Spaces:
Build error
Build error
Create dataset/mesh_util.py
Browse files- lib/dataset/mesh_util.py +911 -0
lib/dataset/mesh_util.py
ADDED
@@ -0,0 +1,911 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
|
4 |
+
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
|
5 |
+
# holder of all proprietary rights on this computer program.
|
6 |
+
# You can only use this computer program if you have closed
|
7 |
+
# a license agreement with MPG or you get the right to use the computer
|
8 |
+
# program from someone who is authorized to grant you that right.
|
9 |
+
# Any use of the computer program without a valid license is prohibited and
|
10 |
+
# liable to prosecution.
|
11 |
+
#
|
12 |
+
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
|
13 |
+
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
|
14 |
+
# for Intelligent Systems. All rights reserved.
|
15 |
+
#
|
16 |
+
# Contact: [email protected]
|
17 |
+
|
18 |
+
import numpy as np
|
19 |
+
import cv2
|
20 |
+
import pymeshlab
|
21 |
+
import torch
|
22 |
+
import torchvision
|
23 |
+
import trimesh
|
24 |
+
from pytorch3d.io import load_obj
|
25 |
+
from termcolor import colored
|
26 |
+
from scipy.spatial import cKDTree
|
27 |
+
|
28 |
+
from pytorch3d.structures import Meshes
|
29 |
+
import torch.nn.functional as F
|
30 |
+
|
31 |
+
import os
|
32 |
+
from lib.pymaf.utils.imutils import uncrop
|
33 |
+
from lib.common.render_utils import Pytorch3dRasterizer, face_vertices
|
34 |
+
|
35 |
+
from pytorch3d.renderer.mesh import rasterize_meshes
|
36 |
+
from PIL import Image, ImageFont, ImageDraw
|
37 |
+
from kaolin.ops.mesh import check_sign
|
38 |
+
from kaolin.metrics.trianglemesh import point_to_mesh_distance
|
39 |
+
|
40 |
+
from pytorch3d.loss import (
|
41 |
+
mesh_laplacian_smoothing,
|
42 |
+
mesh_normal_consistency
|
43 |
+
)
|
44 |
+
|
45 |
+
from huggingface_hub import hf_hub_download, hf_hub_url, cached_download
|
46 |
+
|
47 |
+
def rot6d_to_rotmat(x):
|
48 |
+
"""Convert 6D rotation representation to 3x3 rotation matrix.
|
49 |
+
Based on Zhou et al., "On the Continuity of Rotation Representations in Neural Networks", CVPR 2019
|
50 |
+
Input:
|
51 |
+
(B,6) Batch of 6-D rotation representations
|
52 |
+
Output:
|
53 |
+
(B,3,3) Batch of corresponding rotation matrices
|
54 |
+
"""
|
55 |
+
x = x.view(-1, 3, 2)
|
56 |
+
a1 = x[:, :, 0]
|
57 |
+
a2 = x[:, :, 1]
|
58 |
+
b1 = F.normalize(a1)
|
59 |
+
b2 = F.normalize(a2 - torch.einsum("bi,bi->b", b1, a2).unsqueeze(-1) * b1)
|
60 |
+
b3 = torch.cross(b1, b2)
|
61 |
+
return torch.stack((b1, b2, b3), dim=-1)
|
62 |
+
|
63 |
+
|
64 |
+
def tensor2variable(tensor, device):
|
65 |
+
# [1,23,3,3]
|
66 |
+
return torch.tensor(tensor, device=device, requires_grad=True)
|
67 |
+
|
68 |
+
|
69 |
+
def normal_loss(vec1, vec2):
|
70 |
+
|
71 |
+
# vec1_mask = vec1.sum(dim=1) != 0.0
|
72 |
+
# vec2_mask = vec2.sum(dim=1) != 0.0
|
73 |
+
# union_mask = vec1_mask * vec2_mask
|
74 |
+
vec_sim = torch.nn.CosineSimilarity(dim=1, eps=1e-6)(vec1, vec2)
|
75 |
+
# vec_diff = ((vec_sim-1.0)**2)[union_mask].mean()
|
76 |
+
vec_diff = ((vec_sim-1.0)**2).mean()
|
77 |
+
|
78 |
+
return vec_diff
|
79 |
+
|
80 |
+
|
81 |
+
class GMoF(torch.nn.Module):
|
82 |
+
def __init__(self, rho=1):
|
83 |
+
super(GMoF, self).__init__()
|
84 |
+
self.rho = rho
|
85 |
+
|
86 |
+
def extra_repr(self):
|
87 |
+
return 'rho = {}'.format(self.rho)
|
88 |
+
|
89 |
+
def forward(self, residual):
|
90 |
+
dist = torch.div(residual, residual + self.rho ** 2)
|
91 |
+
return self.rho ** 2 * dist
|
92 |
+
|
93 |
+
|
94 |
+
def mesh_edge_loss(meshes, target_length: float = 0.0):
|
95 |
+
"""
|
96 |
+
Computes mesh edge length regularization loss averaged across all meshes
|
97 |
+
in a batch. Each mesh contributes equally to the final loss, regardless of
|
98 |
+
the number of edges per mesh in the batch by weighting each mesh with the
|
99 |
+
inverse number of edges. For example, if mesh 3 (out of N) has only E=4
|
100 |
+
edges, then the loss for each edge in mesh 3 should be multiplied by 1/E to
|
101 |
+
contribute to the final loss.
|
102 |
+
|
103 |
+
Args:
|
104 |
+
meshes: Meshes object with a batch of meshes.
|
105 |
+
target_length: Resting value for the edge length.
|
106 |
+
|
107 |
+
Returns:
|
108 |
+
loss: Average loss across the batch. Returns 0 if meshes contains
|
109 |
+
no meshes or all empty meshes.
