diff --git "a/lib/smplx/body_models.py" "b/lib/smplx/body_models.py" new file mode 100644--- /dev/null +++ "b/lib/smplx/body_models.py" @@ -0,0 +1,2416 @@ +# -*- coding: utf-8 -*- + +# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is +# holder of all proprietary rights on this computer program. +# You can only use this computer program if you have closed +# a license agreement with MPG or you get the right to use the computer +# program from someone who is authorized to grant you that right. +# Any use of the computer program without a valid license is prohibited and +# liable to prosecution. +# +# Copyright©2019 Max-Planck-Gesellschaft zur Förderung +# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute +# for Intelligent Systems. All rights reserved. +# +# Contact: ps-license@tuebingen.mpg.de + +from typing import Optional, Dict, Union +import os +import os.path as osp +import pickle + +import numpy as np +from termcolor import colored + +import torch +import torch.nn as nn +from collections import namedtuple +from huggingface_hub import cached_download + +import logging +logging.getLogger("smplx").setLevel(logging.ERROR) + +from .lbs import ( + lbs, vertices2landmarks, find_dynamic_lmk_idx_and_bcoords) + +from .vertex_ids import vertex_ids as VERTEX_IDS +from .utils import ( + Struct, to_np, to_tensor, Tensor, Array, + SMPLOutput, + SMPLHOutput, + SMPLXOutput, + MANOOutput, + FLAMEOutput, + find_joint_kin_chain) +from .vertex_joint_selector import VertexJointSelector + +ModelOutput = namedtuple('ModelOutput', + ['vertices', 'joints', 'full_pose', 'betas', + 'global_orient', + 'body_pose', 'expression', + 'left_hand_pose', 'right_hand_pose', + 'jaw_pose']) +ModelOutput.__new__.__defaults__ = (None,) * len(ModelOutput._fields) + +class SMPL(nn.Module): + + NUM_JOINTS = 23 + NUM_BODY_JOINTS = 23 + SHAPE_SPACE_DIM = 300 + + def __init__( + self, model_path: str, + kid_template_path: str = '', + data_struct: Optional[Struct] = None, + create_betas: bool = True, + betas: Optional[Tensor] = None, + num_betas: int = 10, + create_global_orient: bool = True, + global_orient: Optional[Tensor] = None, + create_body_pose: bool = True, + body_pose: Optional[Tensor] = None, + create_transl: bool = True, + transl: Optional[Tensor] = None, + dtype=torch.float32, + batch_size: int = 1, + joint_mapper=None, + gender: str = 'neutral', + age: str = 'adult', + vertex_ids: Dict[str, int] = None, + v_template: Optional[Union[Tensor, Array]] = None, + v_personal: Optional[Union[Tensor, Array]] = None, + **kwargs + ) -> None: + ''' SMPL model constructor + + Parameters + ---------- + model_path: str + The path to the folder or to the file where the model + parameters are stored + data_struct: Strct + A struct object. If given, then the parameters of the model are + read from the object. Otherwise, the model tries to read the + parameters from the given `model_path`. (default = None) + create_global_orient: bool, optional + Flag for creating a member variable for the global orientation + of the body. (default = True) + global_orient: torch.tensor, optional, Bx3 + The default value for the global orientation variable. + (default = None) + create_body_pose: bool, optional + Flag for creating a member variable for the pose of the body. + (default = True) + body_pose: torch.tensor, optional, Bx(Body Joints * 3) + The default value for the body pose variable. + (default = None) + num_betas: int, optional + Number of shape components to use + (default = 10). + create_betas: bool, optional + Flag for creating a member variable for the shape space + (default = True). + betas: torch.tensor, optional, Bx10 + The default value for the shape member variable. + (default = None) + create_transl: bool, optional + Flag for creating a member variable for the translation + of the body. (default = True) + transl: torch.tensor, optional, Bx3 + The default value for the transl variable. + (default = None) + dtype: torch.dtype, optional + The data type for the created variables + batch_size: int, optional + The batch size used for creating the member variables + joint_mapper: object, optional + An object that re-maps the joints. Useful if one wants to + re-order the SMPL joints to some other convention (e.g. MSCOCO) + (default = None) + gender: str, optional + Which gender to load + vertex_ids: dict, optional + A dictionary containing the indices of the extra vertices that + will be selected + ''' + + self.gender = gender + self.age = age + + if data_struct is None: + model_fn = 'SMPL_{}.{ext}'.format(gender.upper(), ext='pkl') + smpl_path = cached_download(os.path.join(model_path, model_fn), use_auth_token=os.environ['ICON']) + + with open(smpl_path, 'rb') as smpl_file: + data_struct = Struct(**pickle.load(smpl_file, + encoding='latin1')) + + super(SMPL, self).__init__() + self.batch_size = batch_size + shapedirs = data_struct.shapedirs + if (shapedirs.shape[-1] < self.SHAPE_SPACE_DIM): + # print(f'WARNING: You are using a {self.name()} model, with only' + # ' 10 shape coefficients.') + num_betas = min(num_betas, 10) + else: + num_betas = min(num_betas, self.SHAPE_SPACE_DIM) + + if self.age=='kid': + v_template_smil = np.load(kid_template_path) + v_template_smil -= np.mean(v_template_smil, axis=0) + v_template_diff = np.expand_dims(v_template_smil - data_struct.v_template, axis=2) + shapedirs = np.concatenate((shapedirs[:, :, :num_betas], v_template_diff), axis=2) + num_betas = num_betas + 1 + + self._num_betas = num_betas + shapedirs = shapedirs[:, :, :num_betas] + # The shape components + self.register_buffer( + 'shapedirs', + to_tensor(to_np(shapedirs), dtype=dtype)) + + if vertex_ids is None: + # SMPL and SMPL-H share the same topology, so any extra joints can + # be drawn from the same place + vertex_ids = VERTEX_IDS['smplh'] + + self.dtype = dtype + + self.joint_mapper = joint_mapper + + self.vertex_joint_selector = VertexJointSelector( + vertex_ids=vertex_ids, **kwargs) + + self.faces = data_struct.f + self.register_buffer('faces_tensor', + to_tensor(to_np(self.faces, dtype=np.int64), + dtype=torch.long)) + + if create_betas: + if betas is None: + default_betas = torch.zeros( + [batch_size, self.num_betas], dtype=dtype) + else: + if torch.is_tensor(betas): + default_betas = betas.clone().detach() + else: + default_betas = torch.tensor(betas, dtype=dtype) + + self.register_parameter( + 'betas', nn.Parameter(default_betas, requires_grad=True)) + + # The tensor that contains the global rotation of the model + # It is separated from the pose of the joints in case we wish to + # optimize only over one of them + if create_global_orient: + if global_orient is None: + default_global_orient = torch.zeros( + [batch_size, 3], dtype=dtype) + else: + if torch.is_tensor(global_orient): + default_global_orient = global_orient.clone().detach() + else: + default_global_orient = torch.tensor( + global_orient, dtype=dtype) + + global_orient = nn.Parameter(default_global_orient, + requires_grad=True) + self.register_parameter('global_orient', global_orient) + + if create_body_pose: + if body_pose is None: + default_body_pose = torch.zeros( + [batch_size, self.NUM_BODY_JOINTS * 3], dtype=dtype) + else: + if torch.is_tensor(body_pose): + default_body_pose = body_pose.clone().detach() + else: + default_body_pose = torch.tensor(body_pose, + dtype=dtype) + self.register_parameter( + 'body_pose', + nn.Parameter(default_body_pose, requires_grad=True)) + + if create_transl: + if transl is None: + default_transl = torch.zeros([batch_size, 3], + dtype=dtype, + requires_grad=True) + else: + default_transl = torch.tensor(transl, dtype=dtype) + self.register_parameter( + 'transl', nn.Parameter(default_transl, requires_grad=True)) + + if v_template is None: + v_template = data_struct.v_template + + if not torch.is_tensor(v_template): + v_template = to_tensor(to_np(v_template), dtype=dtype) + + if v_personal is not None: + v_personal = to_tensor(to_np(v_personal), dtype=dtype) + v_template += v_personal + + # The vertices of the template model + self.register_buffer('v_template', v_template) + + j_regressor = to_tensor(to_np( + data_struct.J_regressor), dtype=dtype) + self.register_buffer('J_regressor', j_regressor) + + # Pose blend shape basis: 6890 x 3 x 207, reshaped to 6890*3 x 207 + num_pose_basis = data_struct.posedirs.shape[-1] + # 207 x 20670 + posedirs = np.reshape(data_struct.posedirs, [-1, num_pose_basis]).T + self.register_buffer('posedirs', + to_tensor(to_np(posedirs), dtype=dtype)) + + # indices of parents for each joints + parents = to_tensor(to_np(data_struct.kintree_table[0])).long() + parents[0] = -1 + self.register_buffer('parents', parents) + + self.register_buffer( + 'lbs_weights', to_tensor(to_np(data_struct.weights), dtype=dtype)) + + @property + def num_betas(self): + return self._num_betas + + @property + def num_expression_coeffs(self): + return 0 + + def create_mean_pose(self, data_struct) -> Tensor: + pass + + def name(self) -> str: + return 'SMPL' + + @torch.no_grad() + def reset_params(self, **params_dict) -> None: + for param_name, param in self.named_parameters(): + if param_name in params_dict: + param[:] = torch.tensor(params_dict[param_name]) + else: + param.fill_(0) + + def get_num_verts(self) -> int: + return self.v_template.shape[0] + + def get_num_faces(self) -> int: + return self.faces.shape[0] + + def extra_repr(self) -> str: + msg = [ + f'Gender: {self.gender.upper()}', + f'Number of joints: {self.J_regressor.shape[0]}', + f'Betas: {self.num_betas}', + ] + return '\n'.join(msg) + + def forward( + self, + betas: Optional[Tensor] = None, + body_pose: Optional[Tensor] = None, + global_orient: Optional[Tensor] = None, + transl: Optional[Tensor] = None, + return_verts=True, + return_full_pose: bool = False, + pose2rot: bool = True, + **kwargs + ) -> SMPLOutput: + ''' Forward pass for the SMPL model + + Parameters + ---------- + global_orient: torch.tensor, optional, shape Bx3 + If given, ignore the member variable and use it as the global + rotation of the body. Useful if someone wishes to predicts this + with an external model. (default=None) + betas: torch.tensor, optional, shape BxN_b + If given, ignore the member variable `betas` and use it + instead. For example, it can used if shape parameters + `betas` are predicted from some external model. + (default=None) + body_pose: torch.tensor, optional, shape Bx(J*3) + If given, ignore the member variable `body_pose` and use it + instead. For example, it can used if someone predicts the + pose of the body joints are predicted from some external model. + It should be a tensor that contains joint rotations in + axis-angle format. (default=None) + transl: torch.tensor, optional, shape Bx3 + If given, ignore the member variable `transl` and use it + instead. For example, it can used if the translation + `transl` is predicted from some external model. + (default=None) + return_verts: bool, optional + Return the vertices. (default=True) + return_full_pose: bool, optional + Returns the full axis-angle pose vector (default=False) + + Returns + ------- + ''' + # If no shape and pose parameters are passed along, then use the + # ones from the module + global_orient = (global_orient if global_orient is not None else + self.global_orient) + body_pose = body_pose if body_pose is not None else self.body_pose + betas = betas if betas is not None else self.betas + + apply_trans = transl is not None or hasattr(self, 'transl') + if transl is None and hasattr(self, 'transl'): + transl = self.transl + + full_pose = torch.cat([global_orient, body_pose], dim=1) + + batch_size = max(betas.shape[0], global_orient.shape[0], + body_pose.shape[0]) + + if betas.shape[0] != batch_size: + num_repeats = int(batch_size / betas.shape[0]) + betas = betas.expand(num_repeats, -1) + + vertices, joints = lbs(betas, full_pose, self.v_template, + self.shapedirs, self.posedirs, + self.J_regressor, self.parents, + self.lbs_weights, pose2rot=pose2rot) + + joints = self.vertex_joint_selector(vertices, joints) + # Map the joints to the current dataset + if self.joint_mapper is not None: + joints = self.joint_mapper(joints) + + if apply_trans: + joints += transl.unsqueeze(dim=1) + vertices += transl.unsqueeze(dim=1) + + output = SMPLOutput(vertices=vertices if return_verts else None, + global_orient=global_orient, + body_pose=body_pose, + joints=joints, + betas=betas, + full_pose=full_pose if return_full_pose else None) + + return output + + +class SMPLLayer(SMPL): + def __init__( + self, + *args, + **kwargs + ) -> None: + # Just create a SMPL module without any member variables + super(SMPLLayer, self).__init__( + create_body_pose=False, + create_betas=False, + create_global_orient=False, + create_transl=False, + *args, + **kwargs, + ) + + def forward( + self, + betas: Optional[Tensor] = None, + body_pose: Optional[Tensor] = None, + global_orient: Optional[Tensor] = None, + transl: Optional[Tensor] = None, + return_verts=True, + return_full_pose: bool = False, + pose2rot: bool = True, + **kwargs + ) -> SMPLOutput: + ''' Forward pass for the SMPL model + + Parameters + ---------- + global_orient: torch.tensor, optional, shape Bx3x3 + Global rotation of the body. Useful if someone wishes to + predicts this with an external model. It is expected to be in + rotation matrix format. (default=None) + betas: torch.tensor, optional, shape BxN_b + Shape parameters. For example, it can used if shape parameters + `betas` are predicted from some external model. + (default=None) + body_pose: torch.tensor, optional, shape BxJx3x3 + Body pose. For example, it can used if someone predicts the + pose of the body joints are predicted from some external model. + It should be a tensor that contains joint rotations in + rotation matrix format. (default=None) + transl: torch.tensor, optional, shape Bx3 + Translation vector of the body. + For example, it can used if the translation + `transl` is predicted from some external model. + (default=None) + return_verts: bool, optional + Return the vertices. (default=True) + return_full_pose: bool, optional + Returns the full axis-angle pose vector (default=False) + + Returns + ------- + ''' + model_vars = [betas, global_orient, body_pose, transl] + batch_size = 1 + for var in model_vars: + if var is None: + continue + batch_size = max(batch_size, len(var)) + device, dtype = self.shapedirs.device, self.shapedirs.dtype + if global_orient is None: + global_orient = torch.eye(3, device=device, dtype=dtype).view( + 1, 1, 3, 3).expand(batch_size, -1, -1, -1).contiguous() + if body_pose is None: + body_pose = torch.eye(3, device=device, dtype=dtype).view( + 1, 1, 3, 3).expand( + batch_size, self.NUM_BODY_JOINTS, -1, -1).contiguous() + if betas is None: + betas = torch.zeros([batch_size, self.num_betas], + dtype=dtype, device=device) + if transl is None: + transl = torch.zeros([batch_size, 3], dtype=dtype, device=device) + full_pose = torch.cat( + [global_orient.reshape(-1, 1, 3, 3), + body_pose.reshape(-1, self.NUM_BODY_JOINTS, 3, 3)], + dim=1) + + vertices, joints = lbs(betas, full_pose, self.v_template, + self.shapedirs, self.posedirs, + self.J_regressor, self.parents, + self.lbs_weights, + pose2rot=False) + + joints = self.vertex_joint_selector(vertices, joints) + # Map the joints to the current dataset + if self.joint_mapper is not None: + joints = self.joint_mapper(joints) + + if transl is not None: + joints += transl.unsqueeze(dim=1) + vertices += transl.unsqueeze(dim=1) + + output = SMPLOutput(vertices=vertices if return_verts else None, + global_orient=global_orient, + body_pose=body_pose, + joints=joints, + betas=betas, + full_pose=full_pose if return_full_pose else None) + + return output + + +class SMPLH(SMPL): + + # The hand joints are replaced by MANO + NUM_BODY_JOINTS = SMPL.NUM_JOINTS - 2 + NUM_HAND_JOINTS = 15 + NUM_JOINTS = NUM_BODY_JOINTS + 2 * NUM_HAND_JOINTS + + def __init__( + self, model_path, + kid_template_path: str = '', + data_struct: Optional[Struct] = None, + create_left_hand_pose: bool = True, + left_hand_pose: Optional[Tensor] = None, + create_right_hand_pose: bool = True, + right_hand_pose: Optional[Tensor] = None, + use_pca: bool = True, + num_pca_comps: int = 6, + flat_hand_mean: bool = False, + batch_size: int = 1, + gender: str = 'neutral', + age: str = 'adult', + dtype=torch.float32, + vertex_ids=None, + use_compressed: bool = True, + ext: str = 'pkl', + **kwargs + ) -> None: + ''' SMPLH model constructor + + Parameters + ---------- + model_path: str + The path to the folder or to the file where the model + parameters are stored + data_struct: Strct + A struct object. If given, then the parameters of the model are + read from the object. Otherwise, the model tries to read the + parameters from the given `model_path`. (default = None) + create_left_hand_pose: bool, optional + Flag for creating a member variable for the pose of the left + hand. (default = True) + left_hand_pose: torch.tensor, optional, BxP + The default value for the left hand pose member variable. + (default = None) + create_right_hand_pose: bool, optional + Flag for creating a member variable for the pose of the right + hand. (default = True) + right_hand_pose: torch.tensor, optional, BxP + The default value for the right hand pose member variable. + (default = None) + num_pca_comps: int, optional + The number of PCA components to use for each hand. + (default = 6) + flat_hand_mean: bool, optional + If False, then the pose of the hand is initialized to False. + batch_size: int, optional + The batch size used for creating the member variables + gender: str, optional + Which gender to load + dtype: torch.dtype, optional + The data type for the created variables + vertex_ids: dict, optional + A dictionary containing the indices of the extra vertices that + will be selected + ''' + + self.num_pca_comps = num_pca_comps + # If no data structure is passed, then load the data from the given + # model folder + if data_struct is None: + # Load the model + if osp.isdir(model_path): + model_fn = 'SMPLH_{}.{ext}'.format(gender.upper(), ext=ext) + smplh_path = os.path.join(model_path, model_fn) + else: + smplh_path = model_path + assert osp.exists(smplh_path), 'Path {} does not exist!'.format( + smplh_path) + + if ext == 'pkl': + with open(smplh_path, 'rb') as smplh_file: + model_data = pickle.load(smplh_file, encoding='latin1') + elif ext == 'npz': + model_data = np.load(smplh_path, allow_pickle=True) + else: + raise ValueError('Unknown extension: {}'.format(ext)) + data_struct = Struct(**model_data) + + if vertex_ids is None: + vertex_ids = VERTEX_IDS['smplh'] + + super(SMPLH, self).