Spaces:
Build error
Build error
Upload geometry.py
Browse files- lib/pymaf/utils/geometry.py +452 -0
lib/pymaf/utils/geometry.py
ADDED
@@ -0,0 +1,452 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
from torch.nn import functional as F
|
4 |
+
"""
|
5 |
+
Useful geometric operations, e.g. Perspective projection and a differentiable Rodrigues formula
|
6 |
+
Parts of the code are taken from https://github.com/MandyMo/pytorch_HMR
|
7 |
+
"""
|
8 |
+
|
9 |
+
|
10 |
+
def batch_rodrigues(theta):
|
11 |
+
"""Convert axis-angle representation to rotation matrix.
|
12 |
+
Args:
|
13 |
+
theta: size = [B, 3]
|
14 |
+
Returns:
|
15 |
+
Rotation matrix corresponding to the quaternion -- size = [B, 3, 3]
|
16 |
+
"""
|
17 |
+
l1norm = torch.norm(theta + 1e-8, p=2, dim=1)
|
18 |
+
angle = torch.unsqueeze(l1norm, -1)
|
19 |
+
normalized = torch.div(theta, angle)
|
20 |
+
angle = angle * 0.5
|
21 |
+
v_cos = torch.cos(angle)
|
22 |
+
v_sin = torch.sin(angle)
|
23 |
+
quat = torch.cat([v_cos, v_sin * normalized], dim=1)
|
24 |
+
return quat_to_rotmat(quat)
|
25 |
+
|
26 |
+
|
27 |
+
def quat_to_rotmat(quat):
|
28 |
+
"""Convert quaternion coefficients to rotation matrix.
|
29 |
+
Args:
|
30 |
+
quat: size = [B, 4] 4 <===>(w, x, y, z)
|
31 |
+
Returns:
|
32 |
+
Rotation matrix corresponding to the quaternion -- size = [B, 3, 3]
|
33 |
+
"""
|
34 |
+
norm_quat = quat
|
35 |
+
norm_quat = norm_quat / norm_quat.norm(p=2, dim=1, keepdim=True)
|
36 |
+
w, x, y, z = norm_quat[:, 0], norm_quat[:, 1], norm_quat[:,
|
37 |
+
2], norm_quat[:,
|
38 |
+
3]
|
39 |
+
|
40 |
+
B = quat.size(0)
|
41 |
+
|
42 |
+
w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2)
|
43 |
+
wx, wy, wz = w * x, w * y, w * z
|
44 |
+
xy, xz, yz = x * y, x * z, y * z
|
45 |
+
|
46 |
+
rotMat = torch.stack([
|
47 |
+
w2 + x2 - y2 - z2, 2 * xy - 2 * wz, 2 * wy + 2 * xz, 2 * wz + 2 * xy,
|
48 |
+
w2 - x2 + y2 - z2, 2 * yz - 2 * wx, 2 * xz - 2 * wy, 2 * wx + 2 * yz,
|
49 |
+
w2 - x2 - y2 + z2
|
50 |
+
],
|
51 |
+
dim=1).view(B, 3, 3)
|
52 |
+
return rotMat
|
53 |
+
|
54 |
+
|
55 |
+
def rotation_matrix_to_angle_axis(rotation_matrix):
|
56 |
+
"""
|
57 |
+
This function is borrowed from https://github.com/kornia/kornia
|
58 |
+
|
59 |
+
Convert 3x4 rotation matrix to Rodrigues vector
|
60 |
+
|
61 |
+
Args:
|
62 |
+
rotation_matrix (Tensor): rotation matrix.
|
63 |
+
|
64 |
+
Returns:
|
65 |
+
Tensor: Rodrigues vector transformation.
