Spaces:
Running
on
Zero
Running
on
Zero
File size: 23,205 Bytes
0f41ba2 1908f03 b149af8 3951932 6b78472 1908f03 6b78472 0f41ba2 c05134c eec0975 776d5b3 2fc2bf3 9dbb75f 0f41ba2 c05134c eec0975 776d5b3 eec0975 776d5b3 eec0975 776d5b3 eec0975 0f41ba2 2fc2bf3 0f41ba2 2fc2bf3 0f41ba2 2fc2bf3 0f41ba2 2fc2bf3 0f41ba2 2fc2bf3 0f41ba2 2fc2bf3 0f41ba2 fcc9ef6 0f41ba2 fcc9ef6 0f41ba2 776d5b3 0f41ba2 49f568d 776d5b3 d7e594b 0f41ba2 b266eca 3c7a85f f6e0da0 d7e594b f6e0da0 0f41ba2 b266eca 3c7a85f b266eca 0f41ba2 b266eca 0f41ba2 49f568d 776d5b3 0f41ba2 b266eca 3c7a85f b266eca 3c7a85f b266eca 0f41ba2 b266eca 0f41ba2 b266eca 0f41ba2 b266eca 0f41ba2 b266eca 0f41ba2 b266eca 0f41ba2 49f568d 0f41ba2 49f568d 0f41ba2 49f568d 0f41ba2 b266eca 0f41ba2 b266eca 0f41ba2 b266eca 0f41ba2 a0a4b6f 0f41ba2 b266eca 0f41ba2 f6e0da0 0f41ba2 b266eca 12b3742 b266eca 0f41ba2 b266eca 0f41ba2 b266eca 0f41ba2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 |
import os
from typing import Union
# this is a HF Spaces specific hack for ZeroGPU
import spaces
import sys
import torch
from shap_e.models.transmitter.base import Transmitter, VectorDecoder
import torch
import torch.nn as nn
import gradio as gr
import numpy as np
from PIL import Image
from omegaconf import OmegaConf
from pytorch_lightning import seed_everything
from huggingface_hub import hf_hub_download
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler
from einops import rearrange
from shap_e.diffusion.sample import sample_latents
from shap_e.diffusion.gaussian_diffusion import diffusion_from_config
from shap_e.models.download import load_model, load_config
from shap_e.util.notebooks import create_pan_cameras
from shap_e.models.nn.camera import DifferentiableCameraBatch, DifferentiableProjectiveCamera
import math
import time
from requests.exceptions import ReadTimeout, ConnectionError
from shap_e.util.collections import AttrDict
from src.utils.train_util import instantiate_from_config
from src.utils.camera_util import (
FOV_to_intrinsics,
get_zero123plus_input_cameras,
get_circular_camera_poses,
spherical_camera_pose
)
from src.utils.mesh_util import save_obj, save_glb
from src.utils.infer_util import remove_background, resize_foreground
def decode_latent_images(
xm: Union[Transmitter, VectorDecoder],
latent: torch.Tensor,
cameras: DifferentiableCameraBatch,
rendering_mode: str = "stf",
params = None,
background_color: torch.Tensor = torch.tensor([255.0, 255.0, 255.0], dtype=torch.float32),
):
params = params if params is not None else (xm.encoder if isinstance(xm, Transmitter) else xm).bottleneck_to_params(
latent[None]
)
params = xm.renderer.update(params)
decoded = xm.renderer.render_views(
AttrDict(cameras=cameras),
params=params,
options=AttrDict(rendering_mode=rendering_mode, render_with_direction=False),
)
bg_color = background_color.to(decoded.channels.device)
images = bg_color * decoded.transmittance + (1 - decoded.transmittance) * decoded.channels
# arr = decoded.channels.clamp(0, 255).to(torch.uint8)[0].cpu().numpy()
return images
def create_custom_cameras(size: int, device: torch.device, azimuths: list, elevations: list,
fov_degrees: float, distance: float) -> DifferentiableCameraBatch:
# Object is in a 2x2x2 bounding box (-1 to 1 in each dimension)
object_diagonal = distance # Correct diagonal calculation for the cube
# Calculate radius based on object size and FOV
fov_radians = math.radians(fov_degrees)