__init__( + model_path=model_path, + kid_template_path=kid_template_path, + data_struct=data_struct, + batch_size=batch_size, vertex_ids=vertex_ids, gender=gender, age=age, + use_compressed=use_compressed, dtype=dtype, ext=ext, **kwargs) + + self.use_pca = use_pca + self.num_pca_comps = num_pca_comps + self.flat_hand_mean = flat_hand_mean + + left_hand_components = data_struct.hands_componentsl[:num_pca_comps] + right_hand_components = data_struct.hands_componentsr[:num_pca_comps] + + self.np_left_hand_components = left_hand_components + self.np_right_hand_components = right_hand_components + if self.use_pca: + self.register_buffer( + 'left_hand_components', + torch.tensor(left_hand_components, dtype=dtype)) + self.register_buffer( + 'right_hand_components', + torch.tensor(right_hand_components, dtype=dtype)) + + if self.flat_hand_mean: + left_hand_mean = np.zeros_like(data_struct.hands_meanl) + else: + left_hand_mean = data_struct.hands_meanl + + if self.flat_hand_mean: + right_hand_mean = np.zeros_like(data_struct.hands_meanr) + else: + right_hand_mean = data_struct.hands_meanr + + self.register_buffer('left_hand_mean', + to_tensor(left_hand_mean, dtype=self.dtype)) + self.register_buffer('right_hand_mean', + to_tensor(right_hand_mean, dtype=self.dtype)) + + # Create the buffers for the pose of the left hand + hand_pose_dim = num_pca_comps if use_pca else 3 * self.NUM_HAND_JOINTS + if create_left_hand_pose: + if left_hand_pose is None: + default_lhand_pose = torch.zeros([batch_size, hand_pose_dim], + dtype=dtype) + else: + default_lhand_pose = torch.tensor(left_hand_pose, dtype=dtype) + + left_hand_pose_param = nn.Parameter(default_lhand_pose, + requires_grad=True) + self.register_parameter('left_hand_pose', + left_hand_pose_param) + + if create_right_hand_pose: + if right_hand_pose is None: + default_rhand_pose = torch.zeros([batch_size, hand_pose_dim], + dtype=dtype) + else: + default_rhand_pose = torch.tensor(right_hand_pose, dtype=dtype) + + right_hand_pose_param = nn.Parameter(default_rhand_pose, + requires_grad=True) + self.register_parameter('right_hand_pose', + right_hand_pose_param) + + # Create the buffer for the mean pose. + pose_mean_tensor = self.create_mean_pose( + data_struct, flat_hand_mean=flat_hand_mean) + if not torch.is_tensor(pose_mean_tensor): + pose_mean_tensor = torch.tensor(pose_mean_tensor, dtype=dtype) + self.register_buffer('pose_mean', pose_mean_tensor) + + def create_mean_pose(self, data_struct, flat_hand_mean=False): + # Create the array for the mean pose. If flat_hand is false, then use + # the mean that is given by the data, rather than the flat open hand + global_orient_mean = torch.zeros([3], dtype=self.dtype) + body_pose_mean = torch.zeros([self.NUM_BODY_JOINTS * 3], + dtype=self.dtype) + + pose_mean = torch.cat([global_orient_mean, body_pose_mean, + self.left_hand_mean, + self.right_hand_mean], dim=0) + return pose_mean + + def name(self) -> str: + return 'SMPL+H' + + def extra_repr(self): + msg = super(SMPLH, self).extra_repr() + msg = [msg] + if self.use_pca: + msg.append(f'Number of PCA components: {self.num_pca_comps}') + msg.append(f'Flat hand mean: {self.flat_hand_mean}') + return '\n'.join(msg) + + def forward( + self, + betas: Optional[Tensor] = None, + global_orient: Optional[Tensor] = None, + body_pose: Optional[Tensor] = None, + left_hand_pose: Optional[Tensor] = None, + right_hand_pose: Optional[Tensor] = None, + transl: Optional[Tensor] = None, + return_verts: bool = True, + return_full_pose: bool = False, + pose2rot: bool = True, + **kwargs + ) -> SMPLHOutput: + ''' + ''' + + # If no shape and pose parameters are passed along, then use the + # ones from the module + global_orient = (global_orient if global_orient is not None else + self.global_orient) + body_pose = body_pose if body_pose is not None else self.body_pose + betas = betas if betas is not None else self.betas + left_hand_pose = (left_hand_pose if left_hand_pose is not None else + self.left_hand_pose) + right_hand_pose = (right_hand_pose if right_hand_pose is not None else + self.right_hand_pose) + + apply_trans = transl is not None or hasattr(self, 'transl') + if transl is None: + if hasattr(self, 'transl'): + transl = self.transl + + if self.use_pca: + left_hand_pose = torch.einsum( + 'bi,ij->bj', [left_hand_pose, self.left_hand_components]) + right_hand_pose = torch.einsum( + 'bi,ij->bj', [right_hand_pose, self.right_hand_components]) + + full_pose = torch.cat([global_orient, body_pose, + left_hand_pose, + right_hand_pose], dim=1) + + full_pose += self.pose_mean + + vertices, joints = lbs(betas, full_pose, self.v_template, + self.shapedirs, self.posedirs, + self.J_regressor, self.parents, + self.lbs_weights, pose2rot=pose2rot) + + # Add any extra joints that might be needed + joints = self.vertex_joint_selector(vertices, joints) + if self.joint_mapper is not None: + joints = self.joint_mapper(joints) + + if apply_trans: + joints += transl.unsqueeze(dim=1) + vertices += transl.unsqueeze(dim=1) + + output = SMPLHOutput(vertices=vertices if return_verts else None, + joints=joints, + betas=betas, + global_orient=global_orient, + body_pose=body_pose, + left_hand_pose=left_hand_pose, + right_hand_pose=right_hand_pose, + full_pose=full_pose if return_full_pose else None) + + return output + + +class SMPLHLayer(SMPLH): + + def __init__( + self, *args, **kwargs + ) -> None: + ''' SMPL+H as a layer model constructor + ''' + super(SMPLHLayer, self).__init__( + create_global_orient=False, + create_body_pose=False, + create_left_hand_pose=False, + create_right_hand_pose=False, + create_betas=False, + create_transl=False, + *args, + **kwargs) + + def forward( + self, + betas: Optional[Tensor] = None, + global_orient: Optional[Tensor] = None, + body_pose: Optional[Tensor] = None, + left_hand_pose: Optional[Tensor] = None, + right_hand_pose: Optional[Tensor] = None, + transl: Optional[Tensor] = None, + return_verts: bool = True, + return_full_pose: bool = False, + pose2rot: bool = True, + **kwargs + ) -> SMPLHOutput: + ''' Forward pass for the SMPL+H model + + Parameters + ---------- + global_orient: torch.tensor, optional, shape Bx3x3 + Global rotation of the body. Useful if someone wishes to + predicts this with an external model. It is expected to be in + rotation matrix format. (default=None) + betas: torch.tensor, optional, shape BxN_b + Shape parameters. For example, it can used if shape parameters + `betas` are predicted from some external model. + (default=None) + body_pose: torch.tensor, optional, shape BxJx3x3 + If given, ignore the member variable `body_pose` and use it + instead. For example, it can used if someone predicts the + pose of the body joints are predicted from some external model. + It should be a tensor that contains joint rotations in + rotation matrix format. (default=None) + left_hand_pose: torch.tensor, optional, shape Bx15x3x3 + If given, contains the pose of the left hand. + It should be a tensor that contains joint rotations in + rotation matrix format. (default=None) + right_hand_pose: torch.tensor, optional, shape Bx15x3x3 + If given, contains the pose of the right hand. + It should be a tensor that contains joint rotations in + rotation matrix format. (default=None) + transl: torch.tensor, optional, shape Bx3 + Translation vector of the body. + For example, it can used if the translation + `transl` is predicted from some external model. + (default=None) + return_verts: bool, optional + Return the vertices. (default=True) + return_full_pose: bool, optional + Returns the full axis-angle pose vector (default=False) + + Returns + ------- + ''' + model_vars = [betas, global_orient, body_pose, transl, left_hand_pose, + right_hand_pose] + batch_size = 1 + for var in model_vars: + if var is None: + continue + batch_size = max(batch_size, len(var)) + device, dtype = self.shapedirs.device, self.shapedirs.dtype + if global_orient is None: + global_orient = torch.eye(3, device=device, dtype=dtype).view( + 1, 1, 3, 3).expand(batch_size, -1, -1, -1).contiguous() + if body_pose is None: + body_pose = torch.eye(3, device=device, dtype=dtype).view( + 1, 1, 3, 3).expand(batch_size, 21, -1, -1).contiguous() + if left_hand_pose is None: + left_hand_pose = torch.eye(3, device=device, dtype=dtype).view( + 1, 1, 3, 3).expand(batch_size, 15, -1, -1).contiguous() + if right_hand_pose is None: + right_hand_pose = torch.eye(3, device=device, dtype=dtype).view( + 1, 1, 3, 3).expand(batch_size, 15, -1, -1).contiguous() + if betas is None: + betas = torch.zeros([batch_size, self.num_betas], + dtype=dtype, device=device) + if transl is None: + transl = torch.zeros([batch_size, 3], dtype=dtype, device=device) + + # Concatenate all pose vectors + full_pose = torch.cat( + [global_orient.reshape(-1, 1, 3, 3), + body_pose.reshape(-1, self.NUM_BODY_JOINTS, 3, 3), + left_hand_pose.reshape(-1, self.NUM_HAND_JOINTS, 3, 3), + right_hand_pose.reshape(-1, self.NUM_HAND_JOINTS, 3, 3)], + dim=1) + + vertices, joints = lbs(betas, full_pose, self.v_template, + self.shapedirs, self.posedirs, + self.J_regressor, self.parents, + self.lbs_weights, pose2rot=False) + + # Add any extra joints that might be needed + joints = self.vertex_joint_selector(vertices, joints) + if self.joint_mapper is not None: + joints = self.joint_mapper(joints) + + if transl is not None: + joints += transl.unsqueeze(dim=1) + vertices += transl.unsqueeze(dim=1) + + output = SMPLHOutput(vertices=vertices if return_verts else None, + joints=joints, + betas=betas, + global_orient=global_orient, + body_pose=body_pose, + left_hand_pose=left_hand_pose, + right_hand_pose=right_hand_pose, + full_pose=full_pose if return_full_pose else None) + + return output + + +class SMPLX(SMPLH): + ''' + SMPL-X (SMPL eXpressive) is a unified body model, with shape parameters + trained jointly for the face, hands and body. + SMPL-X uses standard vertex based linear blend skinning with learned + corrective blend shapes, has N=10475 vertices and K=54 joints, + which includes joints for the neck, jaw, eyeballs and fingers. + ''' + + NUM_BODY_JOINTS = SMPLH.NUM_BODY_JOINTS # 21 + NUM_HAND_JOINTS = 15 + NUM_FACE_JOINTS = 3 + NUM_JOINTS = NUM_BODY_JOINTS + 2 * NUM_HAND_JOINTS + NUM_FACE_JOINTS + EXPRESSION_SPACE_DIM = 100 + NECK_IDX = 12 + + def __init__( + self, model_path: str, + kid_template_path: str = '', + num_expression_coeffs: int = 10, + create_expression: bool = True, + expression: Optional[Tensor] = None, + create_jaw_pose: bool = True, + jaw_pose: Optional[Tensor] = None, + create_leye_pose: bool = True, + leye_pose: Optional[Tensor] = None, + create_reye_pose=True, + reye_pose: Optional[Tensor] = None, + use_face_contour: bool = False, + batch_size: int = 1, + gender: str = 'neutral', + age: str = 'adult', + dtype=torch.float32, + ext: str = 'npz', + **kwargs + ) -> None: + ''' SMPLX model constructor + + Parameters + ---------- + model_path: str + The path to the folder or to the file where the model + parameters are stored + num_expression_coeffs: int, optional + Number of expression components to use + (default = 10). + create_expression: bool, optional + Flag for creating a member variable for the expression space + (default = True). + expression: torch.tensor, optional, Bx10 + The default value for the expression member variable. + (default = None) + create_jaw_pose: bool, optional + Flag for creating a member variable for the jaw pose. + (default = False) + jaw_pose: torch.tensor, optional, Bx3 + The default value for the jaw pose variable. + (default = None) + create_leye_pose: bool, optional + Flag for creating a member variable for the left eye pose. + (default = False) + leye_pose: torch.tensor, optional, Bx10 + The default value for the left eye pose variable. + (default = None) + create_reye_pose: bool, optional + Flag for creating a member variable for the right eye pose. + (default = False) + reye_pose: torch.tensor, optional, Bx10 + The default value for the right eye pose variable. + (default = None) + use_face_contour: bool, optional + Whether to compute the keypoints that form the facial contour + batch_size: int, optional + The batch size used for creating the member variables + gender: str, optional + Which gender to load + dtype: torch.dtype + The data type for the created variables + ''' + + # Load the model + if osp.isdir(model_path): + model_fn = 'SMPLX_{}.{ext}'.format(gender.upper(), ext=ext) + smplx_path = os.path.join(model_path, model_fn) + else: + smplx_path = model_path + assert osp.exists(smplx_path), 'Path {} does not exist!'.format( + smplx_path) + + if ext == 'pkl': + with open(smplx_path, 'rb') as smplx_file: + model_data = pickle.load(smplx_file, encoding='latin1') + elif ext == 'npz': + model_data = np.load(smplx_path, allow_pickle=True) + else: + raise ValueError('Unknown extension: {}'.format(ext)) + + # print(colored(f"Use SMPL-X: {smplx_path}", "green")) + + data_struct = Struct(**model_data) + + super(SMPLX, self).__init__( + model_path=model_path, + kid_template_path=kid_template_path, + data_struct=data_struct, + dtype=dtype, + batch_size=batch_size, + vertex_ids=VERTEX_IDS['smplx'], + gender=gender, age=age, ext=ext, + **kwargs) + + lmk_faces_idx = data_struct.lmk_faces_idx + self.register_buffer('lmk_faces_idx', + torch.tensor(lmk_faces_idx, dtype=torch.long)) + lmk_bary_coords = data_struct.lmk_bary_coords + self.register_buffer('lmk_bary_coords', + torch.tensor(lmk_bary_coords, dtype=dtype)) + + self.use_face_contour = use_face_contour + if self.use_face_contour: + dynamic_lmk_faces_idx = data_struct.dynamic_lmk_faces_idx + dynamic_lmk_faces_idx = torch.tensor( + dynamic_lmk_faces_idx, + dtype=torch.long) + self.register_buffer('dynamic_lmk_faces_idx', + dynamic_lmk_faces_idx) + + dynamic_lmk_bary_coords = data_struct.dynamic_lmk_bary_coords + dynamic_lmk_bary_coords = torch.tensor( + dynamic_lmk_bary_coords, dtype=dtype) + self.register_buffer('dynamic_lmk_bary_coords', + dynamic_lmk_bary_coords) + + neck_kin_chain = find_joint_kin_chain(self.NECK_IDX, self.parents) + self.register_buffer( + 'neck_kin_chain', + torch.tensor(neck_kin_chain, dtype=torch.long)) + + if create_jaw_pose: + if jaw_pose is None: + default_jaw_pose = torch.zeros([batch_size, 3], dtype=dtype) + else: + default_jaw_pose = torch.tensor(jaw_pose, dtype=dtype) + jaw_pose_param = nn.Parameter(default_jaw_pose, + requires_grad=True) + self.register_parameter('jaw_pose', jaw_pose_param) + + if create_leye_pose: + if leye_pose is None: + default_leye_pose = torch.zeros([batch_size, 3], dtype=dtype) + else: + default_leye_pose = torch.tensor(leye_pose, dtype=dtype) + leye_pose_param = nn.Parameter(default_leye_pose, + requires_grad=True) + self.register_parameter('leye_pose', leye_pose_param) + + if create_reye_pose: + if reye_pose is None: + default_reye_pose = torch.zeros([batch_size, 3], dtype=dtype) + else: + default_reye_pose = torch.tensor(reye_pose, dtype=dtype) + reye_pose_param = nn.Parameter(default_reye_pose, + requires_grad=True) + self.register_parameter('reye_pose', reye_pose_param) + + shapedirs = data_struct.shapedirs + if len(shapedirs.shape) < 3: + shapedirs = shapedirs[:, :, None] + if (shapedirs.shape[-1] < self.SHAPE_SPACE_DIM + + self.EXPRESSION_SPACE_DIM): + # print(f'WARNING: You are using a {self.name()} model, with only' + # ' 10 shape and 10 expression coefficients.') + expr_start_idx = 10 + expr_end_idx = 20 + num_expression_coeffs = min(num_expression_coeffs, 10) + else: + expr_start_idx = self.SHAPE_SPACE_DIM + expr_end_idx = self.SHAPE_SPACE_DIM + num_expression_coeffs + num_expression_coeffs = min( + num_expression_coeffs, self.EXPRESSION_SPACE_DIM) + + self._num_expression_coeffs = num_expression_coeffs + + expr_dirs = shapedirs[:, :, expr_start_idx:expr_end_idx] + self.register_buffer( + 'expr_dirs', to_tensor(to_np(expr_dirs), dtype=dtype)) + + if create_expression: + if expression is None: + default_expression = torch.zeros( + [batch_size, self.num_expression_coeffs], dtype=dtype) + else: + default_expression = torch.tensor(expression, dtype=dtype) + expression_param = nn.Parameter(default_expression, + requires_grad=True) + self.register_parameter('expression', expression_param) + + def name(self) -> str: + return 'SMPL-X' + + @property + def num_expression_coeffs(self): + return self._num_expression_coeffs + + def create_mean_pose(self, data_struct, flat_hand_mean=False): + # Create the array for the mean pose. If flat_hand is false, then use + # the mean that is given by the data, rather than the flat open hand + global_orient_mean = torch.zeros([3], dtype=self.dtype) + body_pose_mean = torch.zeros([self.NUM_BODY_JOINTS * 3], + dtype=self.dtype) + jaw_pose_mean = torch.zeros([3], dtype=self.dtype) + leye_pose_mean = torch.zeros([3], dtype=self.dtype) + reye_pose_mean = torch.zeros([3], dtype=self.dtype) + + pose_mean = np.concatenate([global_orient_mean, body_pose_mean, + jaw_pose_mean, + leye_pose_mean, reye_pose_mean, + self.left_hand_mean, self.right_hand_mean], + axis=0) + + return pose_mean + + def extra_repr(self): + msg = super(SMPLX, self).extra_repr() + msg = [ + msg, + f'Number of Expression Coefficients: {self.num_expression_coeffs}' + ] + return '\n'.join(msg) + + def forward( + self, + betas: Optional[Tensor] = None, + global_orient: Optional[Tensor] = None, + body_pose: Optional[Tensor] = None, + left_hand_pose: Optional[Tensor] = None, + right_hand_pose: Optional[Tensor] = None, + transl: Optional[Tensor] = None, + expression: Optional[Tensor] = None, + jaw_pose: Optional[Tensor] = None, + leye_pose: Optional[Tensor] = None, + reye_pose: Optional[Tensor] = None, + return_verts: bool = True, + return_full_pose: bool = False, + pose2rot: bool = True, + return_joint_transformation: bool = False, + return_vertex_transformation: bool = False, + **kwargs + ) -> SMPLXOutput: + ''' + Forward pass for the SMPLX model + + Parameters + ---------- + global_orient: torch.tensor, optional, shape Bx3 + If given, ignore the member variable and use it as the global + rotation of the body. Useful if someone wishes to predicts this + with an external model. (default=None) + betas: torch.tensor, optional, shape BxN_b + If given, ignore the member variable `betas` and use it + instead. For example, it can used if shape parameters + `betas` are predicted from some external model. + (default=None) + expression: torch.tensor, optional, shape BxN_e + If given, ignore the member variable `expression` and use it + instead. For example, it can used if expression parameters + `expression` are predicted from some external model. + body_pose: torch.tensor, optional, shape Bx(J*3) + If given, ignore the member variable `body_pose` and use it + instead. For example, it can used if someone predicts the + pose of the body joints are predicted from some external model. + It should be a tensor that contains joint rotations in + axis-angle format. (default=None) + left_hand_pose: torch.tensor, optional, shape BxP + If given, ignore the member variable `left_hand_pose` and + use this instead. It should either contain PCA coefficients or + joint rotations in axis-angle format. + right_hand_pose: torch.tensor, optional, shape BxP + If given, ignore the member variable `right_hand_pose` and + use this instead. It should either contain PCA coefficients or + joint rotations in axis-angle format. + jaw_pose: torch.tensor, optional, shape Bx3 + If given, ignore the member variable `jaw_pose` and + use this instead. It should either joint rotations in + axis-angle format. + transl: torch.tensor, optional, shape Bx3 + If given, ignore the member variable `transl` and use it + instead. For example, it can used if the translation + `transl` is predicted from some external model. + (default=None) + return_verts: bool, optional + Return the vertices. (default=True) + return_full_pose: bool, optional + Returns the full axis-angle pose vector (default=False) + + Returns + ------- + output: ModelOutput + A named tuple of type `ModelOutput` + ''' + + # If no shape and pose parameters are passed along, then use the + # ones from the module + global_orient = (global_orient if global_orient is not None else + self.global_orient) + body_pose = body_pose if body_pose is not None else self.body_pose + betas = betas if betas is not None else self.betas + + left_hand_pose = (left_hand_pose if left_hand_pose is not None else + self.left_hand_pose) + right_hand_pose = (right_hand_pose if right_hand_pose is not