Spaces:
Sleeping
Sleeping
Commit
·
39125ad
1
Parent(s):
0e2fd0d
updated scripts
Browse files- .DS_Store +0 -0
- app.py +4 -3
- main_backend.py +1 -1
- src/.DS_Store +0 -0
- src/Makefile +0 -13
- src/README.md +0 -47
- src/app.py +0 -329
- src/backend/.DS_Store +0 -0
- src/backend/model_operations.py +2 -2
- src/main_backend.py +0 -126
- src/pyproject.toml +0 -13
- src/requirements.txt +0 -17
.DS_Store
CHANGED
|
Binary files a/.DS_Store and b/.DS_Store differ
|
|
|
app.py
CHANGED
|
@@ -9,10 +9,11 @@ import src.display.utils as utils
|
|
| 9 |
import src.envs as envs
|
| 10 |
import src.populate as populate
|
| 11 |
import src.submission.submit as submit
|
| 12 |
-
|
| 13 |
-
|
|
|
|
| 14 |
def restart_space():
|
| 15 |
-
envs.API.restart_space(repo_id=envs.REPO_ID, token=
|
| 16 |
|
| 17 |
try:
|
| 18 |
print(envs.EVAL_REQUESTS_PATH)
|
|
|
|
| 9 |
import src.envs as envs
|
| 10 |
import src.populate as populate
|
| 11 |
import src.submission.submit as submit
|
| 12 |
+
import os
|
| 13 |
+
TOKEN = os.environ.get("HF_TOKEN", None)
|
| 14 |
+
print("TOKEN", TOKEN)
|
| 15 |
def restart_space():
|
| 16 |
+
envs.API.restart_space(repo_id=envs.REPO_ID, token=TOKEN)
|
| 17 |
|
| 18 |
try:
|
| 19 |
print(envs.EVAL_REQUESTS_PATH)
|
main_backend.py
CHANGED
|
@@ -111,7 +111,7 @@ def main():
|
|
| 111 |
parser = argparse.ArgumentParser(description="Run auto evaluation with optional reproducibility feature")
|
| 112 |
|
| 113 |
# Optional arguments
|
| 114 |
-
parser.add_argument("--reproduce", type=bool, default=
|
| 115 |
parser.add_argument("--model", type=str, default=None, help="Your Model ID")
|
| 116 |
parser.add_argument("--precision", type=str, default="float16", help="Precision of your model")
|
| 117 |
parser.add_argument("--publish", type=bool, default=False, help="whether directly publish the evaluation results on HF")
|
|
|
|
| 111 |
parser = argparse.ArgumentParser(description="Run auto evaluation with optional reproducibility feature")
|
| 112 |
|
| 113 |
# Optional arguments
|
| 114 |
+
parser.add_argument("--reproduce", type=bool, default=False, help="Reproduce the evaluation results")
|
| 115 |
parser.add_argument("--model", type=str, default=None, help="Your Model ID")
|
| 116 |
parser.add_argument("--precision", type=str, default="float16", help="Precision of your model")
|
| 117 |
parser.add_argument("--publish", type=bool, default=False, help="whether directly publish the evaluation results on HF")
|
src/.DS_Store
CHANGED
|
Binary files a/src/.DS_Store and b/src/.DS_Store differ
|
|
|
src/Makefile
DELETED
|
@@ -1,13 +0,0 @@
|
|
| 1 |
-
.PHONY: style format
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
style:
|
| 5 |
-
python -m black --line-length 119 .
|
| 6 |
-
python -m isort .
|
| 7 |
-
ruff check --fix .
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
quality:
|
| 11 |
-
python -m black --check --line-length 119 .
|
| 12 |
-
python -m isort --check-only .
|
| 13 |
-
ruff check .