radius = (object_diagonal / 2) / math.tan(fov_radians / 2) # Correct radius calculation
origins = []
xs = []
ys = []
zs = []
for azimuth, elevation in zip(azimuths, elevations):
azimuth_rad = np.radians(azimuth-90)
elevation_rad = np.radians(elevation)
# Calculate camera position
x = radius * np.cos(elevation_rad) * np.cos(azimuth_rad)
y = radius * np.cos(elevation_rad) * np.sin(azimuth_rad)
z = radius * np.sin(elevation_rad)
origin = np.array([x, y, z])
# Calculate camera orientation
z_axis = -origin / np.linalg.norm(origin) # Point towards center
x_axis = np.array([-np.sin(azimuth_rad), np.cos(azimuth_rad), 0])
y_axis = np.cross(z_axis, x_axis)
origins.append(origin)
zs.append(z_axis)
xs.append(x_axis)
ys.append(y_axis)
return DifferentiableCameraBatch(
shape=(1, len(origins)),
flat_camera=DifferentiableProjectiveCamera(
origin=torch.from_numpy(np.stack(origins, axis=0)).float().to(device),
x=torch.from_numpy(np.stack(xs, axis=0)).float().to(device),
y=torch.from_numpy(np.stack(ys, axis=0)).float().to(device),
z=torch.from_numpy(np.stack(zs, axis=0)).float().to(device),
width=size,
height=size,
x_fov=fov_radians,
y_fov=fov_radians,
),
)
def load_models():
"""Initialize and load all required models"""
config = OmegaConf.load('configs/instant-nerf-large-best.yaml')
model_config = config.model_config
infer_config = config.infer_config
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Load diffusion pipeline with retry logic
print('Loading diffusion pipeline...')
max_retries = 3
retry_delay = 5
for attempt in range(max_retries):
try:
pipeline = DiffusionPipeline.from_pretrained(
"sudo-ai/zero123plus-v1.2",
custom_pipeline="zero123plus",
torch_dtype=torch.float16,
local_files_only=False,
resume_download=True,
)
break
except (ReadTimeout, ConnectionError) as e:
if attempt == max_retries - 1:
raise Exception(f"Failed to download pipeline after {max_retries} attempts: {str(e)}")
print(f"Download attempt {attempt + 1} failed, retrying in {retry_delay} seconds...")
time.sleep(retry_delay)
retry_delay *= 2 # Exponential backoff
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
pipeline.scheduler.config, timestep_spacing='trailing'
)
# Modify UNet to handle 8 input channels instead of 4
in_channels = 8
out_channels = pipeline.unet.conv_in.out_channels
pipeline.unet.register_to_config(in_channels=in_channels)
with torch.no_grad():
new_conv_in = nn.Conv2d(
in_channels, out_channels, pipeline.unet.conv_in.kernel_size,
pipeline.unet.conv_in.stride, pipeline.unet.conv_in.padding
)
new_conv_in.weight.zero_()
new_conv_in.weight[:, :4, :, :].copy_(pipeline.unet.conv_in.weight)
pipeline.unet.conv_in = new_conv_in
# Load custom UNet with retry logic
print('Loading custom UNet...')
for attempt in range(max_retries):
try:
pipeline.unet = pipeline.unet.from_pretrained(
"YiftachEde/Sharp-It",
local_files_only=False,
resume_download=True,
).to(torch.float16)
break
except (ReadTimeout, ConnectionError) as e:
if attempt == max_retries - 1:
raise Exception(f"Failed to download UNet after {max_retries} attempts: {str(e)}")
print(f"Download attempt {attempt + 1} failed, retrying in {retry_delay} seconds...")
time.sleep(retry_delay)
retry_delay *= 2
pipeline = pipeline.to(device).to(torch_dtype=torch.float16)
# Load reconstruction model with retry logic
print('Loading reconstruction model...')