|
110 |
+
"""
|
111 |
+
if meshes.isempty():
|
112 |
+
return torch.tensor(
|
113 |
+
[0.0], dtype=torch.float32, device=meshes.device, requires_grad=True
|
114 |
+
)
|
115 |
+
|
116 |
+
N = len(meshes)
|
117 |
+
edges_packed = meshes.edges_packed() # (sum(E_n), 3)
|
118 |
+
verts_packed = meshes.verts_packed() # (sum(V_n), 3)
|
119 |
+
edge_to_mesh_idx = meshes.edges_packed_to_mesh_idx() # (sum(E_n), )
|
120 |
+
num_edges_per_mesh = meshes.num_edges_per_mesh() # N
|
121 |
+
|
122 |
+
# Determine the weight for each edge based on the number of edges in the
|
123 |
+
# mesh it corresponds to.
|
124 |
+
# TODO (nikhilar) Find a faster way of computing the weights for each edge
|
125 |
+
# as this is currently a bottleneck for meshes with a large number of faces.
|
126 |
+
weights = num_edges_per_mesh.gather(0, edge_to_mesh_idx)
|
127 |
+
weights = 1.0 / weights.float()
|
128 |
+
|
129 |
+
verts_edges = verts_packed[edges_packed]
|
130 |
+
v0, v1 = verts_edges.unbind(1)
|
131 |
+
loss = ((v0 - v1).norm(dim=1, p=2) - target_length) ** 2.0
|
132 |
+
loss_vertex = loss * weights
|
133 |
+
# loss_outlier = torch.topk(loss, 100)[0].mean()
|
134 |
+
# loss_all = (loss_vertex.sum() + loss_outlier.mean()) / N
|
135 |
+
loss_all = loss_vertex.sum() / N
|
136 |
+
|
137 |
+
return loss_all
|
138 |
+
|
139 |
+
|
140 |
+
def remesh(obj_path, perc, device):
|
141 |
+
|
142 |
+
ms = pymeshlab.MeshSet()
|
143 |
+
ms.load_new_mesh(obj_path)
|
144 |
+
ms.laplacian_smooth()
|
145 |
+
ms.remeshing_isotropic_explicit_remeshing(
|
146 |
+
targetlen=pymeshlab.Percentage(perc), adaptive=True)
|
147 |
+
ms.save_current_mesh(obj_path.replace("recon", "remesh"))
|
148 |
+
polished_mesh = trimesh.load_mesh(obj_path.replace("recon", "remesh"))
|
149 |
+
verts_pr = torch.tensor(polished_mesh.vertices).float().unsqueeze(0).to(device)
|
150 |
+
faces_pr = torch.tensor(polished_mesh.faces).long().unsqueeze(0).to(device)
|
151 |
+
|
152 |
+
return verts_pr, faces_pr
|
153 |
+
|
154 |
+
|
155 |
+
def possion(mesh, obj_path):
|
156 |
+
|
157 |
+
mesh.export(obj_path)
|
158 |
+
ms = pymeshlab.MeshSet()
|
159 |
+
ms.load_new_mesh(obj_path)
|
160 |
+
ms.surface_reconstruction_screened_poisson(depth=10)
|
161 |
+
ms.set_current_mesh(1)
|
162 |
+
ms.save_current_mesh(obj_path)
|
163 |
+
|
164 |
+
return trimesh.load(obj_path)
|
165 |
+
|
166 |
+
|
167 |
+
def get_mask(tensor, dim):
|
168 |
+
|
169 |
+
mask = torch.abs(tensor).sum(dim=dim, keepdims=True) > 0.0
|
170 |
+
mask = mask.type_as(tensor)
|
171 |
+
|
172 |
+
return mask
|
173 |
+
|
174 |
+
|
175 |
+
def blend_rgb_norm(rgb, norm, mask):
|
176 |
+
|
177 |
+
# [0,0,0] or [127,127,127] should be marked as mask
|
178 |
+
final = rgb * (1-mask) + norm * (mask)
|
179 |
+
|
180 |
+
return final.astype(np.uint8)
|
181 |
+
|
182 |
+
|
183 |
+
def unwrap(image, data):
|
184 |
+
|
185 |
+
img_uncrop = uncrop(np.array(Image.fromarray(image).resize(data['uncrop_param']['box_shape'][:2])),
|
186 |
+
data['uncrop_param']['center'],
|
187 |
+
data['uncrop_param']['scale'],
|
188 |
+
data['uncrop_param']['crop_shape'])
|
189 |
+
|
190 |
+
img_orig = cv2.warpAffine(img_uncrop,
|
191 |
+
np.linalg.inv(data['uncrop_param']['M'])[:2, :],
|
192 |
+
data['uncrop_param']['ori_shape'][::-1][1:],
|
193 |
+
flags=cv2.INTER_CUBIC)
|
194 |
+
|
195 |
+
return img_orig
|
196 |
+
|
197 |
+
|
198 |
+
# Losses to smooth / regularize the mesh shape
|
199 |
+
def update_mesh_shape_prior_losses(mesh, losses):
|
200 |
+
|
201 |
+
# and (b) the edge length of the predicted mesh
|
202 |
+
losses["edge"]['value'] = mesh_edge_loss(mesh)
|
203 |
+
# mesh normal consistency
|
204 |
+
losses["nc"]['value'] = mesh_normal_consistency(mesh)
|
205 |
+
# mesh laplacian smoothing
|
206 |
+
losses["laplacian"]['value'] = mesh_laplacian_smoothing(
|
207 |
+
mesh, method="uniform")
|
208 |
+
|
209 |
+
|
210 |
+
def rename(old_dict, old_name, new_name):
|
211 |
+
new_dict = {}
|
212 |
+
for key, value in zip(old_dict.keys(), old_dict.values()):
|
213 |
+
new_key = key if key != old_name else new_name
|
214 |
+
new_dict[new_key] = old_dict[key]
|
215 |
+
return new_dict
|
216 |
+
|
217 |
+
|
218 |
+
def load_checkpoint(model, cfg):
|
219 |
+
|
220 |
+
model_dict = model.state_dict()
|
221 |
+
main_dict = {}
|
222 |
+
normal_dict = {}
|
223 |
+
|
224 |
+
device = torch.device(f"cuda:{cfg['test_gpus'][0]}")
|
225 |
+
|
226 |
+
main_dict = torch.load(cached_download(cfg.resume_path, use_auth_token=os.environ['ICON']),
|
227 |
+
map_location=device)['state_dict']
|
228 |
+
|
229 |
+
main_dict = {
|
230 |
+
k: v
|
231 |
+
for k, v in main_dict.items()
|
232 |
+
if k in model_dict and v.shape == model_dict[k].shape and (
|
233 |
+
'reconEngine' not in k) and ("normal_filter" not in k) and (
|
234 |
+
'voxelization' not in k)