None else + self.right_hand_pose) + jaw_pose = jaw_pose if jaw_pose is not None else self.jaw_pose + leye_pose = leye_pose if leye_pose is not None else self.leye_pose + reye_pose = reye_pose if reye_pose is not None else self.reye_pose + expression = expression if expression is not None else self.expression + + apply_trans = transl is not None or hasattr(self, 'transl') + if transl is None: + if hasattr(self, 'transl'): + transl = self.transl + + if self.use_pca: + left_hand_pose = torch.einsum('bi,ij->bj', [left_hand_pose, self.left_hand_components]) + right_hand_pose = torch.einsum( + 'bi,ij->bj', [right_hand_pose, self.right_hand_components]) + + full_pose = torch.cat([global_orient, body_pose, + jaw_pose, leye_pose, reye_pose, + left_hand_pose, + right_hand_pose], dim=1) + + # Add the mean pose of the model. Does not affect the body, only the + # hands when flat_hand_mean == False + full_pose += self.pose_mean + + batch_size = max(betas.shape[0], global_orient.shape[0], + body_pose.shape[0]) + # Concatenate the shape and expression coefficients + scale = int(batch_size / betas.shape[0]) + if scale > 1: + betas = betas.expand(scale, -1) + shape_components = torch.cat([betas, expression], dim=-1) + + shapedirs = torch.cat([self.shapedirs, self.expr_dirs], dim=-1) + + if return_joint_transformation or return_vertex_transformation: + vertices, joints, joint_transformation, vertex_transformation = lbs(shape_components, full_pose, self.v_template, + shapedirs, self.posedirs, + self.J_regressor, self.parents, + self.lbs_weights, pose2rot=pose2rot, return_transformation=True + ) + else: + vertices, joints = lbs(shape_components, full_pose, self.v_template, + shapedirs, self.posedirs, + self.J_regressor, self.parents, + self.lbs_weights, pose2rot=pose2rot, + ) + + lmk_faces_idx = self.lmk_faces_idx.unsqueeze( + dim=0).expand(batch_size, -1).contiguous() + lmk_bary_coords = self.lmk_bary_coords.unsqueeze(dim=0).repeat( + self.batch_size, 1, 1) + if self.use_face_contour: + lmk_idx_and_bcoords = find_dynamic_lmk_idx_and_bcoords( + vertices, full_pose, self.dynamic_lmk_faces_idx, + self.dynamic_lmk_bary_coords, + self.neck_kin_chain, + pose2rot=True, + ) + dyn_lmk_faces_idx, dyn_lmk_bary_coords = lmk_idx_and_bcoords + + lmk_faces_idx = torch.cat([lmk_faces_idx, + dyn_lmk_faces_idx], 1) + lmk_bary_coords = torch.cat( + [lmk_bary_coords.expand(batch_size, -1, -1), + dyn_lmk_bary_coords], 1) + + landmarks = vertices2landmarks(vertices, self.faces_tensor, + lmk_faces_idx, + lmk_bary_coords) + + # Add any extra joints that might be needed + joints = self.vertex_joint_selector(vertices, joints) + # Add the landmarks to the joints + joints = torch.cat([joints, landmarks], dim=1) + # Map the joints to the current dataset + + if self.joint_mapper is not None: + joints = self.joint_mapper(joints=joints, vertices=vertices) + + if apply_trans: + joints += transl.unsqueeze(dim=1) + vertices += transl.unsqueeze(dim=1) + + output = SMPLXOutput(vertices=vertices if return_verts else None, + joints=joints, + betas=betas, + expression=expression, + global_orient=global_orient, + body_pose=body_pose, + left_hand_pose=left_hand_pose, + right_hand_pose=right_hand_pose, + jaw_pose=jaw_pose, + full_pose=full_pose if return_full_pose else None, + joint_transformation=joint_transformation if return_joint_transformation else None, + vertex_transformation=vertex_transformation if return_vertex_transformation else None) + return output + + +class SMPLXLayer(SMPLX): + def __init__( + self, + *args, + **kwargs + ) -> None: + # Just create a SMPLX module without any member variables + super(SMPLXLayer, self).__init__( + create_global_orient=False, + create_body_pose=False, + create_left_hand_pose=False, + create_right_hand_pose=False, + create_jaw_pose=False, + create_leye_pose=False, + create_reye_pose=False, + create_betas=False, + create_expression=False, + create_transl=False, + *args, **kwargs, + ) + + def forward( + self, + betas: Optional[Tensor] = None, + global_orient: Optional[Tensor] = None, + body_pose: Optional[Tensor] = None, + left_hand_pose: Optional[Tensor] = None, + right_hand_pose: Optional[Tensor] = None, + transl: Optional[Tensor] = None, + expression: Optional[Tensor] = None, + jaw_pose: Optional[Tensor] = None, + leye_pose: Optional[Tensor] = None, + reye_pose: Optional[Tensor] = None, + return_verts: bool = True, + return_full_pose: bool = False, + **kwargs + ) -> SMPLXOutput: + ''' + Forward pass for the SMPLX model + + Parameters + ---------- + global_orient: torch.tensor, optional, shape Bx3x3 + If given, ignore the member variable and use it as the global + rotation of the body. Useful if someone wishes to predicts this + with an external model. It is expected to be in rotation matrix + format. (default=None) + betas: torch.tensor, optional, shape BxN_b + If given, ignore the member variable `betas` and use it + instead. For example, it can used if shape parameters + `betas` are predicted from some external model. + (default=None) + expression: torch.tensor, optional, shape BxN_e + Expression coefficients. + For example, it can used if expression parameters + `expression` are predicted from some external model. + body_pose: torch.tensor, optional, shape BxJx3x3 + If given, ignore the member variable `body_pose` and use it + instead. For example, it can used if someone predicts the + pose of the body joints are predicted from some external model. + It should be a tensor that contains joint rotations in + rotation matrix format. (default=None) + left_hand_pose: torch.tensor, optional, shape Bx15x3x3 + If given, contains the pose of the left hand. + It should be a tensor that contains joint rotations in + rotation matrix format. (default=None) + right_hand_pose: torch.tensor, optional, shape Bx15x3x3 + If given, contains the pose of the right hand. + It should be a tensor that contains joint rotations in + rotation matrix format. (default=None) + jaw_pose: torch.tensor, optional, shape Bx3x3 + Jaw pose. It should either joint rotations in + rotation matrix format. + transl: torch.tensor, optional, shape Bx3 + Translation vector of the body. + For example, it can used if the translation + `transl` is predicted from some external model. + (default=None) + return_verts: bool, optional + Return the vertices. (default=True) + return_full_pose: bool, optional + Returns the full pose vector (default=False) + Returns + ------- + output: ModelOutput + A data class that contains the posed vertices and joints + ''' + device, dtype = self.shapedirs.device, self.shapedirs.dtype + + model_vars = [betas, global_orient, body_pose, transl, + expression, left_hand_pose, right_hand_pose, jaw_pose] + batch_size = 1 + for var in model_vars: + if var is None: + continue + batch_size = max(batch_size, len(var)) + + if global_orient is None: + global_orient = torch.eye(3, device=device, dtype=dtype).view( + 1, 1, 3, 3).expand(batch_size, -1, -1, -1).contiguous() + if body_pose is None: + body_pose = torch.eye(3, device=device, dtype=dtype).view( + 1, 1, 3, 3).expand( + batch_size, self.NUM_BODY_JOINTS, -1, -1).contiguous() + if left_hand_pose is None: + left_hand_pose = torch.eye(3, device=device, dtype=dtype).view( + 1, 1, 3, 3).expand(batch_size, 15, -1, -1).contiguous() + if right_hand_pose is None: + right_hand_pose = torch.eye(3, device=device, dtype=dtype).view( + 1, 1, 3, 3).expand(batch_size, 15, -1, -1).contiguous() + if jaw_pose is None: + jaw_pose = torch.eye(3, device=device, dtype=dtype).view( + 1, 1, 3, 3).expand(batch_size, -1, -1, -1).contiguous() + if leye_pose is None: + leye_pose = torch.eye(3, device=device, dtype=dtype).view( + 1, 1, 3, 3).expand(batch_size, -1, -1, -1).contiguous() + if reye_pose is None: + reye_pose = torch.eye(3, device=device, dtype=dtype).view( + 1, 1, 3, 3).expand(batch_size, -1, -1, -1).contiguous() + if expression is None: + expression = torch.zeros([batch_size, self.num_expression_coeffs], + dtype=dtype, device=device) + if betas is None: + betas = torch.zeros([batch_size, self.num_betas], + dtype=dtype, device=device) + if transl is None: + transl = torch.zeros([batch_size, 3], dtype=dtype, device=device) + + # Concatenate all pose vectors + full_pose = torch.cat( + [global_orient.reshape(-1, 1, 3, 3), + body_pose.reshape(-1, self.NUM_BODY_JOINTS, 3, 3), + jaw_pose.reshape(-1, 1, 3, 3), + leye_pose.reshape(-1, 1, 3, 3), + reye_pose.reshape(-1, 1, 3, 3), + left_hand_pose.reshape(-1, self.NUM_HAND_JOINTS, 3, 3), + right_hand_pose.reshape(-1, self.NUM_HAND_JOINTS, 3, 3)], + dim=1) + shape_components = torch.cat([betas, expression], dim=-1) + + shapedirs = torch.cat([self.shapedirs, self.expr_dirs], dim=-1) + + vertices, joints = lbs(shape_components, full_pose, self.v_template, + shapedirs, self.posedirs, + self.J_regressor, self.parents, + self.lbs_weights, + pose2rot=False, + ) + + lmk_faces_idx = self.lmk_faces_idx.unsqueeze( + dim=0).expand(batch_size, -1).contiguous() + lmk_bary_coords = self.lmk_bary_coords.unsqueeze(dim=0).repeat( + batch_size, 1, 1) + if self.use_face_contour: + lmk_idx_and_bcoords = find_dynamic_lmk_idx_and_bcoords( + vertices, full_pose, + self.dynamic_lmk_faces_idx, + self.dynamic_lmk_bary_coords, + self.neck_kin_chain, + pose2rot=False, + ) + dyn_lmk_faces_idx, dyn_lmk_bary_coords = lmk_idx_and_bcoords + + lmk_faces_idx = torch.cat([lmk_faces_idx, dyn_lmk_faces_idx], 1) + lmk_bary_coords = torch.cat( + [lmk_bary_coords.expand(batch_size, -1, -1), + dyn_lmk_bary_coords], 1) + + landmarks = vertices2landmarks(vertices, self.faces_tensor, + lmk_faces_idx, + lmk_bary_coords) + + # Add any extra joints that might be needed + joints = self.vertex_joint_selector(vertices, joints) + # Add the landmarks to the joints + joints = torch.cat([joints, landmarks], dim=1) + # Map