Hhggg / app.py
Yhhxhfh's picture
Update app.py
0111d07 verified
raw
history blame
15.4 kB
import os
import sys
import uvicorn
from fastapi import FastAPI, Query, HTTPException
from fastapi.responses import HTMLResponse
from starlette.middleware.cors import CORSMiddleware
from datasets import load_dataset, list_datasets
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from loguru import logger
import concurrent.futures
import psutil
import asyncio
import torch
from tenacity import retry, stop_after_attempt, wait_fixed
from huggingface_hub import HfApi
from huggingface_hub.utils import RepositoryNotFoundError
from dotenv import load_dotenv
# Cargar variables de entorno
load_dotenv()
# Obtener el token de Hugging Face
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
if not HUGGINGFACE_TOKEN:
logger.error("Hugging Face token not found. Please set the HUGGINGFACE_TOKEN environment variable.")
sys.exit(1)
# Inicializar diccionarios para datasets y ejemplos
datasets_dict = {}
example_usage_list = []
# Configuración de caché
CACHE_DIR = os.path.expanduser("~/.cache/huggingface")
os.makedirs(CACHE_DIR, exist_ok=True)
os.environ["HF_HOME"] = CACHE_DIR
os.environ["HF_TOKEN"] = HUGGINGFACE_TOKEN
pipeline_instance = None # Solo un pipeline
# Flag para indicar si la inicialización está completa
initialization_complete = False
def initialize_model():
global pipeline_instance, initialization_complete
try:
logger.info("Initializing the GPT-2 model and tokenizer.")
base_model_repo = "gpt2" # Puedes elegir variantes como "gpt2-medium", "gpt2-large", etc.
model = AutoModelForCausalLM.from_pretrained(
base_model_repo,
cache_dir=CACHE_DIR,
ignore_mismatched_sizes=True # Ignorar discrepancias de tamaño
)
tokenizer = AutoTokenizer.from_pretrained(base_model_repo, cache_dir=CACHE_DIR)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
pipeline_instance = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
device=0 if torch.cuda.is_available() else -1
)
logger.info("GPT-2 model and tokenizer initialized successfully.")
initialization_complete = True
except Exception as e:
logger.error(f"Error initializing model and tokenizer: {e}", exc_info=True)
sys.exit(1)
@retry(stop=stop_after_attempt(3), wait=wait_fixed(5))
def download_dataset(dataset_name):
try:
logger.info(f"Starting download for dataset: {dataset_name}")
# Eliminado 'trust_remote_code=True' para evitar el error con ParquetConfig
datasets_dict[dataset_name] = load_dataset(dataset_name, cache_dir=CACHE_DIR)
create_example_usage(dataset_name)
except Exception as e:
logger.error(f"Error loading dataset {dataset_name}: {e}", exc_info=True)
raise
def upload_model_to_hub():
try:
api = HfApi()
model_repo = "Yhhxhfh/Hhggg" # Reemplaza con tu repositorio en Hugging Face Hub
try:
api.repo_info(repo_id=model_repo)
logger.info(f"Model repository {model_repo} already exists.")
except RepositoryNotFoundError:
api.create_repo(repo_id=model_repo, private=False, token=HUGGINGFACE_TOKEN)
logger.info(f"Created model repository {model_repo}.")
logger.info(f"Pushing the model and tokenizer to {model_repo}.")
pipeline_instance.model.push_to_hub(model_repo, use_auth_token=HUGGINGFACE_TOKEN)
pipeline_instance.tokenizer.push_to_hub(model_repo, use_auth_token=HUGGINGFACE_TOKEN)
logger.info(f"Successfully pushed the model and tokenizer to {model_repo}.")