|
235 |
+
}
|
236 |
+
print(colored(f"Resume MLP weights from {cfg.resume_path}", 'green'))
|
237 |
+
|
238 |
+
normal_dict = torch.load(cached_download(cfg.normal_path, use_auth_token=os.environ['ICON']),
|
239 |
+
map_location=device)['state_dict']
|
240 |
+
|
241 |
+
for key in normal_dict.keys():
|
242 |
+
normal_dict = rename(normal_dict, key,
|
243 |
+
key.replace("netG", "netG.normal_filter"))
|
244 |
+
|
245 |
+
normal_dict = {
|
246 |
+
k: v
|
247 |
+
for k, v in normal_dict.items()
|
248 |
+
if k in model_dict and v.shape == model_dict[k].shape
|
249 |
+
}
|
250 |
+
print(colored(f"Resume normal model from {cfg.normal_path}", 'green'))
|
251 |
+
|
252 |
+
model_dict.update(main_dict)
|
253 |
+
model_dict.update(normal_dict)
|
254 |
+
model.load_state_dict(model_dict)
|
255 |
+
|
256 |
+
model.netG = model.netG.to(device)
|
257 |
+
model.reconEngine = model.reconEngine.to(device)
|
258 |
+
|
259 |
+
model.netG.training = False
|
260 |
+
model.netG.eval()
|
261 |
+
|
262 |
+
del main_dict
|
263 |
+
del normal_dict
|
264 |
+
del model_dict
|
265 |
+
|
266 |
+
return model
|
267 |
+
|
268 |
+
|
269 |
+
def read_smpl_constants(folder):
|
270 |
+
"""Load smpl vertex code"""
|
271 |
+
smpl_vtx_std = np.loadtxt(cached_download(os.path.join(folder, 'vertices.txt'), use_auth_token=os.environ['ICON']))
|
272 |
+
min_x = np.min(smpl_vtx_std[:, 0])
|
273 |
+
max_x = np.max(smpl_vtx_std[:, 0])
|
274 |
+
min_y = np.min(smpl_vtx_std[:, 1])
|
275 |
+
max_y = np.max(smpl_vtx_std[:, 1])
|
276 |
+
min_z = np.min(smpl_vtx_std[:, 2])
|
277 |
+
max_z = np.max(smpl_vtx_std[:, 2])
|
278 |
+
|
279 |
+
smpl_vtx_std[:, 0] = (smpl_vtx_std[:, 0] - min_x) / (max_x - min_x)
|
280 |
+
smpl_vtx_std[:, 1] = (smpl_vtx_std[:, 1] - min_y) / (max_y - min_y)
|
281 |
+
smpl_vtx_std[:, 2] = (smpl_vtx_std[:, 2] - min_z) / (max_z - min_z)
|
282 |
+
smpl_vertex_code = np.float32(np.copy(smpl_vtx_std))
|
283 |
+
"""Load smpl faces & tetrahedrons"""
|
284 |
+
smpl_faces = np.loadtxt(cached_download(os.path.join(folder, 'faces.txt'), use_auth_token=os.environ['ICON']),
|
285 |
+
dtype=np.int32) - 1
|
286 |
+
smpl_face_code = (smpl_vertex_code[smpl_faces[:, 0]] +
|
287 |
+
smpl_vertex_code[smpl_faces[:, 1]] +
|
288 |
+
smpl_vertex_code[smpl_faces[:, 2]]) / 3.0
|
289 |
+
smpl_tetras = np.loadtxt(cached_download(os.path.join(folder, 'tetrahedrons.txt'), use_auth_token=os.environ['ICON']),
|
290 |
+
dtype=np.int32) - 1
|
291 |
+
|
292 |
+
return smpl_vertex_code, smpl_face_code, smpl_faces, smpl_tetras
|
293 |
+
|
294 |
+
|
295 |
+
def feat_select(feat, select):
|
296 |
+
|
297 |
+
# feat [B, featx2, N]
|
298 |
+
# select [B, 1, N]
|
299 |
+
# return [B, feat, N]
|
300 |
+
|
301 |
+
dim = feat.shape[1] // 2
|
302 |
+
idx = torch.tile((1-select), (1, dim, 1))*dim + \
|
303 |
+
torch.arange(0, dim).unsqueeze(0).unsqueeze(2).type_as(select)
|
304 |
+
feat_select = torch.gather(feat, 1, idx.long())
|
305 |
+
|
306 |
+
return feat_select
|
307 |
+
|
308 |
+
|
309 |
+
def get_visibility(xy, z, faces):
|
310 |
+
"""get the visibility of vertices
|
311 |
+
|
312 |
+
Args:
|
313 |
+
xy (torch.tensor): [N,2]
|
314 |
+
z (torch.tensor): [N,1]
|
315 |
+
faces (torch.tensor): [N,3]
|
316 |
+
size (int): resolution of rendered image
|
317 |
+
"""
|
318 |
+
|
319 |
+
xyz = torch.cat((xy, -z), dim=1)
|
320 |
+
xyz = (xyz + 1.0) / 2.0
|
321 |
+
faces = faces.long()
|
322 |
+
|
323 |
+
rasterizer = Pytorch3dRasterizer(image_size=2**12)
|
324 |
+
meshes_screen = Meshes(verts=xyz[None, ...], faces=faces[None, ...])
|
325 |
+
raster_settings = rasterizer.raster_settings
|
326 |
+
|
327 |
+
pix_to_face, zbuf, bary_coords, dists = rasterize_meshes(
|
328 |
+
meshes_screen,
|
329 |
+
image_size=raster_settings.image_size,
|
330 |
+
blur_radius=raster_settings.blur_radius,
|
331 |
+
faces_per_pixel=raster_settings.faces_per_pixel,
|
332 |
+
bin_size=raster_settings.bin_size,
|
333 |
+
max_faces_per_bin=raster_settings.max_faces_per_bin,
|
334 |
+
perspective_correct=raster_settings.perspective_correct,
|
335 |
+
cull_backfaces=raster_settings.cull_backfaces,
|
336 |
+
)
|
337 |
+
|
338 |
+
vis_vertices_id = torch.unique(faces[torch.unique(pix_to_face), :])
|
339 |
+
vis_mask = torch.zeros(size=(z.shape[0], 1))
|
340 |
+
vis_mask[vis_vertices_id] = 1.0
|
341 |
+
|
342 |
+
# print("------------------------\n")
|
343 |
+
# print(f"keep points : {vis_mask.sum()/len(vis_mask)}")
|
344 |
+
|
345 |
+
return vis_mask
|
346 |
+
|
347 |
+
|
348 |
+
def barycentric_coordinates_of_projection(points, vertices):
|
349 |
+
''' https://github.com/MPI-IS/mesh/blob/master/mesh/geometry/barycentric_coordinates_of_projection.py
|
350 |
+
'''
|
351 |
+
"""Given a point, gives projected coords of that point to a triangle
|
352 |
+
in barycentric coordinates.
