Gxhhfhdhd / app.py
Yhhxhfh's picture
Update app.py
4605982 verified
raw
history blame
7.43 kB
import os
import logging
import asyncio
import uvicorn
import torch
import random
from transformers import AutoModelForCausalLM, AutoTokenizer
from fastapi import FastAPI, Query, HTTPException
from fastapi.responses import HTMLResponse
# Configuraci贸n de logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
# Inicializar la aplicaci贸n FastAPI
app = FastAPI()
# Diccionario para almacenar los modelos
data_and_models_dict = {}
# Lista para almacenar el historial de mensajes
message_history = []
# Lista para almacenar los tokens
tokens_history = []
# Funci贸n para cargar modelos
async def load_models():
programming_models = [
"microsoft/CodeGPT-small-py",
"Salesforce/codegen-350M-multi",
"Salesforce/codegen-2B-multi"
]
gpt_models = ["gpt2-medium", "gpt2-large", "gpt2", "gemma-2-9b", "starcoder"] + programming_models
for model_name in gpt_models:
try:
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
logger.info(f"Successfully loaded {model_name} model")
return model, tokenizer
except Exception as e:
logger.error(f"Failed to load {model_name} model: {e}")
raise HTTPException(status_code=500, detail="Failed to load any models")
# Funci贸n para descargar modelos
async def download_models():
model, tokenizer = await load_models()
data_and_models_dict['model'] = (model, tokenizer)
@app.get('/')
async def main():
html_code = """
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>ChatGPT Chatbot</title>
<style>
body, html {
height: 100%;
margin: 0;
padding: 0;
font-family: Arial, sans-serif;
}
.container {
height: 100%;
display: flex;
flex-direction: column;
justify-content: center;
align-items: center;
}
.chat-container {
border-radius: 10px;
overflow: hidden;
box-shadow: 0 0 10px rgba(0, 0, 0, 0.1);
width: 100%;
height: 100%;
}
.chat-box {
height: calc(100% - 60px);
overflow-y: auto;
padding: 10px;
}
.chat-input {
width: calc(100% - 100px);
padding: 10px;
border: none;
border-top: 1px solid #ccc;
font-size: 16px;
}
.input-container {
display: flex;
align-items: center;
justify-content: space-between;
padding: 10px;
background-color: #f5f5f5;
border-top: 1px solid #ccc;
width: 100%;
}
button {
padding: 10px;
border: none;
cursor: pointer;
background-color: #007bff;
color: #fff;
font-size: 16px;
}
.user-message {
background-color: #cce5ff;
border-radius: 5px;
align-self: flex-end;
max-width: 70%;
margin-left: auto;
margin-right: 10px;
margin-bottom: 10px;
}
.bot-message {
background-color: #d1ecf1;
border-radius: 5px;
align-self: flex-start;
max-width: 70%;
margin-bottom: 10px;
}
</style>
</head>
<body>
<div class="container">
<div class="chat-container">
<div class="chat-box" id="chat-box"></div>
<div class="input-container">
<input type="text" class="chat-input" id="user-input" placeholder="Escribe un mensaje...">
<button onclick="sendMessage()">Enviar</button>
</div>
</div>
</div>
<script>
const chatBox = document.getElementById('chat-box');
const userInput = document.getElementById('user-input');
function saveMessage(sender, message) {
const messageElement = document.createElement('div');
messageElement.textContent = `${sender}: ${message}`;
messageElement.classList.add(`${sender}-message`);
chatBox.appendChild(messageElement);
userInput.value = '';
}
async function sendMessage() {
const userMessage = userInput.value.trim();
if (!userMessage) return;
saveMessage('user', userMessage);
await fetch(`/autocomplete?q=${userMessage}`)
.then(response => response.text())
.then(data => {
saveMessage('bot', data);
chatBox.scrollTop = chatBox.scrollHeight;
})
.catch(error => console.error('Error:', error));
}
userInput.addEventListener("keyup", function(event) {
if (event.keyCode === 13) {
event.preventDefault();
sendMessage();
}
});
</script>
</body>
</html>
"""
return HTMLResponse(content=html_code, status_code=200)
# Ruta para la generaci贸n de respuestas
@app.get('/autocomplete')
async def autocomplete(q: str = Query(...)):
global data_and_models_dict, message_history, tokens_history
# Verificar si hay modelos cargados
if 'model' not in data_and_models_dict:
await download_models()
# Cargar el modelo y el tokenizer
model, tokenizer = data_and_models_dict['model']
# Generar tokens de entrada
input_ids = tokenizer.encode(q, return_tensors="pt")
tokens_history.append({"input": input_ids.tolist()}) # Guardar tokens de entrada
# Generar par谩metros aleatorios
top_k = random.randint(0, 50)
top_p = random.uniform(0.8, 1.0)
temperature = random.uniform(0.7, 1.5)
# Generar una respuesta utilizando el modelo
output = model.generate(
input_ids,
max_length=50,
top_k=top_k,
top_p=top_p,
temperature=temperature,
num_return_sequences=1
)
response_text = tokenizer.decode(output[0], skip_special_tokens=True)
# Generar tokens de salida
output_ids = output[0].tolist()
tokens_history.append({"output": output_ids}) # Guardar tokens de salida
# Guardar eos y pad tokens
eos_token = tokenizer.eos_token_id
pad_token = tokenizer.pad_token_id
tokens_history.append({"eos_token": eos_token, "pad_token": pad_token})
# Guardar el mensaje del usuario en el historial
message_history.append(q)
return response_text
# Funci贸n para ejecutar la aplicaci贸n sin reiniciarla
def run_app():
asyncio.run(download_models())
uvicorn.run(app, host='0.0.0.0', port=4443)
# Ejecutar la aplicaci贸n
if __name__ == "__main__":
run_app()