|
66 |
+
|
67 |
+
Shape:
|
68 |
+
- Input: :math:`(N, 3, 4)`
|
69 |
+
- Output: :math:`(N, 3)`
|
70 |
+
|
71 |
+
Example:
|
72 |
+
>>> input = torch.rand(2, 3, 4) # Nx4x4
|
73 |
+
>>> output = tgm.rotation_matrix_to_angle_axis(input) # Nx3
|
74 |
+
"""
|
75 |
+
if rotation_matrix.shape[1:] == (3, 3):
|
76 |
+
rot_mat = rotation_matrix.reshape(-1, 3, 3)
|
77 |
+
hom = torch.tensor([0, 0, 1],
|
78 |
+
dtype=torch.float32,
|
79 |
+
device=rotation_matrix.device).reshape(
|
80 |
+
1, 3, 1).expand(rot_mat.shape[0], -1, -1)
|
81 |
+
rotation_matrix = torch.cat([rot_mat, hom], dim=-1)
|
82 |
+
|
83 |
+
quaternion = rotation_matrix_to_quaternion(rotation_matrix)
|
84 |
+
aa = quaternion_to_angle_axis(quaternion)
|
85 |
+
aa[torch.isnan(aa)] = 0.0
|
86 |
+
return aa
|
87 |
+
|
88 |
+
|
89 |
+
def quaternion_to_angle_axis(quaternion: torch.Tensor) -> torch.Tensor:
|
90 |
+
"""
|
91 |
+
This function is borrowed from https://github.com/kornia/kornia
|
92 |
+
|
93 |
+
Convert quaternion vector to angle axis of rotation.
|
94 |
+
|
95 |
+
Adapted from ceres C++ library: ceres-solver/include/ceres/rotation.h
|
96 |
+
|
97 |
+
Args:
|
98 |
+
quaternion (torch.Tensor): tensor with quaternions.
|
99 |
+
|
100 |
+
Return:
|
101 |
+
torch.Tensor: tensor with angle axis of rotation.
|
102 |
+
|
103 |
+
Shape:
|
104 |
+
- Input: :math:`(*, 4)` where `*` means, any number of dimensions
|
105 |
+
- Output: :math:`(*, 3)`
|
106 |
+
|
107 |
+
Example:
|
108 |
+
>>> quaternion = torch.rand(2, 4) # Nx4
|
109 |
+
>>> angle_axis = tgm.quaternion_to_angle_axis(quaternion) # Nx3
|
110 |
+
"""
|
111 |
+
if not torch.is_tensor(quaternion):
|
112 |
+
raise TypeError("Input type is not a torch.Tensor. Got {}".format(
|
113 |
+
type(quaternion)))
|
114 |
+
|
115 |
+
if not quaternion.shape[-1] == 4:
|
116 |
+
raise ValueError(
|
117 |
+
"Input must be a tensor of shape Nx4 or 4. Got {}".format(
|
118 |
+
quaternion.shape))
|
119 |
+
# unpack input and compute conversion
|
120 |
+
q1: torch.Tensor = quaternion[..., 1]
|
121 |
+
q2: torch.Tensor = quaternion[..., 2]
|
122 |
+
q3: torch.Tensor = quaternion[..., 3]
|
123 |
+
sin_squared_theta: torch.Tensor = q1 * q1 + q2 * q2 + q3 * q3
|
124 |
+
|
125 |
+
sin_theta: torch.Tensor = torch.sqrt(sin_squared_theta)
|
126 |
+
cos_theta: torch.Tensor = quaternion[..., 0]
|
127 |
+
two_theta: torch.Tensor = 2.0 * torch.where(
|
128 |
+
cos_theta < 0.0, torch.atan2(-sin_theta, -cos_theta),
|
129 |
+
torch.atan2(sin_theta, cos_theta))
|
130 |
+
|
131 |
+
k_pos: torch.Tensor = two_theta / sin_theta
|
132 |
+
k_neg: torch.Tensor = 2.0 * torch.ones_like(sin_theta)
|
133 |
+
k: torch.Tensor = torch.where(sin_squared_theta > 0.0, k_pos, k_neg)
|
134 |
+
|
135 |
+
angle_axis: torch.Tensor = torch.zeros_like(quaternion)[..., :3]
|
136 |
+
angle_axis[..., 0] += q1 * k
|
137 |
+
angle_axis[..., 1] += q2 * k
|
138 |
+
angle_axis[..., 2] += q3 * k
|
139 |
+
return angle_axis
|
140 |
+
|
141 |
+
|
142 |
+
def rotation_matrix_to_quaternion(rotation_matrix, eps=1e-6):
|
143 |
+
"""
|
144 |
+
This function is borrowed from https://github.com/kornia/kornia
|
145 |
+
|
146 |
+
Convert 3x4 rotation matrix to 4d quaternion vector
|
147 |
+
|
148 |
+
This algorithm is based on algorithm described in
|
149 |
+
https://github.com/KieranWynn/pyquaternion/blob/master/pyquaternion/quaternion.py#L201
|
150 |
+
|
151 |
+
Args:
|
152 |
+
rotation_matrix (Tensor): the rotation matrix to convert.