|
353 |
+
See
|
354 |
+
**Heidrich**, Computing the Barycentric Coordinates of a Projected Point, JGT 05
|
355 |
+
at http://www.cs.ubc.ca/~heidrich/Papers/JGT.05.pdf
|
356 |
+
|
357 |
+
:param p: point to project. [B, 3]
|
358 |
+
:param v0: first vertex of triangles. [B, 3]
|
359 |
+
:returns: barycentric coordinates of ``p``'s projection in triangle defined by ``q``, ``u``, ``v``
|
360 |
+
vectorized so ``p``, ``q``, ``u``, ``v`` can all be ``3xN``
|
361 |
+
"""
|
362 |
+
#(p, q, u, v)
|
363 |
+
v0, v1, v2 = vertices[:, 0], vertices[:, 1], vertices[:, 2]
|
364 |
+
p = points
|
365 |
+
|
366 |
+
q = v0
|
367 |
+
u = v1 - v0
|
368 |
+
v = v2 - v0
|
369 |
+
n = torch.cross(u, v)
|
370 |
+
s = torch.sum(n * n, dim=1)
|
371 |
+
# If the triangle edges are collinear, cross-product is zero,
|
372 |
+
# which makes "s" 0, which gives us divide by zero. So we
|
373 |
+
# make the arbitrary choice to set s to epsv (=numpy.spacing(1)),
|
374 |
+
# the closest thing to zero
|
375 |
+
s[s == 0] = 1e-6
|
376 |
+
oneOver4ASquared = 1.0 / s
|
377 |
+
w = p - q
|
378 |
+
b2 = torch.sum(torch.cross(u, w) * n, dim=1) * oneOver4ASquared
|
379 |
+
b1 = torch.sum(torch.cross(w, v) * n, dim=1) * oneOver4ASquared
|
380 |
+
weights = torch.stack((1 - b1 - b2, b1, b2), dim=-1)
|
381 |
+
# check barycenric weights
|
382 |
+
# p_n = v0*weights[:,0:1] + v1*weights[:,1:2] + v2*weights[:,2:3]
|
383 |
+
return weights
|
384 |
+
|
385 |
+
|
386 |
+
def cal_sdf_batch(verts, faces, cmaps, vis, points):
|
387 |
+
|
388 |
+
# verts [B, N_vert, 3]
|
389 |
+
# faces [B, N_face, 3]
|
390 |
+
# triangles [B, N_face, 3, 3]
|
391 |
+
# points [B, N_point, 3]
|
392 |
+
# cmaps [B, N_vert, 3]
|
393 |
+
|
394 |
+
Bsize = points.shape[0]
|
395 |
+
|
396 |
+
normals = Meshes(verts, faces).verts_normals_padded()
|
397 |
+
|
398 |
+
triangles = face_vertices(verts, faces)
|
399 |
+
normals = face_vertices(normals, faces)
|
400 |
+
cmaps = face_vertices(cmaps, faces)
|
401 |
+
vis = face_vertices(vis, faces)
|
402 |
+
|
403 |
+
residues, pts_ind, _ = point_to_mesh_distance(points, triangles)
|
404 |
+
closest_triangles = torch.gather(
|
405 |
+
triangles, 1, pts_ind[:, :, None, None].expand(-1, -1, 3, 3)).view(-1, 3, 3)
|
406 |
+
closest_normals = torch.gather(
|
407 |
+
normals, 1, pts_ind[:, :, None, None].expand(-1, -1, 3, 3)).view(-1, 3, 3)
|
408 |
+
closest_cmaps = torch.gather(
|
409 |
+
cmaps, 1, pts_ind[:, :, None, None].expand(-1, -1, 3, 3)).view(-1, 3, 3)
|
410 |
+
closest_vis = torch.gather(
|
411 |
+
vis, 1, pts_ind[:, :, None, None].expand(-1, -1, 3, 1)).view(-1, 3, 1)
|
412 |
+
bary_weights = barycentric_coordinates_of_projection(
|
413 |
+
points.view(-1, 3), closest_triangles)
|
414 |
+
|
415 |
+
pts_cmap = (closest_cmaps*bary_weights[:, :, None]).sum(1).unsqueeze(0).clamp_(min=0.0, max=1.0)
|
416 |
+
pts_vis = (closest_vis*bary_weights[:,
|
417 |
+
:, None]).sum(1).unsqueeze(0).ge(1e-1)
|
418 |
+
pts_norm = (closest_normals*bary_weights[:, :, None]).sum(
|
419 |
+
1).unsqueeze(0) * torch.tensor([-1.0, 1.0, -1.0]).type_as(normals)
|
420 |
+
pts_norm = F.normalize(pts_norm, dim=2)
|
421 |
+
pts_dist = torch.sqrt(residues) / torch.sqrt(torch.tensor(3))
|
422 |
+
|
423 |
+
pts_signs = 2.0 * (check_sign(verts, faces[0], points).float() - 0.5)
|
424 |
+
pts_sdf = (pts_dist * pts_signs).unsqueeze(-1)
|
425 |
+
|
426 |
+
return pts_sdf.view(Bsize, -1, 1), pts_norm.view(Bsize, -1, 3), pts_cmap.view(Bsize, -1, 3), pts_vis.view(Bsize, -1, 1)
|
427 |
+
|
428 |
+
|
429 |
+
def orthogonal(points, calibrations, transforms=None):
|
430 |
+
'''
|
431 |
+
Compute the orthogonal projections of 3D points into the image plane by given projection matrix
|
432 |
+
:param points: [B, 3, N] Tensor of 3D points
|
433 |
+
:param calibrations: [B, 3, 4] Tensor of projection matrix
|
434 |
+
:param transforms: [B, 2, 3] Tensor of image transform matrix
|
435 |
+
:return: xyz: [B, 3, N] Tensor of xyz coordinates in the image plane
|
436 |
+
'''
|
437 |
+
rot = calibrations[:, :3, :3]
|
438 |
+
trans = calibrations[:, :3, 3:4]
|
439 |
+
pts = torch.baddbmm(trans, rot, points) # [B, 3, N]
|
440 |
+
if transforms is not None:
|
441 |
+
scale = transforms[:2, :2]
|
442 |
+
shift = transforms[:2, 2:3]
|
443 |
+
pts[:, :2, :] = torch.baddbmm(shift, scale, pts[:, :2, :])