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/README.md
DELETED
|
@@ -1,47 +0,0 @@
|
|
| 1 |
-
---
|
| 2 |
-
title: Humanlike Evaluation Leaderboard
|
| 3 |
-
emoji: 🥇
|
| 4 |
-
colorFrom: blue
|
| 5 |
-
colorTo: indigo
|
| 6 |
-
sdk: gradio
|
| 7 |
-
sdk_version: 4.37.1
|
| 8 |
-
app_file: app.py
|
| 9 |
-
pinned: true
|
| 10 |
-
license: apache-2.0
|
| 11 |
-
tags:
|
| 12 |
-
- leaderboard
|
| 13 |
-
models:
|
| 14 |
-
- google/gemma-2-9b
|
| 15 |
-
---
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
python>3.10
|
| 19 |
-
pip spacy
|
| 20 |
-
python -m spacy download en_core_web_sm
|
| 21 |
-
pip install google.generativeai
|
| 22 |
-
python -m spacy download en_core_web_trf
|
| 23 |
-
|
| 24 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
| 25 |
-
|
| 26 |
-
Most of the variables to change for a default leaderboard are in env (replace the path for your leaderboard) and src/display/about.
|
| 27 |
-
|
| 28 |
-
Results files should have the following format:
|
| 29 |
-
```
|
| 30 |
-
{
|
| 31 |
-
"config": {
|
| 32 |
-
"model_dtype": "torch.float16", # or torch.bfloat16 or 8bit or 4bit
|
| 33 |
-
"model_name": "path of the model on the hub: org/model",
|
| 34 |
-
"model_sha": "revision on the hub",
|
| 35 |
-
},
|
| 36 |
-
"results": {
|
| 37 |
-
"task_name": {
|
| 38 |
-
"metric_name": score,
|
| 39 |
-
},
|
| 40 |
-
"task_name2": {
|
| 41 |
-
"metric_name": score,
|
| 42 |
-
}
|
| 43 |
-
}
|
| 44 |
-
}
|
| 45 |
-
```
|
| 46 |
-
|
| 47 |
-
Request files are created automatically by this tool.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/app.py
DELETED
|
@@ -1,329 +0,0 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
import pandas as pd
|
| 3 |
-
from apscheduler.schedulers.background import BackgroundScheduler
|
| 4 |
-
from huggingface_hub import snapshot_download
|
| 5 |
-
|
| 6 |
-
import src.display.about as about
|
| 7 |
-
from src.display.css_html_js import custom_css
|
| 8 |
-
import src.display.utils as utils
|
| 9 |
-
import src.envs as envs
|
| 10 |
-
import src.populate as populate
|
| 11 |
-
import src.submission.submit as submit
|
| 12 |
-
import os
|
| 13 |
-
TOKEN = os.environ.get("HF_TOKEN", None)
|
| 14 |
-
print("TOKEN", TOKEN)
|
| 15 |
-
def restart_space():
|
| 16 |
-
envs.API.restart_space(repo_id=envs.REPO_ID, token=TOKEN)
|
| 17 |
-
|
| 18 |
-
try:
|
| 19 |
-
print(envs.EVAL_REQUESTS_PATH)
|
| 20 |
-
snapshot_download(
|
| 21 |
-
repo_id=envs.QUEUE_REPO, local_dir=envs.EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30
|
| 22 |
-
)
|
| 23 |
-
except Exception:
|
| 24 |
-
restart_space()
|
| 25 |
-
try:
|
| 26 |
-
print(envs.EVAL_RESULTS_PATH)
|
| 27 |
-
snapshot_download(
|
| 28 |
-
repo_id=envs.RESULTS_REPO, local_dir=envs.EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30
|
| 29 |
-
)
|
| 30 |
-
except Exception:
|
| 31 |
-
restart_space()
|
| 32 |
-
|
| 33 |
-
raw_data, original_df = populate.get_leaderboard_df(envs.EVAL_RESULTS_PATH, envs.EVAL_REQUESTS_PATH, utils.COLS, utils.BENCHMARK_COLS)
|
| 34 |
-
leaderboard_df = original_df.copy()
|
| 35 |
-
|
| 36 |
-
(
|
| 37 |
-
finished_eval_queue_df,
|