the joints to the current dataset + + if self.joint_mapper is not None: + joints = self.joint_mapper(joints=joints, vertices=vertices) + + if transl is not None: + joints += transl.unsqueeze(dim=1) + vertices += transl.unsqueeze(dim=1) + + output = SMPLXOutput(vertices=vertices if return_verts else None, + joints=joints, + betas=betas, + expression=expression, + global_orient=global_orient, + body_pose=body_pose, + left_hand_pose=left_hand_pose, + right_hand_pose=right_hand_pose, + jaw_pose=jaw_pose, + transl=transl, + full_pose=full_pose if return_full_pose else None) + return output + + +class MANO(SMPL): + # The hand joints are replaced by MANO + NUM_BODY_JOINTS = 1 + NUM_HAND_JOINTS = 15 + NUM_JOINTS = NUM_BODY_JOINTS + NUM_HAND_JOINTS + + def __init__( + self, + model_path: str, + is_rhand: bool = True, + data_struct: Optional[Struct] = None, + create_hand_pose: bool = True, + hand_pose: Optional[Tensor] = None, + use_pca: bool = True, + num_pca_comps: int = 6, + flat_hand_mean: bool = False, + batch_size: int = 1, + dtype=torch.float32, + vertex_ids=None, + use_compressed: bool = True, + ext: str = 'pkl', + **kwargs + ) -> None: + ''' MANO model constructor + + Parameters + ---------- + model_path: str + The path to the folder or to the file where the model + parameters are stored + data_struct: Strct + A struct object. If given, then the parameters of the model are + read from the object. Otherwise, the model tries to read the + parameters from the given `model_path`. (default = None) + create_hand_pose: bool, optional + Flag for creating a member variable for the pose of the right + hand. (default = True) + hand_pose: torch.tensor, optional, BxP + The default value for the right hand pose member variable. + (default = None) + num_pca_comps: int, optional + The number of PCA components to use for each hand. + (default = 6) + flat_hand_mean: bool, optional + If False, then the pose of the hand is initialized to False. + batch_size: int, optional + The batch size used for creating the member variables + dtype: torch.dtype, optional + The data type for the created variables + vertex_ids: dict, optional + A dictionary containing the indices of the extra vertices that + will be selected + ''' + + self.num_pca_comps = num_pca_comps + self.is_rhand = is_rhand + # If no data structure is passed, then load the data from the given + # model folder + if data_struct is None: + # Load the model + if osp.isdir(model_path): + model_fn = 'MANO_{}.{ext}'.format( + 'RIGHT' if is_rhand else 'LEFT', ext=ext) + mano_path = os.path.join(model_path, model_fn) + else: + mano_path = model_path + self.is_rhand = True if 'RIGHT' in os.path.basename( + model_path) else False + assert osp.exists(mano_path), 'Path {} does not exist!'.format( + mano_path) + + if ext == 'pkl': + with open(mano_path, 'rb') as mano_file: + model_data = pickle.load(mano_file, encoding='latin1') + elif ext == 'npz': + model_data = np.load(mano_path, allow_pickle=True) + else: + raise ValueError('Unknown extension: {}'.format(ext)) + data_struct = Struct(**model_data) + + if vertex_ids is None: + vertex_ids = VERTEX_IDS['smplh'] + + super(MANO, self).__init__( + model_path=model_path, data_struct=data_struct, + batch_size=batch_size, vertex_ids=vertex_ids, + use_compressed=use_compressed, dtype=dtype, ext=ext, **kwargs) + + # add only MANO tips to the extra joints + self.vertex_joint_selector.extra_joints_idxs = to_tensor( + list(VERTEX_IDS['mano'].values()), dtype=torch.long) + + self.use_pca = use_pca + self.num_pca_comps = num_pca_comps + if self.num_pca_comps == 45: + self.use_pca = False + self.flat_hand_mean = flat_hand_mean + + hand_components = data_struct.hands_components[:num_pca_comps] + + self.np_hand_components = hand_components + + if self.use_pca: + self.register_buffer( + 'hand_components', + torch.tensor(hand_components, dtype=dtype)) + + if self.flat_hand_mean: + hand_mean = np.zeros_like(data_struct.hands_mean) + else: + hand_mean = data_struct.hands_mean + + self.register_buffer('hand_mean', + to_tensor(hand_mean, dtype=self.dtype)) + + # Create the buffers for the pose of the left hand + hand_pose_dim = num_pca_comps if use_pca else 3 * self.NUM_HAND_JOINTS + if create_hand_pose: + if hand_pose is None: + default_hand_pose = torch.zeros([batch_size, hand_pose_dim], + dtype=dtype) + else: + default_hand_pose = torch.tensor(hand_pose, dtype=dtype) + + hand_pose_param = nn.Parameter(default_hand_pose, + requires_grad=True) + self.register_parameter('hand_pose', + hand_pose_param) + + # Create the buffer for the mean pose. + pose_mean = self.create_mean_pose( + data_struct, flat_hand_mean=flat_hand_mean) + pose_mean_tensor = pose_mean.clone().to(dtype) + # pose_mean_tensor = torch.tensor(pose_mean, dtype=dtype) + self.register_buffer('pose_mean', pose_mean_tensor) + + def name(self) -> str: + return 'MANO' + + def create_mean_pose(self, data_struct, flat_hand_mean=False): + # Create the array for the mean pose. If flat_hand is false, then use + # the mean that is given by the data, rather than the flat open hand + global_orient_mean = torch.zeros([3], dtype=self.dtype) + pose_mean = torch.cat([global_orient_mean, self.hand_mean], dim=0) + return pose_mean + + def extra_repr(self): + msg = [super(MANO, self).extra_repr()] + if self.use_pca: + msg.append(f'Number of PCA components: {self.num_pca_comps}') + msg.append(f'Flat hand mean: {self.flat_hand_mean}') + return '\n'.join(msg) + + def forward( + self, + betas: Optional[Tensor] = None, + global_orient: Optional[Tensor] = None, + hand_pose: Optional[Tensor] = None, + transl: Optional[Tensor] = None, + return_verts: bool = True, + return_full_pose: bool = False, + **kwargs + ) -> MANOOutput: + ''' Forward pass for the MANO model + ''' + # If no shape and pose parameters are passed along, then use the + # ones from the module + global_orient = (global_orient if global_orient is not None else + self.global_orient) + betas = betas if betas is not None else self.betas + hand_pose = (hand_pose if hand_pose is not None else + self.hand_pose) + + apply_trans = transl is not None or hasattr(self, 'transl') + if transl is None: + if hasattr(self, 'transl'): + transl = self.transl + + if self.use_pca: + hand_pose = torch.einsum( + 'bi,ij->bj', [hand_pose, self.hand_components]) + + full_pose = torch.cat([global_orient, hand_pose], dim=1) + full_pose += self.pose_mean + + vertices, joints = lbs(betas, full_pose, self.v_template, + self.shapedirs, self.posedirs, + self.J_regressor, self.parents, + self.lbs_weights, pose2rot=True, + ) + + # # Add pre-selected extra joints that might be needed + # joints = self.vertex_joint_selector(vertices, joints) + + if self.joint_mapper is not None: + joints = self.joint_mapper(joints) + + if apply_trans: + joints = joints + transl.unsqueeze(dim=1) + vertices = vertices + transl.unsqueeze(dim=1) + + output = MANOOutput(vertices=vertices if return_verts else None, + joints=joints if return_verts else None, + betas=betas, + global_orient=global_orient, + hand_pose=hand_pose, + full_pose=full_pose if return_full_pose else None) + + return output + + +class MANOLayer(MANO): + def __init__(self, *args, **kwargs) -> None: + ''' MANO as a layer model constructor + ''' + super(MANOLayer, self).__init__( + create_global_orient=False, + create_hand_pose=False, + create_betas=False, + create_transl=False, + *args, **kwargs) + + def name(self) -> str: + return 'MANO' + + def forward( + self, + betas: Optional[Tensor] = None, + global_orient: Optional[Tensor] = None, + hand_pose: Optional[Tensor] = None, + transl: Optional[Tensor] = None, + return_verts: bool = True, + return_full_pose: bool = False, + **kwargs + ) -> MANOOutput: + ''' Forward pass for the MANO model + ''' + device, dtype = self.shapedirs.device, self.shapedirs.dtype + if global_orient is None: + batch_size = 1 + global_orient = torch.eye(3, device=device, dtype=dtype).view( + 1, 1, 3, 3).expand(batch_size, -1, -1, -1).contiguous() + else: + batch_size = global_orient.shape[0] + if hand_pose is None: + hand_pose = torch.eye(3, device=device, dtype=dtype).view( + 1, 1, 3, 3).expand(batch_size, 15, -1, -1).contiguous() + if betas is None: + betas = torch.zeros( + [batch_size, self.num_betas], dtype=dtype, device=device) + if transl is None: + transl = torch.zeros([batch_size, 3], dtype=dtype, device=device) + + full_pose = torch.cat([global_orient, hand_pose], dim=1) + vertices, joints = lbs(betas, full_pose, self.v_template, + self.shapedirs, self.posedirs, + self.J_regressor, self.parents, + self.lbs_weights, pose2rot=False) + + if self.joint_mapper is not None: + joints = self.joint_mapper(joints) + + if transl is not None: + joints = joints + transl.unsqueeze(dim=1) + vertices = vertices + transl.unsqueeze(dim=1) + + output = MANOOutput( + vertices=vertices if return_verts else None, + joints=joints if return_verts else None, + betas=betas, + global_orient=global_orient, + hand_pose=hand_pose, + full_pose=full_pose if return_full_pose else None) + + return output + + +class FLAME(SMPL): + NUM_JOINTS = 5 + SHAPE_SPACE_DIM = 300 + EXPRESSION_SPACE_DIM = 100 + NECK_IDX = 0 + + def __init__( + self, + model_path: str, + data_struct=None, + num_expression_coeffs=10, + create_expression: bool = True, + expression: Optional[Tensor] = None, + create_neck_pose: bool = True, + neck_pose: Optional[Tensor] = None, + create_jaw_pose: bool = True, + jaw_pose: Optional[Tensor] = None, + create_leye_pose: bool = True, + leye_pose: Optional[Tensor] = None, + create_reye_pose=True, + reye_pose: Optional[Tensor] = None, + use_face_contour=False, + batch_size: int = 1, + gender: str = 'neutral', + dtype: torch.dtype = torch.float32, + ext='pkl', + **kwargs + ) -> None: + ''' FLAME