|
444 |
+
return pts
|
445 |
+
|
446 |
+
|
447 |
+
def projection(points, calib, format='numpy'):
|
448 |
+
if format == 'tensor':
|
449 |
+
return torch.mm(calib[:3, :3], points.T).T + calib[:3, 3]
|
450 |
+
else:
|
451 |
+
return np.matmul(calib[:3, :3], points.T).T + calib[:3, 3]
|
452 |
+
|
453 |
+
|
454 |
+
def load_calib(calib_path):
|
455 |
+
calib_data = np.loadtxt(calib_path, dtype=float)
|
456 |
+
extrinsic = calib_data[:4, :4]
|
457 |
+
intrinsic = calib_data[4:8, :4]
|
458 |
+
calib_mat = np.matmul(intrinsic, extrinsic)
|
459 |
+
calib_mat = torch.from_numpy(calib_mat).float()
|
460 |
+
return calib_mat
|
461 |
+
|
462 |
+
|
463 |
+
def load_obj_mesh_for_Hoppe(mesh_file):
|
464 |
+
vertex_data = []
|
465 |
+
face_data = []
|
466 |
+
|
467 |
+
if isinstance(mesh_file, str):
|
468 |
+
f = open(mesh_file, "r")
|
469 |
+
else:
|
470 |
+
f = mesh_file
|
471 |
+
for line in f:
|
472 |
+
if isinstance(line, bytes):
|
473 |
+
line = line.decode("utf-8")
|
474 |
+
if line.startswith('#'):
|
475 |
+
continue
|
476 |
+
values = line.split()
|
477 |
+
if not values:
|
478 |
+
continue
|
479 |
+
|
480 |
+
if values[0] == 'v':
|
481 |
+
v = list(map(float, values[1:4]))
|
482 |
+
vertex_data.append(v)
|
483 |
+
|
484 |
+
elif values[0] == 'f':
|
485 |
+
# quad mesh
|
486 |
+
if len(values) > 4:
|
487 |
+
f = list(map(lambda x: int(x.split('/')[0]), values[1:4]))
|
488 |
+
face_data.append(f)
|
489 |
+
f = list(
|
490 |
+
map(lambda x: int(x.split('/')[0]),
|
491 |
+
[values[3], values[4], values[1]]))
|
492 |
+
face_data.append(f)
|
493 |
+
# tri mesh
|
494 |
+
else:
|
495 |
+
f = list(map(lambda x: int(x.split('/')[0]), values[1:4]))
|
496 |
+
face_data.append(f)
|
497 |
+
|
498 |
+
vertices = np.array(vertex_data)
|
499 |
+
faces = np.array(face_data)
|
500 |
+
faces[faces > 0] -= 1
|
501 |
+
|
502 |
+
normals, _ = compute_normal(vertices, faces)
|
503 |
+
|
504 |
+
return vertices, normals, faces
|
505 |
+
|
506 |
+
|
507 |
+
def load_obj_mesh_with_color(mesh_file):
|
508 |
+
vertex_data = []
|
509 |
+
color_data = []
|
510 |
+
face_data = []
|
511 |
+
|
512 |
+
if isinstance(mesh_file, str):
|
513 |
+
f = open(mesh_file, "r")
|
514 |
+
else:
|
515 |
+
f = mesh_file
|
516 |
+
for line in f:
|
517 |
+
if isinstance(line, bytes):
|
518 |
+
line = line.decode("utf-8")
|
519 |
+
if line.startswith('#'):
|
520 |
+
continue
|
521 |
+
values = line.split()
|
522 |
+
if not values:
|
523 |
+
continue
|
524 |
+
|
525 |
+
if values[0] == 'v':
|
526 |
+
v = list(map(float, values[1:4]))
|
527 |
+
vertex_data.append(v)
|
528 |
+
c = list(map(float, values[4:7]))
|
529 |
+
color_data.append(c)
|
530 |
+
|
531 |
+
elif values[0] == 'f':
|
532 |
+
# quad mesh
|
533 |
+
if len(values) > 4:
|
534 |
+
f = list(map(lambda x: int(x.split('/')[0]), values[1:4]))
|
535 |
+
face_data.append(f)
|
536 |
+
f = list(
|
537 |
+
map(lambda x: int(x.split('/')[0]),
|
538 |
+
[values[3], values[4], values[1]]))
|
539 |
+
face_data.append(f)
|
540 |
+
# tri mesh
|
541 |
+
else:
|
542 |
+
f = list(map(lambda x: int(x.split('/')[0]), values[1:4]))
|
543 |
+
face_data.append(f)
|
544 |
+
|
545 |
+
vertices = np.array(vertex_data)
|
546 |
+
colors = np.array(color_data)
|
547 |
+
faces = np.array(face_data)
|
548 |
+
faces[faces > 0] -= 1
|
549 |
+
|
550 |
+
return vertices, colors, faces
|
551 |
+
|
552 |
+
|
553 |
+
def load_obj_mesh(mesh_file, with_normal=False, with_texture=False):
|
554 |
+
vertex_data = []
|
555 |
+
norm_data = []
|
556 |
+
uv_data = []
|
557 |
+
|
558 |
+
face_data = []
|
559 |
+
face_norm_data = []
|
560 |
+
face_uv_data = []
|
561 |
+
|
562 |
+
if isinstance(mesh_file, str):
|
563 |
+
f = open(mesh_file, "r")
|
564 |
+
else:
|
565 |
+
f = mesh_file
|
566 |
+
for line in f:
|
567 |
+
if isinstance(line, bytes):
|
568 |
+
line = line.decode("utf-8")
|
569 |
+
if line.startswith('#'):
|
570 |
+
continue
|
571 |
+
values = line.split()
|
572 |
+
if not values:
|
573 |
+
continue
|
574 |
+
|
575 |
+
if values[0] == 'v':
|
576 |
+
v = list(map(float, values[1:4]))
|
577 |
+
vertex_data.append(v)
|
578 |
+
elif values[0] == 'vn':
|
579 |
+
vn = list(map(float, values[1:4]))
|
580 |
+
norm_data.append(vn)
|
581 |
+
elif values[0] == 'vt':
|
582 |
+
vt = list(map(float, values[1:3]))