|
153 |
+
|
154 |
+
Return:
|
155 |
+
Tensor: the rotation in quaternion
|
156 |
+
|
157 |
+
Shape:
|
158 |
+
- Input: :math:`(N, 3, 4)`
|
159 |
+
- Output: :math:`(N, 4)`
|
160 |
+
|
161 |
+
Example:
|
162 |
+
>>> input = torch.rand(4, 3, 4) # Nx3x4
|
163 |
+
>>> output = tgm.rotation_matrix_to_quaternion(input) # Nx4
|
164 |
+
"""
|
165 |
+
if not torch.is_tensor(rotation_matrix):
|
166 |
+
raise TypeError("Input type is not a torch.Tensor. Got {}".format(
|
167 |
+
type(rotation_matrix)))
|
168 |
+
|
169 |
+
if len(rotation_matrix.shape) > 3:
|
170 |
+
raise ValueError(
|
171 |
+
"Input size must be a three dimensional tensor. Got {}".format(
|
172 |
+
rotation_matrix.shape))
|
173 |
+
if not rotation_matrix.shape[-2:] == (3, 4):
|
174 |
+
raise ValueError(
|
175 |
+
"Input size must be a N x 3 x 4 tensor. Got {}".format(
|
176 |
+
rotation_matrix.shape))
|
177 |
+
|
178 |
+
rmat_t = torch.transpose(rotation_matrix, 1, 2)
|
179 |
+
|
180 |
+
mask_d2 = rmat_t[:, 2, 2] < eps
|
181 |
+
|
182 |
+
mask_d0_d1 = rmat_t[:, 0, 0] > rmat_t[:, 1, 1]
|
183 |
+
mask_d0_nd1 = rmat_t[:, 0, 0] < -rmat_t[:, 1, 1]
|
184 |
+
|
185 |
+
t0 = 1 + rmat_t[:, 0, 0] - rmat_t[:, 1, 1] - rmat_t[:, 2, 2]
|
186 |
+
q0 = torch.stack([
|
187 |
+
rmat_t[:, 1, 2] - rmat_t[:, 2, 1], t0,
|
188 |
+
rmat_t[:, 0, 1] + rmat_t[:, 1, 0], rmat_t[:, 2, 0] + rmat_t[:, 0, 2]
|
189 |
+
], -1)
|
190 |
+
t0_rep = t0.repeat(4, 1).t()
|
191 |
+
|
192 |
+
t1 = 1 - rmat_t[:, 0, 0] + rmat_t[:, 1, 1] - rmat_t[:, 2, 2]
|
193 |
+
q1 = torch.stack([
|
194 |
+
rmat_t[:, 2, 0] - rmat_t[:, 0, 2], rmat_t[:, 0, 1] + rmat_t[:, 1, 0],
|
195 |
+
t1, rmat_t[:, 1, 2] + rmat_t[:, 2, 1]
|
196 |
+
], -1)
|
197 |
+
t1_rep = t1.repeat(4, 1).t()
|
198 |
+
|
199 |
+
t2 = 1 - rmat_t[:, 0, 0] - rmat_t[:, 1, 1] + rmat_t[:, 2, 2]
|
200 |
+
q2 = torch.stack([
|
201 |
+
rmat_t[:, 0, 1] - rmat_t[:, 1, 0], rmat_t[:, 2, 0] + rmat_t[:, 0, 2],
|
202 |
+
rmat_t[:, 1, 2] + rmat_t[:, 2, 1], t2
|
203 |
+
], -1)
|
204 |
+
t2_rep = t2.repeat(4, 1).t()
|
205 |
+
|
206 |
+
t3 = 1 + rmat_t[:, 0, 0] + rmat_t[:, 1, 1] + rmat_t[:, 2, 2]
|
207 |
+
q3 = torch.stack([
|
208 |
+
t3, rmat_t[:, 1, 2] - rmat_t[:, 2, 1],
|
209 |
+
rmat_t[:, 2, 0] - rmat_t[:, 0, 2], rmat_t[:, 0, 1] - rmat_t[:, 1, 0]
|
210 |
+
], -1)
|
211 |
+
t3_rep = t3.repeat(4, 1).t()
|
212 |
+
|
213 |
+
mask_c0 = mask_d2 * mask_d0_d1
|
214 |
+
mask_c1 = mask_d2 * ~mask_d0_d1
|
215 |
+
mask_c2 = ~mask_d2 * mask_d0_nd1
|
216 |
+
mask_c3 = ~mask_d2 * ~mask_d0_nd1
|
217 |
+
mask_c0 = mask_c0.view(-1, 1).type_as(q0)
|
218 |
+
mask_c1 = mask_c1.view(-1, 1).type_as(q1)
|
219 |
+
mask_c2 = mask_c2.view(-1, 1).type_as(q2)
|
220 |
+
mask_c3 = mask_c3.view(-1, 1).type_as(q3)
|
221 |
+
|
222 |
+
q = q0 * mask_c0 + q1 * mask_c1 + q2 * mask_c2 + q3 * mask_c3
|
223 |
+
q /= torch.sqrt(t0_rep * mask_c0 + t1_rep * mask_c1 + # noqa
|
224 |
+
t2_rep * mask_c2 + t3_rep * mask_c3) # noqa
|
225 |
+
q *= 0.5
|
226 |
+
return q
|
227 |
+
|
228 |
+
|
229 |
+
def rot6d_to_rotmat(x):
|
230 |
+
"""Convert 6D rotation representation to 3x3 rotation matrix.