model constructor + + Parameters + ---------- + model_path: str + The path to the folder or to the file where the model + parameters are stored + num_expression_coeffs: int, optional + Number of expression components to use + (default = 10). + create_expression: bool, optional + Flag for creating a member variable for the expression space + (default = True). + expression: torch.tensor, optional, Bx10 + The default value for the expression member variable. + (default = None) + create_neck_pose: bool, optional + Flag for creating a member variable for the neck pose. + (default = False) + neck_pose: torch.tensor, optional, Bx3 + The default value for the neck pose variable. + (default = None) + create_jaw_pose: bool, optional + Flag for creating a member variable for the jaw pose. + (default = False) + jaw_pose: torch.tensor, optional, Bx3 + The default value for the jaw pose variable. + (default = None) + create_leye_pose: bool, optional + Flag for creating a member variable for the left eye pose. + (default = False) + leye_pose: torch.tensor, optional, Bx10 + The default value for the left eye pose variable. + (default = None) + create_reye_pose: bool, optional + Flag for creating a member variable for the right eye pose. + (default = False) + reye_pose: torch.tensor, optional, Bx10 + The default value for the right eye pose variable. + (default = None) + use_face_contour: bool, optional + Whether to compute the keypoints that form the facial contour + batch_size: int, optional + The batch size used for creating the member variables + gender: str, optional + Which gender to load + dtype: torch.dtype + The data type for the created variables + ''' + model_fn = f'FLAME_{gender.upper()}.{ext}' + flame_path = os.path.join(model_path, model_fn) + assert osp.exists(flame_path), 'Path {} does not exist!'.format( + flame_path) + if ext == 'npz': + file_data = np.load(flame_path, allow_pickle=True) + elif ext == 'pkl': + with open(flame_path, 'rb') as smpl_file: + file_data = pickle.load(smpl_file, encoding='latin1') + else: + raise ValueError('Unknown extension: {}'.format(ext)) + data_struct = Struct(**file_data) + + super(FLAME, self).__init__( + model_path=model_path, + data_struct=data_struct, + dtype=dtype, + batch_size=batch_size, + gender=gender, + ext=ext, + **kwargs) + + self.use_face_contour = use_face_contour + + self.vertex_joint_selector.extra_joints_idxs = to_tensor( + [], dtype=torch.long) + + if create_neck_pose: + if neck_pose is None: + default_neck_pose = torch.zeros([batch_size, 3], dtype=dtype) + else: + default_neck_pose = torch.tensor(neck_pose, dtype=dtype) + neck_pose_param = nn.Parameter( + default_neck_pose, requires_grad=True) + self.register_parameter('neck_pose', neck_pose_param) + + if create_jaw_pose: + if jaw_pose is None: + default_jaw_pose = torch.zeros([batch_size, 3], dtype=dtype) + else: + default_jaw_pose = torch.tensor(jaw_pose, dtype=dtype) + jaw_pose_param = nn.Parameter(default_jaw_pose, + requires_grad=True) + self.register_parameter('jaw_pose', jaw_pose_param) + + if create_leye_pose: + if leye_pose is None: + default_leye_pose = torch.zeros([batch_size, 3], dtype=dtype) + else: + default_leye_pose = torch.tensor(leye_pose, dtype=dtype) + leye_pose_param = nn.Parameter(default_leye_pose, + requires_grad=True) + self.register_parameter('leye_pose', leye_pose_param) + + if create_reye_pose: + if reye_pose is None: + default_reye_pose = torch.zeros([batch_size, 3], dtype=dtype) + else: + default_reye_pose = torch.tensor(reye_pose, dtype=dtype) + reye_pose_param = nn.Parameter(default_reye_pose, + requires_grad=True) + self.register_parameter('reye_pose', reye_pose_param) + + shapedirs = data_struct.shapedirs + if len(shapedirs.shape) < 3: + shapedirs = shapedirs[:, :, None] + if (shapedirs.shape[-1] < self.SHAPE_SPACE_DIM + + self.EXPRESSION_SPACE_DIM): + # print(f'WARNING: You are using a {self.name()} model, with only' + # ' 10 shape and 10 expression coefficients.') + expr_start_idx = 10 + expr_end_idx = 20 + num_expression_coeffs = min(num_expression_coeffs, 10) + else: + expr_start_idx = self.SHAPE_SPACE_DIM + expr_end_idx = self.SHAPE_SPACE_DIM + num_expression_coeffs + num_expression_coeffs = min( + num_expression_coeffs, self.EXPRESSION_SPACE_DIM) + + self._num_expression_coeffs = num_expression_coeffs + + expr_dirs = shapedirs[:, :, expr_start_idx:expr_end_idx] + self.register_buffer( + 'expr_dirs', to_tensor(to_np(expr_dirs), dtype=dtype)) + + if create_expression: + if expression is None: + default_expression = torch.zeros( + [batch_size, self.num_expression_coeffs], dtype=dtype) + else: + default_expression = torch.tensor(expression, dtype=dtype) + expression_param = nn.Parameter(default_expression, + requires_grad=True) + self.register_parameter('expression', expression_param) + + # The pickle file that contains the barycentric coordinates for + # regressing the landmarks + landmark_bcoord_filename = osp.join( + model_path, 'flame_static_embedding.pkl') + + with open(landmark_bcoord_filename, 'rb') as fp: + landmarks_data = pickle.load(fp, encoding='latin1') + + lmk_faces_idx = landmarks_data['lmk_face_idx'].astype(np.int64) + self.register_buffer('lmk_faces_idx', + torch.tensor(lmk_faces_idx, dtype=torch.long)) + lmk_bary_coords = landmarks_data['lmk_b_coords'] + self.register_buffer('lmk_bary_coords', + torch.tensor(lmk_bary_coords, dtype=dtype)) + if self.use_face_contour: + face_contour_path = os.path.join( + model_path, 'flame_dynamic_embedding.npy') + contour_embeddings = np.load(face_contour_path, + allow_pickle=True, + encoding='latin1')[()] + + dynamic_lmk_faces_idx = np.array( + contour_embeddings['lmk_face_idx'], dtype=np.int64) + dynamic_lmk_faces_idx = torch.tensor( + dynamic_lmk_faces_idx, + dtype=torch.long) + self.register_buffer('dynamic_lmk_faces_idx', + dynamic_lmk_faces_idx) + + dynamic_lmk_b_coords = torch.tensor( + contour_embeddings['lmk_b_coords'], dtype=dtype) + self.register_buffer( + 'dynamic_lmk_bary_coords', dynamic_lmk_b_coords) + + neck_kin_chain = find_joint_kin_chain(self.NECK_IDX, self.parents) + self.register_buffer( + 'neck_kin_chain', + torch.tensor(neck_kin_chain, dtype=torch.long)) + + @property + def num_expression_coeffs(self): + return self._num_expression_coeffs + + def name(self) -> str: + return 'FLAME' + + def extra_repr(self): + msg = [ + super(FLAME, self).extra_repr(), + f'Number of Expression Coefficients: {self.num_expression_coeffs}', + f'Use face contour: {self.use_face_contour}', + ] + return '\n'.join(msg) + + def forward( + self, + betas: Optional[Tensor] = None, + global_orient: Optional[Tensor] = None, + neck_pose: Optional[Tensor] = None, + transl: Optional[Tensor] = None, + expression: Optional[Tensor] = None, + jaw_pose: Optional[Tensor] = None, + leye_pose: Optional[Tensor] = None, + reye_pose: Optional[Tensor] = None, + return_verts: bool = True, + return_full_pose: bool = False, + pose2rot: bool = True, + **kwargs + ) -> FLAMEOutput: + ''' + Forward pass for the SMPLX model + + Parameters + ---------- + global_orient: torch.tensor, optional, shape Bx3 + If given, ignore the member variable and use it as the global + rotation of the body. Useful if someone wishes to predicts this + with an external model. (default=None) + betas: torch.tensor, optional, shape Bx10 + If given, ignore the member variable `betas` and use it + instead. For example, it can used if shape parameters + `betas` are predicted from some external model. + (default=None) + expression: torch.tensor, optional, shape Bx10 + If given, ignore the member variable `expression` and use it + instead. For example, it can used if expression parameters + `expression` are predicted from some external model. + jaw_pose: torch.tensor, optional, shape Bx3 + If given, ignore the member variable `jaw_pose` and + use this instead. It should either joint rotations in + axis-angle format. + jaw_pose: torch.tensor, optional, shape Bx3 + If given, ignore the member variable `jaw_pose` and + use this instead. It should either joint rotations in + axis-angle format. + transl: torch.tensor, optional, shape Bx3 + If given, ignore the member variable `transl` and use it + instead. For example, it can used if the translation + `transl` is predicted from some external model. + (default=None) + return_verts: bool, optional + Return the vertices. (default=True) + return_full_pose: bool, optional + Returns the full axis-angle pose vector (default=False) + + Returns + ------- + output: ModelOutput + A named tuple of type `ModelOutput` + ''' + + # If no shape and pose parameters are passed along, then use the + # ones from the module + global_orient = (global_orient if global_orient is not None else + self.global_orient) + jaw_pose = jaw_pose if jaw_pose is not None else self.jaw_pose + neck_pose = neck_pose if neck_pose is not None else self.neck_pose + + leye_pose = leye_pose if leye_pose is not None else self.leye_pose + reye_pose = reye_pose if reye_pose is not None else self.reye_pose + + betas = betas if betas is not None else self.betas + expression = expression if expression is not None else self.expression + + apply_trans = transl is not None or hasattr(self, 'transl') + if transl is None: + if hasattr(self, 'transl'): + transl = self.transl + + full_pose = torch.cat( + [global_orient, neck_pose, jaw_pose, leye_pose, reye_pose], dim=1) + + batch_size = max(betas.shape[0], global_orient.shape[0], + jaw_pose.shape[0]) + # Concatenate the shape and expression coefficients + scale = int(batch_size / betas.shape[0]) + if scale > 1: + betas = betas.expand(scale, -1) + shape_components = torch.cat([betas, expression], dim=-1) + shapedirs = torch.cat([self.shapedirs, self.expr_dirs], dim=-1) + + vertices, joints = lbs(shape_components, full_pose, self.v_template, + shapedirs, self.posedirs, + self.J_regressor, self.parents, + self.lbs_weights, pose2rot=pose2rot, + ) + + lmk_faces_idx = self.lmk_faces_idx.unsqueeze( + dim=0).expand(batch_size, -1).contiguous() + lmk_bary_coords = self.lmk_bary_coords.unsqueeze(dim=0).repeat( + self.batch_size, 1, 1) + if self.use_face_contour: + lmk_idx_and_bcoords = find_dynamic_lmk_idx_and_bcoords( + vertices, full_pose, self.dynamic_lmk_faces_idx, + self.dynamic_lmk_bary_coords, + self.neck_kin_chain, + pose2rot=True, + ) + dyn_lmk_faces_idx, dyn_lmk_bary_coords = lmk_idx_and_bcoords + lmk_faces_idx = torch.cat([lmk_faces_idx, + dyn_lmk_faces_idx], 1) + lmk_bary_coords = torch.cat( + [lmk_bary_coords.expand(batch_size, -1, -1), + dyn_lmk_bary_coords], 1) + + landmarks = vertices2landmarks(vertices, self.faces_tensor, + lmk_faces_idx, + lmk_bary_coords) + + # Add any extra joints that might be needed + joints = self.vertex_joint_selector(vertices, joints) + # Add the landmarks to the joints + joints = torch.cat([joints, landmarks], dim=1) + + # Map the joints to the current dataset + if self.joint_mapper is not None: + joints = self.joint_mapper(joints=joints, vertices=vertices) + + if apply_trans: + joints += transl.unsqueeze(dim=1) + vertices += transl.unsqueeze(dim=1) + + output = FLAMEOutput(vertices=vertices if return_verts else None, + joints=joints, + betas=betas, + expression=expression, + global_orient=global_orient, + neck_pose=neck_pose, + jaw_pose=jaw_pose, + full_pose=full_pose if return_full_pose else None) + return output + + +class FLAMELayer(FLAME): + def __init__(self, *args, **kwargs) -> None: + ''' FLAME as a layer model constructor ''' + super(FLAMELayer, self).__init__( + create_betas=False, + create_expression=False, + create_global_orient=False, + create_neck_pose=False, + create_jaw_pose=False, + create_leye_pose=False, + create_reye_pose=False, + *args, + **kwargs) + + def forward( + self, + betas: Optional[Tensor] = None, + global_orient: Optional[Tensor] = None, + neck_pose: Optional[Tensor] = None, + transl: Optional[Tensor] = None, + expression: Optional[Tensor] = None, + jaw_pose: Optional[Tensor] = None, + leye_pose: Optional[Tensor] = None, + reye_pose: Optional[Tensor] = None, + return_verts: bool = True, + return_full_pose: bool = False, + pose2rot: bool = True, + **kwargs + ) -> FLAMEOutput: + ''' + Forward pass for the SMPLX model + + Parameters + ---------- + global_orient: torch.tensor, optional, shape Bx3x3 + Global rotation of the body. Useful if someone wishes to + predicts this with an external model. It is expected to be in + rotation matrix format. (default=None) + betas: torch.tensor, optional, shape BxN_b + Shape parameters. For example, it can used if shape parameters + `betas` are predicted from some external model. + (default=None) + expression: torch.tensor, optional, shape BxN_e + If given, ignore the member variable `expression` and use it + instead. For example, it can used if expression parameters + `expression` are predicted from some external model. + jaw_pose: torch.tensor, optional, shape Bx3x3 + Jaw pose. It should either joint rotations in + rotation matrix format. + transl: torch.tensor, optional, shape Bx3 + Translation vector of the body. + For example, it can used if the translation + `transl` is predicted from some external model. + (default=None) + return_verts: bool, optional + Return the vertices. (default=True) + return_full_pose: bool, optional + Returns the full axis-angle pose vector (default=False) + + Returns + ------- + output: ModelOutput + A named tuple of type `ModelOutput` + ''' + device, dtype = self.shapedirs.device, self.shapedirs.dtype + if global_orient is None: + batch_size = 1 + global_orient = torch.eye(3, device=device, dtype=dtype).view( + 1, 1, 3, 3).expand(batch_size, -1, -1, -1).contiguous() + else: + batch_size = global_orient.shape[0] + if neck_pose is None: + neck_pose = torch.eye(3, device=device, dtype=dtype).view( + 1, 1, 3, 3).expand(batch_size, 1, -1, -1).contiguous() + if jaw_pose is None: + jaw_pose = torch.eye(3, device=device, dtype=dtype).view( + 1, 1, 3, 3).expand(batch_size, -1, -1, -1).contiguous() + if leye_pose is None: + leye_pose = torch.eye(3, device=device, dtype=dtype).view( + 1, 1, 3, 3).expand(batch_size, -1, -1, -1).contiguous() + if reye_pose is None: + reye_pose = torch.eye(3, device=device, dtype=dtype).view( + 1, 1, 3, 3).expand(batch_size, -1, -1, -1).contiguous() + if betas is None: + betas = torch.zeros([batch_size, self.num_betas], + dtype=dtype, device=device) + if expression is None: + expression = torch.zeros([batch_size, self.num_expression_coeffs], + dtype=dtype, device=device) + if transl is None: + transl = torch.zeros([batch_size, 3], dtype=dtype, device=device) + + full_pose = torch.cat( + [global_orient, neck_pose, jaw_pose, leye_pose, reye_pose], dim=1) + + shape_components = torch.cat([betas, expression], dim=-1) + shapedirs = torch.cat([self.shapedirs, self.expr_dirs], dim=-1) + + vertices, joints = lbs(shape_components, full_pose, self.v_template, + shapedirs, self.posedirs, + self.J_regressor, self.parents, + self.lbs_weights, pose2rot=False, + ) + + lmk_faces_idx = self.lmk_faces_idx.unsqueeze( + dim=0).expand(batch_size, -1).contiguous() + lmk_bary_coords = self.lmk_bary_coords.unsqueeze(dim=0).repeat( + self.batch_size, 1, 1) + if self.use_face_contour: + lmk_idx_and_bcoords = find_dynamic_lmk_idx_and_bcoords( + vertices, full_pose, self.dynamic_lmk_faces_idx, + self.dynamic_lmk_bary_coords, + self.neck_kin_chain, + pose2rot=False, + ) + dyn_lmk_faces_idx, dyn_lmk_bary_coords = lmk_idx_and_bcoords + lmk_faces_idx = torch.cat([lmk_faces_idx, + dyn_lmk_faces_idx], 1) + lmk_bary_coords = torch.cat( + [lmk_bary_coords.expand(batch_size, -1, -1), + dyn_lmk_bary_coords], 1) + + landmarks = vertices2landmarks(vertices, self.faces_tensor, + lmk_faces_idx, + lmk_bary_coords) + + # Add any extra joints that might be needed + joints = self.vertex_joint_selector(vertices, joints) + # Add the landmarks to the joints + joints = torch.cat([joints, landmarks], dim=1) + + # Map the joints to the current dataset + if self.joint_mapper is not None: + joints = self.joint_mapper(joints=joints, vertices=vertices) + + joints += transl.unsqueeze(dim=1) + vertices += transl.unsqueeze(dim=1) + + output = FLAMEOutput(vertices=vertices if return_verts else None, + joints=joints, + betas=betas, + expression=expression, + global_orient=global_orient, + neck_pose=neck_pose, + jaw_pose=jaw_pose, + full_pose=full_pose if return_full_pose else None) + return output + + +def build_layer( + model_path: str, + model_type: str = 'smpl', + **kwargs +) -> Union[SMPLLayer, SMPLHLayer, SMPLXLayer, MANOLayer, FLAMELayer]: + ''' Method for creating a model from a path and a model type + + Parameters + ---------- + model_path: str + Either the path to the model you wish to load or a folder, + where each subfolder contains the differents types, i.e.: + model_path: + | + |-- smpl + |-- SMPL_FEMALE + |-- SMPL_NEUTRAL + |-- SMPL_MALE + |-- smplh + |-- SMPLH_FEMALE + |-- SMPLH_MALE + |-- smplx + |-- SMPLX_FEMALE + |-- SMPLX_NEUTRAL + |-- SMPLX_MALE + |-- mano + |-- MANO RIGHT + |-- MANO LEFT + |-- flame + |-- FLAME_FEMALE + |-- FLAME_MALE + |-- FLAME_NEUTRAL + + model_type: str, optional + When model_path is a folder, then this parameter specifies the + type of model to be loaded + **kwargs: dict + Keyword arguments + + Returns + ------- + body_model: nn.Module + The PyTorch module that implements the corresponding body model + Raises + ------ + ValueError: In case the model type is not one of SMPL, SMPLH, + SMPLX, MANO or FLAME + ''' + + if osp.isdir(model_path): + model_path = os.path.join(model_path, model_type) + else: + model_type = osp.basename(model_path).split('_')[0].lower() + + if model_type.lower() == 'smpl': + return SMPLLayer(model_path, **kwargs) + elif model_type.lower() == 'smplh': + return SMPLHLayer(model_path, **kwargs) + elif model_type.lower() == 'smplx': + return SMPLXLayer(model_path, **kwargs) + elif 'mano' in model_type.lower(): + return MANOLayer(model_path, **kwargs) + elif 'flame' in model_type.lower(): + return FLAMELayer(model_path, **kwargs) + else: + raise ValueError(f'Unknown model type {model_type}, exiting!') + + +def create( + model_path: str, + model_type: str = 'smpl', + **kwargs +) -> Union[SMPL, SMPLH, SMPLX, MANO, FLAME]: + ''' Method for creating a model from a path and a model type + + Parameters + ---------- + model_path: str + Either the path to the model you wish to load or a folder, + where each subfolder contains the differents types, i.e.: + model_path: + | + |-- smpl + |-- SMPL_FEMALE + |-- SMPL_NEUTRAL + |-- SMPL_MALE + |-- smplh + |-- SMPLH_FEMALE + |-- SMPLH_MALE + |-- smplx + |-- SMPLX_FEMALE + |-- SMPLX_NEUTRAL + |-- SMPLX_MALE + |-- mano + |-- MANO RIGHT + |-- MANO LEFT + + model_type: str, optional + When model_path is a folder, then this parameter specifies the + type of model to be loaded + **kwargs: dict + Keyword arguments + + Returns + ------- + body_model: nn.Module + The PyTorch module that implements the corresponding body model + Raises + ------ + ValueError: In case the model type is not one of SMPL, SMPLH, + SMPLX, MANO or FLAME + ''' + + model_path = os.path.join(model_path, model_type) + + if model_type.lower() == 'smpl': + return SMPL(model_path, **kwargs) + elif model_type.lower() == 'smplh': + return SMPLH(model_path, **kwargs) + elif model_type.lower() == 'smplx': + return SMPLX(model_path, **kwargs) + elif 'mano' in model_type.lower(): + return MANO(model_path, **kwargs) + elif 'flame' in model_type.lower(): + return FLAME(model_path, **kwargs) + else: + raise ValueError(f'Unknown model type {model_type}, exiting!')