| 38 |
-
running_eval_queue_df,
|
| 39 |
-
pending_eval_queue_df,
|
| 40 |
-
) = populate.get_evaluation_queue_df(envs.EVAL_REQUESTS_PATH, utils.EVAL_COLS)
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
# Searching and filtering
|
| 44 |
-
def update_table(
|
| 45 |
-
hidden_df: pd.DataFrame,
|
| 46 |
-
columns: list,
|
| 47 |
-
type_query: list,
|
| 48 |
-
precision_query: str,
|
| 49 |
-
size_query: list,
|
| 50 |
-
show_deleted: bool,
|
| 51 |
-
query: str,
|
| 52 |
-
):
|
| 53 |
-
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
|
| 54 |
-
filtered_df = filter_queries(query, filtered_df)
|
| 55 |
-
df = select_columns(filtered_df, columns)
|
| 56 |
-
return df
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
| 60 |
-
return df[(df[utils.AutoEvalColumn.dummy.name].str.contains(query, case=False))]
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
| 64 |
-
always_here_cols = [
|
| 65 |
-
utils.AutoEvalColumn.model_type_symbol.name,
|
| 66 |
-
utils.AutoEvalColumn.model.name,
|
| 67 |
-
]
|
| 68 |
-
# We use COLS to maintain sorting
|
| 69 |
-
filtered_df = df[
|
| 70 |
-
always_here_cols + [c for c in utils.COLS if c in df.columns and c in columns] + [utils.AutoEvalColumn.dummy.name]
|
| 71 |
-
]
|
| 72 |
-
return filtered_df
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
|
| 76 |
-
final_df = []
|
| 77 |
-
if query != "":
|
| 78 |
-
queries = [q.strip() for q in query.split(";")]
|
| 79 |
-
for _q in queries:
|
| 80 |
-
_q = _q.strip()
|
| 81 |
-
if _q != "":
|
| 82 |
-
temp_filtered_df = search_table(filtered_df, _q)
|
| 83 |
-
if len(temp_filtered_df) > 0:
|
| 84 |
-
final_df.append(temp_filtered_df)
|
| 85 |
-
if len(final_df) > 0:
|
| 86 |
-
filtered_df = pd.concat(final_df)
|
| 87 |
-
filtered_df = filtered_df.drop_duplicates(
|
| 88 |
-
subset=[utils.AutoEvalColumn.model.name, utils.AutoEvalColumn.precision.name, utils.AutoEvalColumn.revision.name]
|
| 89 |
-
)
|
| 90 |
-
|
| 91 |
-
return filtered_df
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
def filter_models(
|
| 95 |
-
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool
|
| 96 |
-
) -> pd.DataFrame:
|
| 97 |
-
# Show all models
|
| 98 |
-
# if show_deleted:
|
| 99 |
-
# filtered_df = df
|
| 100 |
-
# else: # Show only still on the hub models
|
| 101 |
-
# filtered_df = df[df[utils.AutoEvalColumn.still_on_hub.name]]
|
| 102 |
-
|
| 103 |
-
filtered_df = df
|
| 104 |
-
|
| 105 |
-
type_emoji = [t[0] for t in type_query]
|
| 106 |
-
filtered_df = filtered_df.loc[df[utils.AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
|
| 107 |
-
filtered_df = filtered_df.loc[df[utils.AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
|
| 108 |
-
|
| 109 |
-
numeric_interval = pd.IntervalIndex(sorted([utils.NUMERIC_INTERVALS[s] for s in size_query]))
|
| 110 |
-
params_column = pd.to_numeric(df[utils.AutoEvalColumn.params.name], errors="coerce")
|
| 111 |
-
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
|
| 112 |
-
filtered_df = filtered_df.loc[mask]
|
| 113 |
-
|
| 114 |
-
return filtered_df
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
demo = gr.Blocks(css=custom_css)