|
583 |
+
uv_data.append(vt)
|
584 |
+
|
585 |
+
elif values[0] == 'f':
|
586 |
+
# quad mesh
|
587 |
+
if len(values) > 4:
|
588 |
+
f = list(map(lambda x: int(x.split('/')[0]), values[1:4]))
|
589 |
+
face_data.append(f)
|
590 |
+
f = list(
|
591 |
+
map(lambda x: int(x.split('/')[0]),
|
592 |
+
[values[3], values[4], values[1]]))
|
593 |
+
face_data.append(f)
|
594 |
+
# tri mesh
|
595 |
+
else:
|
596 |
+
f = list(map(lambda x: int(x.split('/')[0]), values[1:4]))
|
597 |
+
face_data.append(f)
|
598 |
+
|
599 |
+
# deal with texture
|
600 |
+
if len(values[1].split('/')) >= 2:
|
601 |
+
# quad mesh
|
602 |
+
if len(values) > 4:
|
603 |
+
f = list(map(lambda x: int(x.split('/')[1]), values[1:4]))
|
604 |
+
face_uv_data.append(f)
|
605 |
+
f = list(
|
606 |
+
map(lambda x: int(x.split('/')[1]),
|
607 |
+
[values[3], values[4], values[1]]))
|
608 |
+
face_uv_data.append(f)
|
609 |
+
# tri mesh
|
610 |
+
elif len(values[1].split('/')[1]) != 0:
|
611 |
+
f = list(map(lambda x: int(x.split('/')[1]), values[1:4]))
|
612 |
+
face_uv_data.append(f)
|
613 |
+
# deal with normal
|
614 |
+
if len(values[1].split('/')) == 3:
|
615 |
+
# quad mesh
|
616 |
+
if len(values) > 4:
|
617 |
+
f = list(map(lambda x: int(x.split('/')[2]), values[1:4]))
|
618 |
+
face_norm_data.append(f)
|
619 |
+
f = list(
|
620 |
+
map(lambda x: int(x.split('/')[2]),
|
621 |
+
[values[3], values[4], values[1]]))
|
622 |
+
face_norm_data.append(f)
|
623 |
+
# tri mesh
|
624 |
+
elif len(values[1].split('/')[2]) != 0:
|
625 |
+
f = list(map(lambda x: int(x.split('/')[2]), values[1:4]))
|
626 |
+
face_norm_data.append(f)
|
627 |
+
|
628 |
+
vertices = np.array(vertex_data)
|
629 |
+
faces = np.array(face_data)
|
630 |
+
faces[faces > 0] -= 1
|
631 |
+
|
632 |
+
if with_texture and with_normal:
|
633 |
+
uvs = np.array(uv_data)
|
634 |
+
face_uvs = np.array(face_uv_data)
|
635 |
+
face_uvs[face_uvs > 0] -= 1
|
636 |
+
norms = np.array(norm_data)
|
637 |
+
if norms.shape[0] == 0:
|
638 |
+
norms, _ = compute_normal(vertices, faces)
|
639 |
+
face_normals = faces
|
640 |
+
else:
|
641 |
+
norms = normalize_v3(norms)
|
642 |
+
face_normals = np.array(face_norm_data)
|
643 |
+
face_normals[face_normals > 0] -= 1
|
644 |
+
return vertices, faces, norms, face_normals, uvs, face_uvs
|
645 |
+
|
646 |
+
if with_texture:
|
647 |
+
uvs = np.array(uv_data)
|
648 |
+
face_uvs = np.array(face_uv_data) - 1
|
649 |
+
return vertices, faces, uvs, face_uvs
|
650 |
+
|
651 |
+
if with_normal:
|
652 |
+
norms = np.array(norm_data)
|
653 |
+
norms = normalize_v3(norms)
|
654 |
+
face_normals = np.array(face_norm_data) - 1
|
655 |
+
return vertices, faces, norms, face_normals
|
656 |
+
|
657 |
+
return vertices, faces
|
658 |
+
|
659 |
+
|
660 |
+
def normalize_v3(arr):
|
661 |
+
''' Normalize a numpy array of 3 component vectors shape=(n,3) '''
|
662 |
+
lens = np.sqrt(arr[:, 0]**2 + arr[:, 1]**2 + arr[:, 2]**2)
|
663 |
+
eps = 0.00000001
|
664 |
+
lens[lens < eps] = eps
|
665 |
+
arr[:, 0] /= lens
|
666 |
+
arr[:, 1] /= lens
|
667 |
+
arr[:, 2] /= lens
|
668 |
+
return arr
|
669 |
+
|
670 |
+
|
671 |
+
def compute_normal(vertices, faces):
|
672 |
+
# Create a zeroed array with the same type and shape as our vertices i.e., per vertex normal
|
673 |
+
vert_norms = np.zeros(vertices.shape, dtype=vertices.dtype)
|
674 |
+
# Create an indexed view into the vertex array using the array of three indices for triangles
|
675 |
+
tris = vertices[faces]
|
676 |
+
# Calculate the normal for all the triangles, by taking the cross product of the vectors v1-v0, and v2-v0 in each triangle
|
677 |
+
face_norms = np.cross(tris[::, 1] - tris[::, 0], tris[::, 2] - tris[::, 0])
|
678 |
+
# n is now an array of normals per triangle. The length of each normal is dependent the vertices,
|
679 |
+
# we need to normalize these, so that our next step weights each normal equally.
|
680 |
+
normalize_v3(face_norms)
|
681 |
+
# now we have a normalized array of normals, one per triangle, i.e., per triangle normals.
|
682 |
+
# But instead of one per triangle (i.e., flat shading), we add to each vertex in that triangle,
|
683 |
+
# the triangles' normal. Multiple triangles would then contribute to every vertex, so we need to normalize again afterwards.