except Exception as e:
logger.error(f"Error uploading model to Hugging Face Hub: {e}", exc_info=True)
def create_example_usage(dataset_name):
try:
logger.info(f"Creating example usage for dataset {dataset_name}")
example_prompts = [
"Once upon a time,",
"In a world where AI rules,",
"The future of technology is",
"Explain the concept of",
"Describe a scenario where"
]
examples = []
for prompt in example_prompts:
generated_text = pipeline_instance(prompt, max_length=50, num_return_sequences=1)[0]['generated_text']
examples.append({"prompt": prompt, "response": generated_text})
example_usage_list.append({"dataset_name": dataset_name, "examples": examples})
logger.info(f"Example usage created for dataset {dataset_name}")
except Exception as e:
logger.error(f"Error creating example usage for dataset {dataset_name}: {e}", exc_info=True)
def unify_datasets():
try:
logger.info("Starting to unify datasets")
unified_dataset = None
for dataset in datasets_dict.values():
if unified_dataset is None:
unified_dataset = dataset
else:
unified_dataset = unified_dataset.concatenate(dataset)
datasets_dict['unified'] = unified_dataset
logger.info("Datasets successfully unified.")
except Exception as e:
logger.error(f"Error unifying datasets: {e}", exc_info=True)
# Configuración de concurrencia
cpu_count = psutil.cpu_count(logical=False) or 1
memory_available_mb = psutil.virtual_memory().available / (1024 * 1024)
memory_per_download_mb = 100
memory_available = int(memory_available_mb / memory_per_download_mb)
gpu_count = torch.cuda.device_count()
max_concurrent_downloads = min(cpu_count, memory_available, gpu_count * 2 if gpu_count else cpu_count)
max_concurrent_downloads = max(1, max_concurrent_downloads)
max_concurrent_downloads = min(10, max_concurrent_downloads)
logger.info(f"Using up to {max_concurrent_downloads} concurrent workers for downloading datasets.")
executor = concurrent.futures.ThreadPoolExecutor(max_workers=max_concurrent_downloads)
async def download_and_process_datasets():
dataset_names = list_datasets()
logger.info(f"Found {len(dataset_names)} datasets to download.")
loop = asyncio.get_event_loop()
tasks = []
for dataset_name in dataset_names:
task = loop.run_in_executor(executor, download_dataset, dataset_name)
tasks.append(task)
await asyncio.gather(*tasks)
unify_datasets()
upload_model_to_hub()
# Inicializar FastAPI con lifespan events para evitar DeprecationWarning
app = FastAPI()
# Configuración de CORS
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # Para mayor seguridad, especifica los orígenes permitidos
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"]
)
message_history = []
@app.on_event("startup")
async def startup_event():
logger.info("Application startup initiated.")
loop = asyncio.get_event_loop()
# Iniciar tareas en segundo plano sin bloquear el servidor
asyncio.create_task(run_initialization(loop))
logger.info("Startup tasks initiated.")
async def run_initialization(loop):
try:
# Inicializar el modelo en un hilo separado
await loop.run_in_executor(None, initialize_model)
# Descargar y procesar datasets
await download_and_process_datasets()
logger.info("All startup tasks completed successfully.")
except Exception as e:
logger.error(f"Error during startup tasks: {e}", exc_info=True)
@app.get('/')
async def index():
html_code = """
<!DOCTYPE html>
<html lang="en">
<head>
<!-- Existing head content -->
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>GPT-2 Chatbot</title>
<!-- Bootstrap CSS for a professional interface -->
<link href="https://cdn.jsdelivr.net/npm/[email protected]/dist/css/bootstrap.min.css" rel="stylesheet">
<style>
body {
background-color: #f8f9fa;
font-family: Arial, sans-serif;
}
.container {
max-width: 800px;
margin-top: 50px;
}
.chat-container {
background-color: #ffffff;
border-radius: 10px;
box-shadow: 0 0 15px rgba(0,0,0,0.2);
padding: 20px;
display: flex;
flex-direction: column;
height: 600px;
}
.chat-box {
flex: 1;
overflow-y: auto;
margin-bottom: 15px;
}
.chat-input {
width: 100%;
padding: 10px;
border: 1px solid #ced4da;
border-radius: 5px;
font-size: 16px;
}
.chat-input:focus {
outline: none;
border-color: #80bdff;
box-shadow: 0 0 5px rgba(0,123,255,0.5);
}
.user-message {
text-align: right;
margin-bottom: 10px;
}
.user-message .message {
display: inline-block;
background-color: #007bff;