|
| 118 |
-
with demo:
|
| 119 |
-
gr.HTML(about.TITLE)
|
| 120 |
-
gr.Markdown(about.INTRODUCTION_TEXT, elem_classes="markdown-text")
|
| 121 |
-
|
| 122 |
-
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 123 |
-
with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
| 124 |
-
with gr.Row():
|
| 125 |
-
with gr.Column():
|
| 126 |
-
with gr.Row():
|
| 127 |
-
search_bar = gr.Textbox(
|
| 128 |
-
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
|
| 129 |
-
show_label=False,
|
| 130 |
-
elem_id="search-bar",
|
| 131 |
-
)
|
| 132 |
-
with gr.Row():
|
| 133 |
-
shown_columns = gr.CheckboxGroup(
|
| 134 |
-
choices=[
|
| 135 |
-
c.name
|
| 136 |
-
for c in utils.fields(utils.AutoEvalColumn)
|
| 137 |
-
if not c.hidden and not c.never_hidden and not c.dummy
|
| 138 |
-
],
|
| 139 |
-
value=[
|
| 140 |
-
c.name
|
| 141 |
-
for c in utils.fields(utils.AutoEvalColumn)
|
| 142 |
-
if c.displayed_by_default and not c.hidden and not c.never_hidden
|
| 143 |
-
],
|
| 144 |
-
label="Select columns to show",
|
| 145 |
-
elem_id="column-select",
|
| 146 |
-
interactive=True,
|
| 147 |
-
)
|
| 148 |
-
with gr.Row():
|
| 149 |
-
deleted_models_visibility = gr.Checkbox(
|
| 150 |
-
value=False, label="Show gated/private/deleted models", interactive=True
|
| 151 |
-
)
|
| 152 |
-
with gr.Column(min_width=320):
|
| 153 |
-
#with gr.Box(elem_id="box-filter"):
|
| 154 |
-
filter_columns_type = gr.CheckboxGroup(
|
| 155 |
-
label="Model types",
|
| 156 |
-
choices=[t.to_str() for t in utils.ModelType],
|
| 157 |
-
value=[t.to_str() for t in utils.ModelType],
|
| 158 |
-
interactive=True,
|
| 159 |
-
elem_id="filter-columns-type",
|
| 160 |
-
)
|
| 161 |
-
filter_columns_precision = gr.CheckboxGroup(
|
| 162 |
-
label="Precision",
|
| 163 |
-
choices=[i.value.name for i in utils.Precision],
|
| 164 |
-
value=[i.value.name for i in utils.Precision],
|
| 165 |
-
interactive=True,
|
| 166 |
-
elem_id="filter-columns-precision",
|
| 167 |
-
)
|
| 168 |
-
filter_columns_size = gr.CheckboxGroup(
|
| 169 |
-
label="Model sizes (in billions of parameters)",
|
| 170 |
-
choices=list(utils.NUMERIC_INTERVALS.keys()),
|
| 171 |
-
value=list(utils.NUMERIC_INTERVALS.keys()),
|
| 172 |
-
interactive=True,
|
| 173 |
-
elem_id="filter-columns-size",
|
| 174 |
-
)
|
| 175 |
-
|
| 176 |
-
leaderboard_table = gr.components.Dataframe(
|
| 177 |
-
value=leaderboard_df[
|
| 178 |
-
[c.name for c in utils.fields(utils.AutoEvalColumn) if c.never_hidden]
|
| 179 |
-
+ shown_columns.value
|
| 180 |
-
+ [utils.AutoEvalColumn.dummy.name]
|
| 181 |
-
],
|
| 182 |
-
headers=[c.name for c in utils.fields(utils.AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
| 183 |
-
datatype=utils.TYPES,
|
| 184 |
-
elem_id="leaderboard-table",
|
| 185 |
-
interactive=False,
|
| 186 |
-
visible=True,
|
| 187 |
-
column_widths=["2%", "33%"]
|
| 188 |
-
)
|
| 189 |
-
|
| 190 |
-
# Dummy leaderboard for handling the case when the user uses backspace key
|
| 191 |
-
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
| 192 |
-
value=original_df[utils.COLS],
|
| 193 |
-
headers=utils.COLS,
|
| 194 |
-