model = instantiate_from_config(model_config)
for attempt in range(max_retries):
try:
model_path = hf_hub_download(
repo_id="TencentARC/InstantMesh",
filename="instant_nerf_large.ckpt",
repo_type="model",
local_files_only=False,
resume_download=True,
cache_dir="model_cache" # Use a specific cache directory
)
break
except (ReadTimeout, ConnectionError) as e:
if attempt == max_retries - 1:
raise Exception(f"Failed to download model after {max_retries} attempts: {str(e)}")
print(f"Download attempt {attempt + 1} failed, retrying in {retry_delay} seconds...")
time.sleep(retry_delay)
retry_delay *= 2
state_dict = torch.load(model_path, map_location='cpu')['state_dict']
state_dict = {k[14:]: v for k, v in state_dict.items()
if k.startswith('lrm_generator.') and 'source_camera' not in k}
model.load_state_dict(state_dict, strict=True)
model = model.to(device)
model.eval()
return pipeline, model, infer_config
@spaces.GPU(duration=20)
def process_images(input_images, prompt, steps=75, guidance_scale=7.5, pipeline=None):
"""Process input images and run refinement"""
device = pipeline.device
if isinstance(input_images, list):
if len(input_images) == 1:
# Check if this is a pre-arranged layout
img = Image.open(input_images[0].name).convert('RGB')
if img.size == (640, 960):
# This is already a layout, use it directly
input_image = img
else:
# Single view - need 6 copies
img = img.resize((320, 320))
img_array = np.array(img) / 255.0
images = [img_array] * 6
images = np.stack(images)
# Convert to tensor and create layout
images = torch.from_numpy(images).float()
images = images.permute(0, 3, 1, 2)
images = images.reshape(3, 2, 3, 320, 320)
images = images.permute(0, 2, 3, 1, 4)
images = images.reshape(3, 3, 320, 640)
images = images.reshape(1, 3, 960, 640)
# Convert back to PIL
images = images.permute(0, 2, 3, 1)[0]
images = (images.numpy() * 255).astype(np.uint8)
input_image = Image.fromarray(images)
else:
# Multiple individual views
images = []
for img_file in input_images:
img = Image.open(img_file.name).convert('RGB')
img = img.resize((320, 320))
img = np.array(img) / 255.0
images.append(img)
# Pad to 6 images if needed
while len(images) < 6:
images.append(np.zeros_like(images[0]))
images = np.stack(images[:6])
# Convert to tensor and create layout
images = torch.from_numpy(images).float()
images = images.permute(0, 3, 1, 2)
images = images.reshape(3, 2, 3, 320, 320)
images = images.permute(0, 2, 3, 1, 4)
images = images.reshape(3, 3, 320, 640)
images = images.reshape(1, 3, 960, 640)
# Convert back to PIL
images = images.permute(0, 2, 3, 1)[0]
images = (images.numpy() * 255).astype(np.uint8)
input_image = Image.fromarray(images)
else:
raise ValueError("Expected a list of images")
# Generate refined output
output = pipeline.refine(
input_image,
prompt=prompt,
num_inference_steps=int(steps),
guidance_scale=guidance_scale
).images[0]
return output, input_image
@spaces.GPU(duration=20)
def create_mesh(refined_image, model, infer_config):
"""Generate mesh from refined image"""
# Convert PIL image to tensor
image = np.array(refined_image) / 255.0
image = torch.from_numpy(image).float().permute(2, 0, 1)
# Reshape to 6 views
image = image.reshape(3, 960, 640)
image = image.reshape(3, 3, 320, 640)
image = image.permute(1, 0, 2, 3)
image = image.reshape(3, 3, 320, 2, 320)
image = image.permute(0, 3, 1, 2, 4)
image = image.reshape(6, 3, 320, 320)
# Add batch dimension
image = image.unsqueeze(0)
input_cameras = get_zero123plus_input_cameras(batch_size=1, radius=4.0).to("cuda")
image = image.to("cuda")
with torch.no_grad():
planes = model.forward_planes(image, input_cameras)
mesh_out = model.extract_mesh(planes, **infer_config)
vertices, faces, vertex_colors = mesh_out
return vertices, faces, vertex_colors
class ShapERenderer:
def __init__(self, device):
print("Initializing Shap-E models...")
self.device = device
torch.cuda.empty_cache() # Clear GPU memory before loading
self.xm = load_model('transmitter', device=self.device)
self.model = load_model('text300M', device=self.device)
self.diffusion = diffusion_from_config(load_config('diffusion'))
print("Shap-E models initialized!")
