|
import inspect |
|
import detectron2.utils.comm as comm |
|
from detectron2.engine import EvalHook as _EvalHook |
|
from detectron2.evaluation.testing import flatten_results_dict |
|
|
|
|
|
class EvalHook(_EvalHook): |
|
def __init__(self, eval_period, eval_function): |
|
super().__init__(eval_period, eval_function) |
|
func_args = inspect.getfullargspec(eval_function).args |
|
assert {"final_iter", "next_iter"}.issubset(set(func_args)), ( |
|
f"Eval function must have either 'final_iter' or 'next_iter' as an argument." |
|
f"Got {func_args} instead." |
|
) |
|
|
|
def _do_eval(self, final_iter=False, next_iter=0): |
|
results = self._func(final_iter=final_iter, next_iter=next_iter) |
|
|
|
if results: |
|
assert isinstance( |
|
results, dict |
|
), "Eval function must return a dict. Got {} instead.".format(results) |
|
|
|
flattened_results = flatten_results_dict(results) |
|
for k, v in flattened_results.items(): |
|
try: |
|
v = float(v) |
|
except Exception as e: |
|
raise ValueError( |
|
"[EvalHook] eval_function should return a nested dict of float. " |
|
"Got '{}: {}' instead.".format(k, v) |
|
) from e |
|
self.trainer.storage.put_scalars(**flattened_results, smoothing_hint=False) |
|
|
|
|
|
|
|
comm.synchronize() |
|
|
|
def after_step(self): |
|
next_iter = self.trainer.iter + 1 |
|
if self._period > 0 and next_iter % self._period == 0: |
|
|
|
if next_iter != self.trainer.max_iter: |
|
self._do_eval(next_iter=next_iter) |
|
|
|
def after_train(self): |
|
|
|
if self.trainer.iter + 1 >= self.trainer.max_iter: |
|
self._do_eval(final_iter=True) |
|
|
|
|
|
del self._func |