datatype=utils.TYPES,
|
| 195 |
-
visible=False,
|
| 196 |
-
)
|
| 197 |
-
search_bar.submit(
|
| 198 |
-
update_table,
|
| 199 |
-
[
|
| 200 |
-
hidden_leaderboard_table_for_search,
|
| 201 |
-
shown_columns,
|
| 202 |
-
filter_columns_type,
|
| 203 |
-
filter_columns_precision,
|
| 204 |
-
filter_columns_size,
|
| 205 |
-
deleted_models_visibility,
|
| 206 |
-
search_bar,
|
| 207 |
-
],
|
| 208 |
-
leaderboard_table,
|
| 209 |
-
)
|
| 210 |
-
for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size, deleted_models_visibility]:
|
| 211 |
-
selector.change(
|
| 212 |
-
update_table,
|
| 213 |
-
[
|
| 214 |
-
hidden_leaderboard_table_for_search,
|
| 215 |
-
shown_columns,
|
| 216 |
-
filter_columns_type,
|
| 217 |
-
filter_columns_precision,
|
| 218 |
-
filter_columns_size,
|
| 219 |
-
deleted_models_visibility,
|
| 220 |
-
search_bar,
|
| 221 |
-
],
|
| 222 |
-
leaderboard_table,
|
| 223 |
-
queue=True,
|
| 224 |
-
)
|
| 225 |
-
|
| 226 |
-
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
|
| 227 |
-
gr.Markdown(about.LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
| 228 |
-
|
| 229 |
-
with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
|
| 230 |
-
with gr.Column():
|
| 231 |
-
with gr.Row():
|
| 232 |
-
gr.Markdown(about.EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
| 233 |
-
|
| 234 |
-
with gr.Column():
|
| 235 |
-
with gr.Accordion(
|
| 236 |
-
f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
|
| 237 |
-
open=False,
|
| 238 |
-
):
|
| 239 |
-
with gr.Row():
|
| 240 |
-
finished_eval_table = gr.components.Dataframe(
|
| 241 |
-
value=finished_eval_queue_df,
|
| 242 |
-
headers=utils.EVAL_COLS,
|
| 243 |
-
datatype=utils.EVAL_TYPES,
|
| 244 |
-
row_count=5,
|
| 245 |
-
)
|
| 246 |
-
with gr.Accordion(
|
| 247 |
-
f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
|
| 248 |
-
open=False,
|
| 249 |
-
):
|
| 250 |
-
with gr.Row():
|
| 251 |
-
running_eval_table = gr.components.Dataframe(
|
| 252 |
-
value=running_eval_queue_df,
|
| 253 |
-
headers=utils.EVAL_COLS,
|
| 254 |
-
datatype=utils.EVAL_TYPES,
|
| 255 |
-
row_count=5,
|
| 256 |
-
)
|
| 257 |
-
|
| 258 |
-
with gr.Accordion(
|
| 259 |
-
f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
|
| 260 |
-
open=False,
|
| 261 |
-
):
|
| 262 |
-
with gr.Row():
|
| 263 |
-
pending_eval_table = gr.components.Dataframe(
|
| 264 |
-
value=pending_eval_queue_df,
|
| 265 |
-
headers=utils.EVAL_COLS,
|
| 266 |
-
datatype=utils.EVAL_TYPES,
|
| 267 |
-
row_count=5,
|
| 268 |
-
)
|
| 269 |
-
with gr.Row():
|
| 270 |
-
gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
|
| 271 |
-
|
| 272 |
-
with gr.Row():
|
| 273 |
-
with gr.Column():
|
| 274 |
-
model_name_textbox = gr.Textbox(label="Model name")
|
| 275 |
-
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
|
| 276 |
-
model_type = gr.Dropdown(
|
| 277 |
-
choices=[t.to_str(" : ") for t in utils.ModelType if t != utils.ModelType.Unknown],
|
| 278 |
-
label="Model type",
|
| 279 |
-
multiselect=False,
|
| 280 |
-
value=None,
|
| 281 |
-
interactive=True,
|
| 282 |
-
)
|
| 283 |
-
|
| 284 |
-
with gr.Column():
|
| 285 |
-
precision = gr.Dropdown(