@spaces.GPU(duration=80)
def generate_views(self, prompt, guidance_scale=15.0, num_steps=64):
try:
torch.cuda.empty_cache() # Clear GPU memory before generation
# Generate latents using the text-to-3D model
batch_size = 1
guidance_scale = float(guidance_scale)
with torch.amp.autocast('cuda'): # Use automatic mixed precision
# Generate latents directly without nested spaces.GPU context
latents = sample_latents(
batch_size=batch_size,
model=self.model,
diffusion=self.diffusion,
guidance_scale=guidance_scale,
model_kwargs=dict(texts=[prompt] * batch_size),
progress=True,
clip_denoised=True,
use_fp16=True,
use_karras=True,
karras_steps=num_steps,
sigma_min=1e-3,
sigma_max=160,
s_churn=0,
)
# Render the 6 views we need with specific viewing angles
size = 320 # Size of each rendered image
images = []
# Define our 6 specific camera positions to match refine.py
azimuths = [30, 90, 150, 210, 270, 330]
elevations = [20, -10, 20, -10, 20, -10]
for i, (azimuth, elevation) in enumerate(zip(azimuths, elevations)):
cameras = create_custom_cameras(size, self.device, azimuths=[azimuth], elevations=[elevation], fov_degrees=30, distance=3.0)
with torch.amp.autocast('cuda'): # Use automatic mixed precision
rendered_image = decode_latent_images(
self.xm,
latents[0],
cameras=cameras,
rendering_mode='stf'
)
images.append(rendered_image[0])
torch.cuda.empty_cache() # Clear GPU memory after each view
# Convert images to uint8
images = [np.array(image) for image in images]
# Create 2x3 grid layout (640x960)
layout = np.zeros((960, 640, 3), dtype=np.uint8)
for i, img in enumerate(images):
row = i // 2
col = i % 2
layout[row*320:(row+1)*320, col*320:(col+1)*320] = img
return Image.fromarray(layout), images
except Exception as e:
print(f"Error in generate_views: {e}")
torch.cuda.empty_cache() # Clear GPU memory on error
raise
class RefinerInterface:
def __init__(self):
print("Initializing InstantMesh models...")
torch.cuda.empty_cache() # Clear GPU memory before loading
self.pipeline, self.model, self.infer_config = load_models()
print("InstantMesh models initialized!")
def refine_model(self, input_image, prompt, steps=75, guidance_scale=7.5):
"""Main refinement function"""
try:
torch.cuda.empty_cache() # Clear GPU memory before processing
# Process image and get refined output
input_image = Image.fromarray(input_image)
# Rotate the layout if needed (if we're getting a 640x960 layout but pipeline expects 960x640)
if input_image.width == 960 and input_image.height == 640:
# Transpose the image to get 960x640 layout
input_array = np.array(input_image)
new_layout = np.zeros((960, 640, 3), dtype=np.uint8)
# Rearrange from 2x3 to 3x2
for i in range(6):
src_row = i // 3
src_col = i % 3
dst_row = i // 2
dst_col = i % 2
new_layout[dst_row*320:(dst_row+1)*320, dst_col*320:(dst_col+1)*320] = \
input_array[src_row*320:(src_row+1)*320, src_col*320:(src_col+1)*320]
input_image = Image.fromarray(new_layout)
# Process with the pipeline (expects 960x640)
with torch.amp.autocast('cuda'): # Use automatic mixed precision
refined_output_960x640 = self.pipeline.refine(
input_image,
prompt=prompt,
num_inference_steps=int(steps),
guidance_scale=guidance_scale
).images[0]
torch.cuda.empty_cache() # Clear GPU memory after refinement
# Generate mesh using the 960x640 format
with torch.amp.autocast('cuda'): # Use automatic mixed precision
vertices, faces, vertex_colors = create_mesh(
refined_output_960x640,
self.model,
self.infer_config
)
torch.cuda.empty_cache() # Clear GPU memory after mesh generation
# Save temporary mesh file
os.makedirs("temp", exist_ok=True)
temp_obj = os.path.join("temp", "refined_mesh.obj")
save_obj(vertices, faces, vertex_colors, temp_obj)
# Convert the output to 640x960 for display
refined_array = np.array(refined_output_960x640)
display_layout = np.zeros((960, 640, 3), dtype=np.uint8)
# Rearrange from 3x2 to 2x3
for i in range(6):
src_row = i // 2
src_col = i % 2
dst_row = i // 2
dst_col = i % 2
display_layout[dst_row*320:(dst_row+1)*320, dst_col*320:(dst_col+1)*320] = \
refined_array[src_row*320:(src_row+1)*320, src_col*320:(src_col+1)*320]
refined_output_640x960 = Image.fromarray(display_layout)
return refined_output_640x960, temp_obj
except Exception as e:
print(f"Error in refine_model: {e}")
torch.cuda.empty_cache() # Clear GPU memory on error
raise
def create_demo():
print("Initializing models...")
