Spaces:
Sleeping
Sleeping
Commit
·
115f5eb
1
Parent(s):
f6503f8
Used chunks to handle LARGE job descriptions (above 512 tokens).
Browse files
skills_extraction/skills_extraction.py
CHANGED
@@ -1,15 +1,28 @@
|
|
1 |
-
import
|
2 |
-
|
3 |
import numpy as np
|
4 |
from fastapi import FastAPI
|
5 |
from pydantic import BaseModel
|
6 |
-
from transformers import pipeline
|
|
|
|
|
|
|
7 |
|
8 |
# Load models and tokenizers
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
|
15 |
class TextInput(BaseModel):
|
@@ -19,7 +32,7 @@ class TextInput(BaseModel):
|
|
19 |
def convert_from_numpy(predictions):
|
20 |
for pred in predictions:
|
21 |
for key, value in pred.items():
|
22 |
-
if isinstance(value, (np.float32, np.int32, np.int64)):
|
23 |
pred[key] = float(value)
|
24 |
return predictions
|
25 |
|
@@ -27,33 +40,63 @@ def convert_from_numpy(predictions):
|
|
27 |
def merge_BI_and_get_results(predictions):
|
28 |
results, curSkill, curScore, curNoWords = [], "", 0, 0
|
29 |
for pred in predictions:
|
30 |
-
if pred[
|
31 |
if curSkill:
|
32 |
-
results.append(
|
33 |
-
|
|
|
|
|
34 |
else:
|
35 |
-
curSkill += " " + pred[
|
36 |
-
curScore += pred[
|
37 |
curNoWords += 1
|
38 |
if curSkill:
|
39 |
-
results.append({"name": curSkill, "confidence": curScore / curNoWords})
|
40 |
return results
|
41 |
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
@app.post("/predict_knowledge")
|
44 |
def predict_knowledge(input_data: TextInput):
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
49 |
|
50 |
|
51 |
@app.post("/predict_skills")
|
52 |
def predict_skills(input_data: TextInput):
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
57 |
|
58 |
# Run with:
|
59 |
# uvicorn main:app --host 0.0.0.0 --port 8000
|
|
|
1 |
+
import string
|
|
|
2 |
import numpy as np
|
3 |
from fastapi import FastAPI
|
4 |
from pydantic import BaseModel
|
5 |
+
from transformers import pipeline, AutoTokenizer
|
6 |
+
|
7 |
+
# Initialize FastAPI
|
8 |
+
app = FastAPI()
|
9 |
|
10 |
# Load models and tokenizers
|
11 |
+
knowledge_model_name = "jjzha/jobbert_knowledge_extraction"
|
12 |
+
knowledge_tokenizer = AutoTokenizer.from_pretrained(knowledge_model_name)
|
13 |
+
knowledge_nlp = pipeline(
|
14 |
+
model=knowledge_model_name,
|
15 |
+
tokenizer=knowledge_tokenizer,
|
16 |
+
aggregation_strategy="first",
|
17 |
+
)
|
18 |
|
19 |
+
skill_model_name = "jjzha/jobbert_skill_extraction"
|
20 |
+
skill_tokenizer = AutoTokenizer.from_pretrained(skill_model_name)
|
21 |
+
skill_nlp = pipeline(
|
22 |
+
model=skill_model_name,
|
23 |
+
tokenizer=skill_tokenizer,
|
24 |
+
aggregation_strategy="first",
|
25 |
+
)
|
26 |
|
27 |
|
28 |
class TextInput(BaseModel):
|
|
|
32 |
def convert_from_numpy(predictions):
|
33 |
for pred in predictions:
|
34 |
for key, value in pred.items():
|
35 |
+
if isinstance(value, (np.float32, np.int32, np.int64)):
|
36 |
pred[key] = float(value)
|
37 |
return predictions
|
38 |
|
|
|
40 |
def merge_BI_and_get_results(predictions):
|
41 |
results, curSkill, curScore, curNoWords = [], "", 0, 0
|
42 |
for pred in predictions:
|
43 |
+
if pred["entity_group"] == "B":
|
44 |
if curSkill:
|
45 |
+
results.append(
|
46 |
+
{"name": curSkill.strip(), "confidence": curScore / curNoWords}
|
47 |
+
)
|
48 |
+
curSkill, curScore, curNoWords = pred["word"], pred["score"], 1
|
49 |
else:
|
50 |
+
curSkill += " " + pred["word"]
|
51 |
+
curScore += pred["score"]
|
52 |
curNoWords += 1
|
53 |
if curSkill:
|
54 |
+
results.append({"name": curSkill.strip(), "confidence": curScore / curNoWords})
|
55 |
return results
|
56 |
|
57 |
|
58 |
+
def chunk_text(text, tokenizer, max_length=500, overlap=100):
|
59 |
+
"""
|
60 |
+
Uses the tokenizer's built-in overflow mechanism to split `text` into
|
61 |
+
chunks of at most `max_length` tokens, each overlapping the previous
|
62 |
+
by `overlap` tokens.
|
63 |
+
"""
|
64 |
+
enc = tokenizer(
|
65 |
+
text,
|
66 |
+
truncation=True,
|
67 |
+
max_length=max_length,
|
68 |
+
stride=overlap,
|
69 |
+
return_overflowing_tokens=True,
|
70 |
+
return_special_tokens_mask=False,
|
71 |
+
)
|
72 |
+
chunks = []
|
73 |
+
for ids in enc["input_ids"]:
|
74 |
+
# decode each chunk back to string
|
75 |
+
chunks.append(tokenizer.decode(ids, skip_special_tokens=True))
|
76 |
+
return chunks
|
77 |
+
|
78 |
+
|
79 |
@app.post("/predict_knowledge")
|
80 |
def predict_knowledge(input_data: TextInput):
|
81 |
+
# Clean non-printable chars
|
82 |
+
text = "".join(filter(lambda x: x in string.printable, input_data.jobDescription))
|
83 |
+
chunks = chunk_text(text, knowledge_tokenizer)
|
84 |
+
all_preds = []
|
85 |
+
for chunk in chunks:
|
86 |
+
preds = knowledge_nlp(chunk)
|
87 |
+
all_preds.extend(convert_from_numpy(preds))
|
88 |
+
return {"knowledge_predictions": merge_BI_and_get_results(all_preds)}
|
89 |
|
90 |
|
91 |
@app.post("/predict_skills")
|
92 |
def predict_skills(input_data: TextInput):
|
93 |
+
text = "".join(filter(lambda x: x in string.printable, input_data.jobDescription))
|
94 |
+
chunks = chunk_text(text, skill_tokenizer)
|
95 |
+
all_preds = []
|
96 |
+
for chunk in chunks:
|
97 |
+
preds = skill_nlp(chunk)
|
98 |
+
all_preds.extend(convert_from_numpy(preds))
|
99 |
+
return {"skills_predictions": merge_BI_and_get_results(all_preds)}
|
100 |
|
101 |
# Run with:
|
102 |
# uvicorn main:app --host 0.0.0.0 --port 8000
|