|
| 286 |
-
choices=[i.value.name for i in utils.Precision if i != utils.Precision.Unknown],
|
| 287 |
-
label="Precision",
|
| 288 |
-
multiselect=False,
|
| 289 |
-
value="float16",
|
| 290 |
-
interactive=True,
|
| 291 |
-
)
|
| 292 |
-
weight_type = gr.Dropdown(
|
| 293 |
-
choices=[i.value.name for i in utils.WeightType],
|
| 294 |
-
label="Weights type",
|
| 295 |
-
multiselect=False,
|
| 296 |
-
value="Original",
|
| 297 |
-
interactive=True,
|
| 298 |
-
)
|
| 299 |
-
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
|
| 300 |
-
|
| 301 |
-
submit_button = gr.Button("Submit Eval")
|
| 302 |
-
submission_result = gr.Markdown()
|
| 303 |
-
submit_button.click(
|
| 304 |
-
submit.add_new_eval,
|
| 305 |
-
[
|
| 306 |
-
model_name_textbox,
|
| 307 |
-
base_model_name_textbox,
|
| 308 |
-
revision_name_textbox,
|
| 309 |
-
precision,
|
| 310 |
-
weight_type,
|
| 311 |
-
model_type,
|
| 312 |
-
],
|
| 313 |
-
submission_result,
|
| 314 |
-
)
|
| 315 |
-
|
| 316 |
-
with gr.Row():
|
| 317 |
-
with gr.Accordion("📙 Citation", open=False):
|
| 318 |
-
citation_button = gr.Textbox(
|
| 319 |
-
value=about.CITATION_BUTTON_TEXT,
|
| 320 |
-
label=about.CITATION_BUTTON_LABEL,
|
| 321 |
-
lines=20,
|
| 322 |
-
elem_id="citation-button",
|
| 323 |
-
show_copy_button=True,
|
| 324 |
-
)
|
| 325 |
-
|
| 326 |
-
scheduler = BackgroundScheduler()
|
| 327 |
-
scheduler.add_job(restart_space, "interval", seconds=1800)
|
| 328 |
-
scheduler.start()
|
| 329 |
-
demo.queue(default_concurrency_limit=40).launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/backend/.DS_Store
ADDED
|
Binary file (6.15 kB). View file
|
|
|
src/backend/model_operations.py
CHANGED
|
@@ -166,14 +166,14 @@ class SummaryGenerator:
|
|
| 166 |
Stimuli_2_column = df_sheet["Stimuli-2"]
|
| 167 |
|
| 168 |
# 遍历Prompt0列的值
|
| 169 |
-
for j, prompt_value in enumerate(tqdm(prompt_column
|
| 170 |
ID = 'E' + str(i)
|
| 171 |
# q_ID = ID + '_' + str(j)
|
| 172 |
|
| 173 |
# print(ID, q_ID, prompt_value)
|
| 174 |
system_prompt = envs.SYSTEM_PROMPT
|
| 175 |
_user_prompt = prompt_value
|
| 176 |
-
for ii in range(
|
| 177 |
# user_prompt = f"{envs.USER_PROMPT}\nPassage:\n{_source}"
|
| 178 |
while True:
|
| 179 |
try:
|
|
|
|
| 166 |
Stimuli_2_column = df_sheet["Stimuli-2"]
|
| 167 |
|
| 168 |
# 遍历Prompt0列的值
|
| 169 |
+
for j, prompt_value in enumerate(tqdm(prompt_column, desc=f"Processing {sheet_name}"), start=0):
|
| 170 |
ID = 'E' + str(i)
|
| 171 |
# q_ID = ID + '_' + str(j)
|
| 172 |
|
| 173 |
# print(ID, q_ID, prompt_value)
|
| 174 |
system_prompt = envs.SYSTEM_PROMPT
|
| 175 |
_user_prompt = prompt_value
|
| 176 |
+
for ii in range(10):
|
| 177 |
# user_prompt = f"{envs.USER_PROMPT}\nPassage:\n{_source}"
|
| 178 |
while True:
|
| 179 |
try:
|
src/main_backend.py
DELETED
|
@@ -1,126 +0,0 @@
|
|
| 1 |
-
import argparse
|
| 2 |
-
import logging
|
| 3 |
-
import pprint
|
| 4 |
-
import os
|
| 5 |
-
|
| 6 |
-
from huggingface_hub import snapshot_download
|
| 7 |
-
|
| 8 |
-
import src.backend.run_eval_suite as run_eval_suite
|
| 9 |
-
import src.backend.manage_requests as manage_requests
|
| 10 |
-