|
684 |
+
# The cool part, we can actually add the normals through an indexed view of our (zeroed) per vertex normal array
|
685 |
+
vert_norms[faces[:, 0]] += face_norms
|
686 |
+
vert_norms[faces[:, 1]] += face_norms
|
687 |
+
vert_norms[faces[:, 2]] += face_norms
|
688 |
+
normalize_v3(vert_norms)
|
689 |
+
|
690 |
+
return vert_norms, face_norms
|
691 |
+
|
692 |
+
|
693 |
+
def save_obj_mesh(mesh_path, verts, faces):
|
694 |
+
file = open(mesh_path, 'w')
|
695 |
+
for v in verts:
|
696 |
+
file.write('v %.4f %.4f %.4f\n' % (v[0], v[1], v[2]))
|
697 |
+
for f in faces:
|
698 |
+
f_plus = f + 1
|
699 |
+
file.write('f %d %d %d\n' % (f_plus[0], f_plus[1], f_plus[2]))
|
700 |
+
file.close()
|
701 |
+
|
702 |
+
|
703 |
+
def save_obj_mesh_with_color(mesh_path, verts, faces, colors):
|
704 |
+
file = open(mesh_path, 'w')
|
705 |
+
|
706 |
+
for idx, v in enumerate(verts):
|
707 |
+
c = colors[idx]
|
708 |
+
file.write('v %.4f %.4f %.4f %.4f %.4f %.4f\n' %
|
709 |
+
(v[0], v[1], v[2], c[0], c[1], c[2]))
|
710 |
+
for f in faces:
|
711 |
+
f_plus = f + 1
|
712 |
+
file.write('f %d %d %d\n' % (f_plus[0], f_plus[1], f_plus[2]))
|
713 |
+
file.close()
|
714 |
+
|
715 |
+
|
716 |
+
def calculate_mIoU(outputs, labels):
|
717 |
+
|
718 |
+
SMOOTH = 1e-6
|
719 |
+
|
720 |
+
outputs = outputs.int()
|
721 |
+
labels = labels.int()
|
722 |
+
|
723 |
+
intersection = (
|
724 |
+
outputs
|
725 |
+
& labels).float().sum() # Will be zero if Truth=0 or Prediction=0
|
726 |
+
union = (outputs | labels).float().sum() # Will be zzero if both are 0
|
727 |
+
|
728 |
+
iou = (intersection + SMOOTH) / (union + SMOOTH
|
729 |
+
) # We smooth our devision to avoid 0/0
|
730 |
+
|
731 |
+
thresholded = torch.clamp(
|
732 |
+
20 * (iou - 0.5), 0,
|
733 |
+
10).ceil() / 10 # This is equal to comparing with thresolds
|
734 |
+
|
735 |
+
return thresholded.mean().detach().cpu().numpy(
|
736 |
+
) # Or thresholded.mean() if you are interested in average across the batch
|
737 |
+
|
738 |
+
|
739 |
+
def mask_filter(mask, number=1000):
|
740 |
+
"""only keep {number} True items within a mask
|
741 |
+
|
742 |
+
Args:
|
743 |
+
mask (bool array): [N, ]
|
744 |
+
number (int, optional): total True item. Defaults to 1000.
|
745 |
+
"""
|
746 |
+
true_ids = np.where(mask)[0]
|
747 |
+
keep_ids = np.random.choice(true_ids, size=number)
|
748 |
+
filter_mask = np.isin(np.arange(len(mask)), keep_ids)
|
749 |
+
|
750 |
+
return filter_mask
|
751 |
+
|
752 |
+
|
753 |
+
def query_mesh(path):
|
754 |
+
|
755 |
+
verts, faces_idx, _ = load_obj(path)
|
756 |
+
|
757 |
+
return verts, faces_idx.verts_idx
|
758 |
+
|
759 |
+
|
760 |
+
def add_alpha(colors, alpha=0.7):
|
761 |
+
|
762 |
+
colors_pad = np.pad(colors, ((0, 0), (0, 1)),
|
763 |
+
mode='constant',
|
764 |
+
constant_values=alpha)
|
765 |
+
|
766 |
+
return colors_pad
|
767 |
+
|
768 |
+
|
769 |
+
def get_optim_grid_image(per_loop_lst, loss=None, nrow=4, type='smpl'):
|
770 |
+
|
771 |
+
font_path = os.path.join(os.path.dirname(__file__), "tbfo.ttf")
|
772 |
+
font = ImageFont.truetype(font_path, 30)
|
773 |
+
grid_img = torchvision.utils.make_grid(torch.cat(per_loop_lst, dim=0),
|
774 |
+
nrow=nrow)
|
775 |
+
grid_img = Image.fromarray(
|
776 |
+
((grid_img.permute(1, 2, 0).detach().cpu().numpy() + 1.0) * 0.5 *
|
777 |
+
255.0).astype(np.uint8))
|
778 |
+
|
779 |
+
# add text
|
780 |
+
draw = ImageDraw.Draw(grid_img)
|
781 |
+
grid_size = 512
|
782 |
+
if loss is not None:
|
783 |
+
draw.text((10, 5), f"error: {loss:.3f}", (255, 0, 0), font=font)
|
784 |
+
|
785 |
+
if type == 'smpl':
|
786 |
+
for col_id, col_txt in enumerate(
|
787 |
+
['image', 'smpl-norm(render)', 'cloth-norm(pred)', 'diff-norm', 'diff-mask']):
|
788 |
+
draw.text((10+(col_id*grid_size), 5),
|
789 |
+
col_txt, (255, 0, 0), font=font)
|
790 |
+
elif type == 'cloth':
|
791 |
+
for col_id, col_txt in enumerate(
|
792 |
+
['image', 'cloth-norm(recon)', 'cloth-norm(pred)', 'diff-norm']):
|
793 |
+
draw.text((10+(col_id*grid_size), 5),
|
794 |
+
col_txt, (255, 0, 0), font=font)
|
795 |
+
for col_id, col_txt in enumerate(
|
796 |
+
['0', '90', '180', '270']):
|
797 |
+
draw.text((10+(col_id*grid_size), grid_size*2+5),
|
798 |
+
col_txt, (255, 0, 0), font=font)
