import subprocess import os # Ensure the required libraries are installed def install(package): subprocess.check_call([os.sys.executable, "-m", "pip", "install", package]) # Install transformers, huggingface_hub install("transformers") install("huggingface_hub") from transformers import AutoModelForCausalLM, AutoTokenizer from huggingface_hub import login import torch import gradio as gr import spaces token = os.environ.get("HF_TOKEN_READ") login(token) model_id = "meta-llama/Llama-3.2-1B-Instruct" model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16, token=token ) tokenizer = AutoTokenizer.from_pretrained(model_id) if torch.cuda.is_available(): device = torch.device("cuda") print(f"Usando GPU: {torch.cuda.get_device_name(device)}") else: device = torch.device("cpu") print("Usando CPU") model = model.to(device) @spaces.GPU def respond( message, history, system_message, max_tokens, temperature, top_p ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) input_ids = tokenizer.apply_chat_template( messages, add_generation_prompt=True, return_tensors='pt' ).to(model.device) terminators = [ tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>") ] outputs = model.generate( input_ids, max_new_tokens=max_tokens, eos_token_id=terminators, do_sample=True, temperature=temperature, top_p=top_p ) response = "" for message in tokenizer.decode( outputs[0][input_ids.shape[-1]:], skip_special_tokens=True ): response += message yield response demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="Tu eres un asistente amigable", label="System Message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=3, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1, value=0.95, step=0.05, label="Top p") ] ) if __name__ == "__main__": demo.launch()