import src.backend.sort_queue as sort_queue
|
| 11 |
-
import src.envs as envs
|
| 12 |
-
|
| 13 |
-
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True'
|
| 14 |
-
|
| 15 |
-
logging.basicConfig(level=logging.ERROR)
|
| 16 |
-
pp = pprint.PrettyPrinter(width=80)
|
| 17 |
-
|
| 18 |
-
PENDING_STATUS = "PENDING"
|
| 19 |
-
RUNNING_STATUS = "RUNNING"
|
| 20 |
-
FINISHED_STATUS = "FINISHED"
|
| 21 |
-
FAILED_STATUS = "FAILED"
|
| 22 |
-
# import os
|
| 23 |
-
snapshot_download(repo_id=envs.RESULTS_REPO, revision="main",
|
| 24 |
-
local_dir=envs.EVAL_RESULTS_PATH_BACKEND, repo_type="dataset", max_workers=60)
|
| 25 |
-
|
| 26 |
-
snapshot_download(repo_id=envs.QUEUE_REPO, revision="main",
|
| 27 |
-
local_dir=envs.EVAL_REQUESTS_PATH_BACKEND, repo_type="dataset", max_workers=60)
|
| 28 |
-
# exit()
|
| 29 |
-
|
| 30 |
-
def run_auto_eval(args):
|
| 31 |
-
if not args.reproduce:
|
| 32 |
-
current_pending_status = [PENDING_STATUS]
|
| 33 |
-
print('_________________')
|
| 34 |
-
manage_requests.check_completed_evals(
|
| 35 |
-
api=envs.API,
|
| 36 |
-
checked_status=RUNNING_STATUS,
|
| 37 |
-
completed_status=FINISHED_STATUS,
|
| 38 |
-
failed_status=FAILED_STATUS,
|
| 39 |
-
hf_repo=envs.QUEUE_REPO,
|
| 40 |
-
local_dir=envs.EVAL_REQUESTS_PATH_BACKEND,
|
| 41 |
-
hf_repo_results=envs.RESULTS_REPO,
|
| 42 |
-
local_dir_results=envs.EVAL_RESULTS_PATH_BACKEND
|
| 43 |
-
)
|
| 44 |
-
logging.info("Checked completed evals")
|
| 45 |
-
eval_requests = manage_requests.get_eval_requests(job_status=current_pending_status,
|
| 46 |
-
hf_repo=envs.QUEUE_REPO,
|
| 47 |
-
local_dir=envs.EVAL_REQUESTS_PATH_BACKEND)
|
| 48 |
-
logging.info("Got eval requests")
|
| 49 |
-
eval_requests = sort_queue.sort_models_by_priority(api=envs.API, models=eval_requests)
|
| 50 |
-
logging.info("Sorted eval requests")
|
| 51 |
-
|
| 52 |
-
print(f"Found {len(eval_requests)} {','.join(current_pending_status)} eval requests")
|
| 53 |
-
print(eval_requests)
|
| 54 |
-
if len(eval_requests) == 0:
|
| 55 |
-
print("No eval requests found. Exiting.")
|
| 56 |
-
return
|
| 57 |
-
|
| 58 |
-
if args.model is not None:
|
| 59 |
-
eval_request = manage_requests.EvalRequest(
|
| 60 |
-
model=args.model,
|
| 61 |
-
status=PENDING_STATUS,
|
| 62 |
-
precision=args.precision
|
| 63 |
-
)
|
| 64 |
-
pp.pprint(eval_request)
|
| 65 |
-
else:
|
| 66 |
-
eval_request = eval_requests[0]
|
| 67 |
-
pp.pprint(eval_request)
|
| 68 |
-
|
| 69 |
-
# manage_requests.set_eval_request(
|
| 70 |
-
# api=envs.API,
|
| 71 |
-
# eval_request=eval_request,
|
| 72 |
-
# new_status=RUNNING_STATUS,
|
| 73 |
-
# hf_repo=envs.QUEUE_REPO,
|
| 74 |
-
# local_dir=envs.EVAL_REQUESTS_PATH_BACKEND
|
| 75 |
-
# )
|
| 76 |
-
# logging.info("Set eval request to running, now running eval")
|
| 77 |
-
|
| 78 |
-
run_eval_suite.run_evaluation(
|
| 79 |
-
eval_request=eval_request,
|
| 80 |
-
local_dir=envs.EVAL_RESULTS_PATH_BACKEND,
|
| 81 |
-
results_repo=envs.RESULTS_REPO,
|
| 82 |
-
batch_size=1,
|
| 83 |
-
device=envs.DEVICE,
|
| 84 |
-
no_cache=True,
|
| 85 |
-
need_check=not args.publish,
|
| 86 |
-
write_results=args.update
|
| 87 |
-
)
|
| 88 |
