2, 0, 1))[0: 1] / 255.
alpha[alpha < 0 ] = 0
alpha[alpha > 1] = 1
sample['alpha'] = torch.from_numpy(alpha).float()
# trimap
trimap = trimap.transpose((2, 0, 1))[0: 1] / 1.
sample['trimap'] = torch.from_numpy(trimap).float()
sample['trimap'][sample['trimap'] < 85] = 0
sample['trimap'][sample['trimap'] >= 170] = 1
sample['trimap'][sample['trimap'] >= 85] = 0.5
return sample
class GenTrimap(object):
def __init__(self):
self.erosion_kernels = [None] + [cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (size, size)) for size in range(1,100)]
def __call__(self, sample):
alpha = sample['alpha']
h, w = alpha.shape
max_kernel_size = max(30, int((min(h,w) / 2048) * 30))
### generate trimap
fg_mask = (alpha / 255.0 + 1e-5).astype(np.int32).astype(np.uint8)
bg_mask = (1 - alpha / 255.0 + 1e-5).astype(np.int32).astype(np.uint8)
fg_mask = cv2.erode(fg_mask, self.erosion_kernels[np.random.randint(1, max_kernel_size)])
bg_mask = cv2.erode(bg_mask, self.erosion_kernels[np.random.randint(1, max_kernel_size)])
trimap = np.ones_like(alpha) * 128
trimap[fg_mask == 1] = 255
trimap[bg_mask == 1] = 0
trimap = cv2.resize(trimap, (w,h), interpolation=cv2.INTER_NEAREST)
sample['trimap'] = trimap
return sample
class P3MData(Dataset):
def __init__(
self,
data_root_path = '/root/data/my_path_b/public_data/data/matting/P3M-10k/train/blurred_image/',
output_size = 1024,
aug_scale_min = 0.8,
aug_scale_max = 1.5,
with_bbox = True,
bbox_offset_factor = 0.05,
num_ratio = 4.06, # 9421 * 4.06 = 38249.26 (38251)
):
self.data_root_path = data_root_path
self.output_size = output_size
self.aug_scale_min = aug_scale_min
self.aug_scale_max = aug_scale_max
self.with_bbox = with_bbox
self.bbox_offset_factor = bbox_offset_factor
self.num_ratio = num_ratio
self.image_names = os.listdir(self.data_root_path)
self.image_names = [i for i in self.image_names if 'jpg' in i]
self.image_names.sort()
train_trans = [
RandomHorizontalFlip(prob=0 if hasattr(self, 'return_image_name') and self.return_image_name else 0.5),
GenTrimap(),
RandomReszieCrop(self.output_size, self.aug_scale_min, self.aug_scale_max),
RandomJitter(),
ToTensor(),
GenBBox(bbox_offset_factor=self.bbox_offset_factor)
]
self.transform = transforms.Compose(train_trans)
def __getitem__(self, idx):
if self.num_ratio is not None:
if self.num_ratio < 1.0:
idx = np.random.randint(0, len(self.image_names))
else:
idx = idx % len(self.image_names)
image_path = os.path.join(self.data_root_path, self.image_names[idx])
alpha_path = image_path.replace('jpg', 'png').replace('blurred_image', 'mask')
sample = self.transform({
'image': cv2.imread(image_path),
'alpha': cv2.imread(alpha_path, 0),
})
sample['dataset_name'] = 'P3M'
sample['multi_fg'] = False
return sample
def __len__(self):
if self.num_ratio is not None:
return int(len(self.image_names) * self.num_ratio)
else:
return len(self.image_names)
if __name__ == '__main__':
dataset = P3MData()
data = dataset[0]
print(len(dataset))
for key, val in data.items():
if isinstance(val, torch.Tensor):
print(key, val.shape, torch.min(val), torch.max(val), torch.unique(val))
else:
print(key, val) |