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Initialize models at startup
shap_e = ShapERenderer(device)
refiner = RefinerInterface()
print("All models initialized!")
with gr.Blocks() as demo:
gr.Markdown("# Shap-E to InstantMesh Pipeline")
# First row: Controls
with gr.Row():
with gr.Column():
# Shap-E inputs
shape_prompt = gr.Textbox(
label="Shap-E Prompt",
placeholder="Enter text to generate initial 3D model..."
)
shape_guidance = gr.Slider(
minimum=1,
maximum=30,
value=15.0,
label="Shap-E Guidance Scale"
)
shape_steps = gr.Slider(
minimum=16,
maximum=128,
value=64,
step=16,
label="Shap-E Steps"
)
generate_btn = gr.Button("Generate Views")
with gr.Column():
# Refinement inputs
refine_prompt = gr.Textbox(
label="Refinement Prompt",
placeholder="Enter prompt to guide refinement..."
)
refine_steps = gr.Slider(
minimum=30,
maximum=100,
value=75,
step=1,
label="Refinement Steps"
)
refine_guidance = gr.Slider(
minimum=1,
maximum=20,
value=7.5,
label="Refinement Guidance Scale"
)
refine_btn = gr.Button("Refine")
error_output = gr.Textbox(label="Status/Error Messages", interactive=False)
# Second row: Image panels side by side
with gr.Row():
# Outputs - Images side by side
shape_output = gr.Image(
label="Generated Views",
width=640,
height=960
)
refined_output = gr.Image(
label="Refined Output",
width=640,
height=960
)
# Third row: 3D mesh panel below
with gr.Row():
# 3D mesh centered
mesh_output = gr.Model3D(
label="3D Mesh",
clear_color=[1.0, 1.0, 1.0, 1.0],
)
# Set up event handlers
@spaces.GPU(duration=100) # Add GPU decorator to the generate function
def generate(prompt, guidance_scale, num_steps):
try:
torch.cuda.empty_cache() # Clear GPU memory before starting
with torch.no_grad():
layout, _ = shap_e.generate_views(prompt, guidance_scale, num_steps)
return layout, None # Return None for error message
except Exception as e:
torch.cuda.empty_cache() # Clear GPU memory on error
error_msg = f"Error during generation: {str(e)}"
print(error_msg)
return None, error_msg
@spaces.GPU(duration=20)
def refine(input_image, prompt, steps, guidance_scale):
try:
torch.cuda.empty_cache() # Clear GPU memory before starting
refined_img, mesh_path = refiner.refine_model(
input_image,
prompt,
steps,
guidance_scale
)
return refined_img, mesh_path, None # Return None for error message
except Exception as e:
torch.cuda.empty_cache() # Clear GPU memory on error
error_msg = f"Error during refinement: {str(e)}"
print(error_msg)
return None, None, error_msg
generate_btn.click(
fn=generate,
inputs=[shape_prompt, shape_guidance, shape_steps],
outputs=[shape_output, error_output]
)
refine_btn.click(
fn=refine,
inputs=[shape_output, refine_prompt, refine_steps, refine_guidance],
outputs=[refined_output, mesh_output, error_output]
)
return demo
if __name__ == "__main__":
demo = create_demo()
demo.launch(share=True) |