|
231 |
+
Based on Zhou et al., "On the Continuity of Rotation Representations in Neural Networks", CVPR 2019
|
232 |
+
Input:
|
233 |
+
(B,6) Batch of 6-D rotation representations
|
234 |
+
Output:
|
235 |
+
(B,3,3) Batch of corresponding rotation matrices
|
236 |
+
"""
|
237 |
+
x = x.view(-1, 3, 2)
|
238 |
+
a1 = x[:, :, 0]
|
239 |
+
a2 = x[:, :, 1]
|
240 |
+
b1 = F.normalize(a1)
|
241 |
+
b2 = F.normalize(a2 - torch.einsum('bi,bi->b', b1, a2).unsqueeze(-1) * b1)
|
242 |
+
b3 = torch.cross(b1, b2)
|
243 |
+
return torch.stack((b1, b2, b3), dim=-1)
|
244 |
+
|
245 |
+
|
246 |
+
def projection(pred_joints, pred_camera, retain_z=False):
|
247 |
+
pred_cam_t = torch.stack([
|
248 |
+
pred_camera[:, 1], pred_camera[:, 2], 2 * 5000. /
|
249 |
+
(224. * pred_camera[:, 0] + 1e-9)
|
250 |
+
],
|
251 |
+
dim=-1)
|
252 |
+
batch_size = pred_joints.shape[0]
|
253 |
+
camera_center = torch.zeros(batch_size, 2)
|
254 |
+
pred_keypoints_2d = perspective_projection(
|
255 |
+
pred_joints,
|
256 |
+
rotation=torch.eye(3).unsqueeze(0).expand(batch_size, -1,
|
257 |
+
-1).to(pred_joints.device),
|
258 |
+
translation=pred_cam_t,
|
259 |
+
focal_length=5000.,
|
260 |
+
camera_center=camera_center,
|
261 |
+
retain_z=retain_z)
|
262 |
+
# Normalize keypoints to [-1,1]
|
263 |
+
pred_keypoints_2d = pred_keypoints_2d / (224. / 2.)
|
264 |
+
return pred_keypoints_2d
|
265 |
+
|
266 |
+
|
267 |
+
def perspective_projection(points,
|
268 |
+
rotation,
|
269 |
+
translation,
|
270 |
+
focal_length,
|
271 |
+
camera_center,
|
272 |
+
retain_z=False):
|
273 |
+
"""
|
274 |
+
This function computes the perspective projection of a set of points.
|
275 |
+
Input:
|
276 |
+
points (bs, N, 3): 3D points
|
277 |
+
rotation (bs, 3, 3): Camera rotation
|
278 |
+
translation (bs, 3): Camera translation
|
279 |
+
focal_length (bs,) or scalar: Focal length
|
280 |
+
camera_center (bs, 2): Camera center
|
281 |
+
"""
|
282 |
+
batch_size = points.shape[0]
|
283 |
+
K = torch.zeros([batch_size, 3, 3], device=points.device)
|
284 |
+
K[:, 0, 0] = focal_length
|
285 |
+
K[:, 1, 1] = focal_length
|
286 |
+
K[:, 2, 2] = 1.