color: #fff;
padding: 10px 15px;
border-radius: 15px;
max-width: 70%;
}
.bot-message {
text-align: left;
margin-bottom: 10px;
}
.bot-message .message {
display: inline-block;
background-color: #6c757d;
color: #fff;
padding: 10px 15px;
border-radius: 15px;
max-width: 70%;
}
.toggle-history {
text-align: center;
cursor: pointer;
color: #007bff;
margin-top: 10px;
}
.history-container {
display: none;
background-color: #ffffff;
border-radius: 10px;
box-shadow: 0 0 15px rgba(0,0,0,0.2);
padding: 20px;
margin-top: 20px;
max-height: 300px;
overflow-y: auto;
}
</style>
</head>
<body>
<div class="container">
<h1 class="text-center mb-4">GPT-2 Chatbot</h1>
<div class="chat-container">
<div class="chat-box" id="chat-box">
</div>
<input type="text" class="chat-input" id="user-input" placeholder="Type your message..." onkeypress="handleKeyPress(event)">
<button class="btn btn-primary mt-3" onclick="sendMessage()">Send</button>
<div class="toggle-history mt-3" onclick="toggleHistory()">Toggle History</div>
<div class="history-container" id="history-container">
<h3>Chat History</h3>
<div id="history-content"></div>
</div>
</div>
</div>
<!-- Bootstrap JS (optional) -->
<script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/js/bootstrap.bundle.min.js"></script>
<script>
function toggleHistory() {
const historyContainer = document.getElementById('history-container');
historyContainer.classList.toggle('d-none');
}
function saveMessage(sender, message) {
const historyContent = document.getElementById('history-content');
const messageElement = document.createElement('div');
messageElement.className = sender === 'user' ? 'user-message' : 'bot-message';
messageElement.innerHTML = `<div class="message">${message}</div>`;
historyContent.appendChild(messageElement);
}
function appendMessage(sender, message) {
const chatBox = document.getElementById('chat-box');
const messageElement = document.createElement('div');
messageElement.className = sender === 'user' ? 'user-message' : 'bot-message';
messageElement.innerHTML = `<div class="message">${message}</div>`;
chatBox.appendChild(messageElement);
chatBox.scrollTop = chatBox.scrollHeight;
}
function handleKeyPress(event) {
if (event.key === 'Enter') {
event.preventDefault();
sendMessage();
}
}
function sendMessage() {
const userInput = document.getElementById('user-input');
const userMessage = userInput.value.trim();
if (userMessage === '') return;
appendMessage('user', userMessage);
saveMessage('user', userMessage);
userInput.value = '';
fetch(`/autocomplete?q=${encodeURIComponent(userMessage)}`)
.then(response => {
if (response.status === 503) {
return response.json().then(data => { throw new Error(data.detail); });
}
return response.json();
})
.then(data => {
const botMessages = data.result;
botMessages.forEach(message => {
appendMessage('bot', message);
saveMessage('bot', message);
});
})
.catch(error => {
console.error('Error:', error);
appendMessage('bot', "Sorry, I'm not available right now. Please try again later.");
saveMessage('bot', "Sorry, I'm not available right now. Please try again later.");
});
}
function retryLastMessage() {
const lastUserMessage = document.querySelector('.user-message:last-of-type .message');
if (lastUserMessage) {
const userInput = document.getElementById('user-input');
userInput.value = lastUserMessage.innerText;
sendMessage();
}
}
</script>
</body>
</html>
"""
return HTMLResponse(content=html_code, status_code=200)
@app.get('/autocomplete')
async def autocomplete(q: str = Query(..., title='query')):
global message_history, pipeline_instance, initialization_complete
message_history.append(('user', q))
if not initialization_complete:
logger.warning("Model is not initialized yet.")
raise HTTPException(status_code=503, detail="Model is not initialized yet. Please try again later.")
try:
response = pipeline_instance(q, max_length=50, num_return_sequences=1)[0]['generated_text']
logger.debug(f"Successfully autocomplete, q:{q}, res:{response}")
return {"result": [response]}
except Exception as e:
logger.error(f"Ignored error in autocomplete: {e}", exc_info=True)
return {"result": ["Sorry, I encountered an error processing your request."]}
if __name__ == '__main__':
port = 7860 # Configurar FastAPI para que inicie en el puerto 7860
uvicorn.run(app=app, host='0.0.0.0', port=port)