|
799 |
+
else:
|
800 |
+
print(f"{type} should be 'smpl' or 'cloth'")
|
801 |
+
|
802 |
+
grid_img = grid_img.resize((grid_img.size[0], grid_img.size[1]),
|
803 |
+
Image.ANTIALIAS)
|
804 |
+
|
805 |
+
return grid_img
|
806 |
+
|
807 |
+
|
808 |
+
def clean_mesh(verts, faces):
|
809 |
+
|
810 |
+
device = verts.device
|
811 |
+
|
812 |
+
mesh_lst = trimesh.Trimesh(verts.detach().cpu().numpy(),
|
813 |
+
faces.detach().cpu().numpy())
|
814 |
+
mesh_lst = mesh_lst.split(only_watertight=False)
|
815 |
+
comp_num = [mesh.vertices.shape[0] for mesh in mesh_lst]
|
816 |
+
mesh_clean = mesh_lst[comp_num.index(max(comp_num))]
|
817 |
+
|
818 |
+
final_verts = torch.as_tensor(mesh_clean.vertices).float().to(device)
|
819 |
+
final_faces = torch.as_tensor(mesh_clean.faces).int().to(device)
|
820 |
+
|
821 |
+
return final_verts, final_faces
|
822 |
+
|
823 |
+
|
824 |
+
def merge_mesh(verts_A, faces_A, verts_B, faces_B, color=False):
|
825 |
+
|
826 |
+
sep_mesh = trimesh.Trimesh(np.concatenate([verts_A, verts_B], axis=0),
|
827 |
+
np.concatenate(
|
828 |
+
[faces_A, faces_B + faces_A.max() + 1],
|
829 |
+
axis=0),
|
830 |
+
maintain_order=True,
|
831 |
+
process=False)
|
832 |
+
if color:
|
833 |
+
colors = np.ones_like(sep_mesh.vertices)
|
834 |
+
colors[:verts_A.shape[0]] *= np.array([255.0, 0.0, 0.0])
|
835 |
+
colors[verts_A.shape[0]:] *= np.array([0.0, 255.0, 0.0])
|
836 |
+
sep_mesh.visual.vertex_colors = colors
|
837 |
+
|
838 |
+
# union_mesh = trimesh.boolean.union([trimesh.Trimesh(verts_A, faces_A),
|
839 |
+
# trimesh.Trimesh(verts_B, faces_B)], engine='blender')
|
840 |
+
|
841 |
+
return sep_mesh
|
842 |
+
|
843 |
+
|
844 |
+
def mesh_move(mesh_lst, step, scale=1.0):
|
845 |
+
|
846 |
+
trans = np.array([1.0, 0.0, 0.0]) * step
|
847 |
+
|
848 |
+
resize_matrix = trimesh.transformations.scale_and_translate(
|
849 |
+
scale=(scale), translate=trans)
|
850 |
+
|
851 |
+
results = []
|
852 |
+
|
853 |
+
for mesh in mesh_lst:
|
854 |
+
mesh.apply_transform(resize_matrix)
|
855 |
+
results.append(mesh)
|
856 |
+
|
857 |
+
return results
|
858 |
+
|
859 |
+
|
860 |
+
class SMPLX():
|
861 |
+
def __init__(self):
|
862 |
+
|
863 |
+
REPO_ID = "Yuliang/SMPL"
|
864 |
+
|
865 |
+
self.smpl_verts_path = hf_hub_download(REPO_ID, filename='smpl_data/smpl_verts.npy', use_auth_token=os.environ['ICON'])
|
866 |
+
self.smplx_verts_path = hf_hub_download(REPO_ID, filename='smpl_data/smplx_verts.npy', use_auth_token=os.environ['ICON'])
|
867 |
+
self.faces_path = hf_hub_download(REPO_ID, filename='smpl_data/smplx_faces.npy', use_auth_token=os.environ['ICON'])
|
868 |
+
self.cmap_vert_path = hf_hub_download(REPO_ID, filename='smpl_data/smplx_cmap.npy', use_auth_token=os.environ['ICON'])
|
869 |
+
|
870 |
+
self.faces = np.load(self.faces_path)
|
871 |
+
self.verts = np.load(self.smplx_verts_path)
|
872 |
+
self.smpl_verts = np.load(self.smpl_verts_path)
|
873 |
+
|
874 |
+
self.model_dir = hf_hub_url(REPO_ID, filename='models')
|
875 |
+
self.tedra_dir = hf_hub_url(REPO_ID, filename='tedra_data')
|
876 |
+
|
877 |
+
def get_smpl_mat(self, vert_ids):
|
878 |
+
|
879 |
+
mat = torch.as_tensor(np.load(self.cmap_vert_path)).float()
|
880 |
+
return mat[vert_ids, :]
|
881 |
+
|
882 |
+
def smpl2smplx(self, vert_ids=None):
|
883 |
+
"""convert vert_ids in smpl to vert_ids in smplx
|
884 |
+
|
885 |
+
Args:
|
886 |
+
vert_ids ([int.array]): [n, knn_num]
|
887 |
+
"""
|
888 |
+
smplx_tree = cKDTree(self.verts, leafsize=1)
|
889 |
+
_, ind = smplx_tree.query(self.smpl_verts, k=1) # ind: [smpl_num, 1]
|
890 |
+
|
891 |
+
if vert_ids is not None:
|
892 |
+
smplx_vert_ids = ind[vert_ids]
|
893 |
+
else:
|
894 |
+
smplx_vert_ids = ind
|
895 |
+
|
896 |
+
return smplx_vert_ids
|
897 |
+
|
898 |
+
def smplx2smpl(self, vert_ids=None):
|
899 |
+
"""convert vert_ids in smplx to vert_ids in smpl
|
900 |
+
|
901 |
+
Args:
|
902 |
+
vert_ids ([int.array]): [n, knn_num]
|
903 |
+
"""
|
904 |
+
smpl_tree = cKDTree(self.smpl_verts, leafsize=1)
|
905 |
+
_, ind = smpl_tree.query(self.verts, k=1) # ind: [smplx_num, 1]
|
906 |
+
if vert_ids is not None:
|
907 |
+
smpl_vert_ids = ind[vert_ids]
|
908 |
+
else:
|
909 |
+
smpl_vert_ids = ind
|
910 |
+
|
911 |
+
return smpl_vert_ids
|