|
287 |
+
K[:, :-1, -1] = camera_center
|
288 |
+
|
289 |
+
# Transform points
|
290 |
+
points = torch.einsum('bij,bkj->bki', rotation, points)
|
291 |
+
points = points + translation.unsqueeze(1)
|
292 |
+
|
293 |
+
# Apply perspective distortion
|
294 |
+
projected_points = points / points[:, :, -1].unsqueeze(-1)
|
295 |
+
|
296 |
+
# Apply camera intrinsics
|
297 |
+
projected_points = torch.einsum('bij,bkj->bki', K, projected_points)
|
298 |
+
|
299 |
+
if retain_z:
|
300 |
+
return projected_points
|
301 |
+
else:
|
302 |
+
return projected_points[:, :, :-1]
|
303 |
+
|
304 |
+
|
305 |
+
def estimate_translation_np(S,
|
306 |
+
joints_2d,
|
307 |
+
joints_conf,
|
308 |
+
focal_length=5000,
|
309 |
+
img_size=224):
|
310 |
+
"""Find camera translation that brings 3D joints S closest to 2D the corresponding joints_2d.
|
311 |
+
Input:
|
312 |
+
S: (25, 3) 3D joint locations
|
313 |
+
joints: (25, 3) 2D joint locations and confidence
|
314 |
+
Returns:
|
315 |
+
(3,) camera translation vector
|
316 |
+
"""
|
317 |
+
|
318 |
+
num_joints = S.shape[0]
|
319 |
+
# focal length
|
320 |
+
f = np.array([focal_length, focal_length])
|
321 |
+
# optical center
|
322 |
+
center = np.array([img_size / 2., img_size / 2.])
|
323 |
+
|
324 |
+
# transformations
|
325 |
+
Z = np.reshape(np.tile(S[:, 2], (2, 1)).T, -1)
|
326 |
+
XY = np.reshape(S[:, 0:2], -1)
|
327 |
+
O = np.tile(center, num_joints)
|
328 |
+
F = np.tile(f, num_joints)
|
329 |
+
weight2 = np.reshape(np.tile(np.sqrt(joints_conf), (2, 1)).T, -1)
|
330 |
+
|
331 |
+
# least squares
|
332 |
+
Q = np.array([
|
333 |
+
F * np.tile(np.array([1, 0]), num_joints),
|
334 |
+
F * np.tile(np.array([0, 1]), num_joints),
|
335 |
+
O - np.reshape(joints_2d, -1)
|
336 |
+
]).T
|
337 |
+
c = (np.reshape(joints_2d, -1) - O) * Z - F * XY
|
338 |
+
|
339 |
+
# weighted least squares
|
340 |
+
W = np.diagflat(weight2)
|
341 |
+
Q = np.dot(W, Q)
|
342 |
+
c = np.dot(W, c)
|
343 |
+
|
344 |
+
# square matrix
|
345 |
+
A = np.dot(Q.T, Q)
|
346 |
+
b = np.dot(Q.T, c)
|
347 |
+
|
348 |
+
# solution
|
349 |
+
trans = np.linalg.solve(A, b)
|
350 |
+
|
351 |
+
return trans
|
352 |
+
|
353 |
+
|
354 |
+
def estimate_translation(S, joints_2d, focal_length=5000., img_size=224.):
|
355 |
+
"""Find camera translation that brings 3D joints S closest to 2D the corresponding joints_2d.