-
logging.info("Eval finished, now setting status to finished")
|
| 89 |
-
else:
|
| 90 |
-
eval_request = manage_requests.EvalRequest(
|
| 91 |
-
model=args.model,
|
| 92 |
-
status=PENDING_STATUS,
|
| 93 |
-
precision=args.precision
|
| 94 |
-
)
|
| 95 |
-
pp.pprint(eval_request)
|
| 96 |
-
logging.info("Running reproducibility eval")
|
| 97 |
-
|
| 98 |
-
run_eval_suite.run_evaluation(
|
| 99 |
-
eval_request=eval_request,
|
| 100 |
-
local_dir=envs.EVAL_RESULTS_PATH_BACKEND,
|
| 101 |
-
results_repo=envs.RESULTS_REPO,
|
| 102 |
-
batch_size=1,
|
| 103 |
-
device=envs.DEVICE,
|
| 104 |
-
need_check=not args.publish,
|
| 105 |
-
write_results=args.update
|
| 106 |
-
)
|
| 107 |
-
logging.info("Reproducibility eval finished")
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
def main():
|
| 111 |
-
parser = argparse.ArgumentParser(description="Run auto evaluation with optional reproducibility feature")
|
| 112 |
-
|
| 113 |
-
# Optional arguments
|
| 114 |
-
parser.add_argument("--reproduce", type=bool, default=False, help="Reproduce the evaluation results")
|
| 115 |
-
parser.add_argument("--model", type=str, default=None, help="Your Model ID")
|
| 116 |
-
parser.add_argument("--precision", type=str, default="float16", help="Precision of your model")
|
| 117 |
-
parser.add_argument("--publish", type=bool, default=False, help="whether directly publish the evaluation results on HF")
|
| 118 |
-
parser.add_argument("--update", type=bool, default=False, help="whether to update google drive files")
|
| 119 |
-
|
| 120 |
-
args = parser.parse_args()
|
| 121 |
-
|
| 122 |
-
run_auto_eval(args)
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
if __name__ == "__main__":
|
| 126 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/pyproject.toml
DELETED
|
@@ -1,13 +0,0 @@
|
|
| 1 |
-
[tool.ruff]
|
| 2 |
-
# Enable pycodestyle (`E`) and Pyflakes (`F`) codes by default.
|
| 3 |
-
select = ["E", "F"]
|
| 4 |
-
ignore = ["E501"] # line too long (black is taking care of this)
|
| 5 |
-
line-length = 119
|
| 6 |
-
fixable = ["A", "B", "C", "D", "E", "F", "G", "I", "N", "Q", "S", "T", "W", "ANN", "ARG", "BLE", "COM", "DJ", "DTZ", "EM", "ERA", "EXE", "FBT", "ICN", "INP", "ISC", "NPY", "PD", "PGH", "PIE", "PL", "PT", "PTH", "PYI", "RET", "RSE", "RUF", "SIM", "SLF", "TCH", "TID", "TRY", "UP", "YTT"]
|
| 7 |
-
|
| 8 |
-
[tool.isort]
|
| 9 |
-
profile = "black"
|
| 10 |
-
line_length = 119
|
| 11 |
-
|
| 12 |
-
[tool.black]
|
| 13 |
-
line-length = 119
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/requirements.txt
DELETED
|
@@ -1,17 +0,0 @@
|
|
| 1 |
-
APScheduler==3.10.1
|
| 2 |
-
black==23.11.0
|
| 3 |
-
click==8.1.3
|
| 4 |
-
datasets==2.14.5
|
| 5 |
-
gradio==4.4.0
|
| 6 |
-
gradio_client==0.7.0
|
| 7 |
-
huggingface-hub>=0.18.0
|
| 8 |
-
litellm==1.15.1
|
| 9 |
-
matplotlib==3.7.1
|
| 10 |
-
numpy==1.24.2
|
| 11 |
-
pandas==2.0.0
|
| 12 |
-
python-dateutil==2.8.2
|
| 13 |
-
requests==2.28.2
|
| 14 |
-
tqdm==4.65.0
|
| 15 |
-
transformers==4.35.2
|
| 16 |
-
tokenizers>=0.15.0
|
| 17 |
-
sentence-transformers==2.2.2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|