import gradio as gr from huggingface_hub import InferenceClient """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ # client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") # client = InferenceClient("deepseek-ai/DeepSeek-R1-Distill-Qwen-7B") client = InferenceClient("unsloth/DeepSeek-R1-Distill-Llama-8B-GGUF") def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, stream: bool = True, ): messages = [] if system_message: messages.append({"role": "system", "content": system_message}) for val in history: if isinstance(val, dict) and "role" in val and "content" in val: messages.append(val) elif isinstance(val, (tuple, list)): messages.append( {"role": "user", "content": val[0]} if val[0] else {"role": "assistant", "content": val[1]} ) messages.append({"role": "user", "content": message}) response = "" if stream: for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response else: completion = client.chat_completion( messages, max_tokens=max_tokens, temperature=temperature, top_p=top_p, ) yield completion.choices[0].message.content """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), gr.Checkbox(value=True, label="Streaming", info="Streaming response vs full completion"), ], ) if __name__ == "__main__": demo.launch()