|
356 |
+
Input:
|
357 |
+
S: (B, 49, 3) 3D joint locations
|
358 |
+
joints: (B, 49, 3) 2D joint locations and confidence
|
359 |
+
Returns:
|
360 |
+
(B, 3) camera translation vectors
|
361 |
+
"""
|
362 |
+
|
363 |
+
device = S.device
|
364 |
+
# Use only joints 25:49 (GT joints)
|
365 |
+
S = S[:, 25:, :].cpu().numpy()
|
366 |
+
joints_2d = joints_2d[:, 25:, :].cpu().numpy()
|
367 |
+
joints_conf = joints_2d[:, :, -1]
|
368 |
+
joints_2d = joints_2d[:, :, :-1]
|
369 |
+
trans = np.zeros((S.shape[0], 3), dtype=np.float32)
|
370 |
+
# Find the translation for each example in the batch
|
371 |
+
for i in range(S.shape[0]):
|
372 |
+
S_i = S[i]
|
373 |
+
joints_i = joints_2d[i]
|
374 |
+
conf_i = joints_conf[i]
|
375 |
+
trans[i] = estimate_translation_np(S_i,
|
376 |
+
joints_i,
|
377 |
+
conf_i,
|
378 |
+
focal_length=focal_length,
|
379 |
+
img_size=img_size)
|
380 |
+
return torch.from_numpy(trans).to(device)
|
381 |
+
|
382 |
+
|
383 |
+
def Rot_y(angle, category='torch', prepend_dim=True, device=None):
|
384 |
+
'''Rotate around y-axis by angle
|
385 |
+
Args:
|
386 |
+
category: 'torch' or 'numpy'
|
387 |
+
prepend_dim: prepend an extra dimension
|
388 |
+
Return: Rotation matrix with shape [1, 3, 3] (prepend_dim=True)
|
389 |
+
'''
|
390 |
+
m = np.array([[np.cos(angle), 0., np.sin(angle)], [0., 1., 0.],
|
391 |
+
[-np.sin(angle), 0., np.cos(angle)]])
|
392 |
+
if category == 'torch':
|
393 |
+
if prepend_dim:
|
394 |
+
return torch.tensor(m, dtype=torch.float,
|
395 |
+
device=device).unsqueeze(0)
|
396 |
+
else:
|
397 |
+
return torch.tensor(m, dtype=torch.float, device=device)
|
398 |
+
elif category == 'numpy':
|
399 |
+
if prepend_dim:
|
400 |
+
return np.expand_dims(m, 0)
|
401 |
+
else:
|
402 |
+
return m
|
403 |
+
else:
|
404 |
+
raise ValueError("category must be 'torch' or 'numpy'")
|
405 |
+
|
406 |
+
|
407 |
+
def Rot_x(angle, category='torch', prepend_dim=True, device=None):
|
408 |
+
'''Rotate around x-axis by angle
|
409 |
+
Args:
|
410 |
+
category: 'torch' or 'numpy'
|
411 |
+
prepend_dim: prepend an extra dimension
|
412 |
+
Return: Rotation matrix with shape [1, 3, 3] (prepend_dim=True)
|
413 |
+
'''
|
414 |
+
m = np.array([[1., 0., 0.], [0., np.cos(angle), -np.sin(angle)],
|
415 |
+
[0., np.sin(angle), np.cos(angle)]])
|
416 |
+
if category == 'torch':
|
417 |
+
if prepend_dim:
|
418 |
+
return torch.tensor(m, dtype=torch.float,
|
419 |
+
device=device).unsqueeze(0)
|
420 |
+
else:
|
421 |
+
return torch.tensor(m, dtype=torch.float, device=device)
|
422 |
+
elif category == 'numpy':
|
423 |
+
if prepend_dim:
|
424 |
+
return np.expand_dims(m, 0)
|
425 |
+
else:
|
426 |
+
return m
|
427 |
+
else:
|
428 |
+
raise ValueError("category must be 'torch' or 'numpy'")
|
429 |
+
|
430 |
+
|
431 |
+
def Rot_z(angle, category='torch', prepend_dim=True, device=None):
|
432 |
+
'''Rotate around z-axis by angle
|
433 |
+
Args:
|
434 |
+
category: 'torch' or 'numpy'
|
435 |
+
prepend_dim: prepend an extra dimension
|
436 |
+
Return: Rotation matrix with shape [1, 3, 3] (prepend_dim=True)
|
437 |
+
'''
|
438 |
+
m = np.array([[np.cos(angle), -np.sin(angle), 0.],
|
439 |
+
[np.sin(angle), np.cos(angle), 0.], [0., 0., 1.]])
|
440 |
+
if category == 'torch':
|
441 |
+
if prepend_dim:
|
442 |
+
return torch.tensor(m, dtype=torch.float,
|
443 |
+
device=device).unsqueeze(0)
|
444 |
+
else:
|
445 |
+
return torch.tensor(m, dtype=torch.float, device=device)
|
446 |
+
elif category == 'numpy':
|
447 |
+
if prepend_dim:
|
448 |
+
return np.expand_dims(m, 0)
|
449 |
+
else:
|
450 |
+
return m
|
451 |
+
else:
|
452 |
+
raise ValueError("category must be 'torch' or 'numpy'")
|