File size: 5,626 Bytes
03e2f4a
 
 
 
029e8ff
 
 
03e2f4a
 
029e8ff
 
03e2f4a
029e8ff
 
 
 
 
 
 
 
 
 
 
03e2f4a
 
029e8ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03e2f4a
cdbe05f
029e8ff
03e2f4a
 
 
 
 
 
 
 
 
 
8cf6e0e
03e2f4a
 
029e8ff
 
8c25deb
029e8ff
 
8c25deb
029e8ff
 
03e2f4a
 
 
 
 
 
 
029e8ff
03e2f4a
 
 
029e8ff
 
 
03e2f4a
 
 
 
 
 
029e8ff
53015c9
029e8ff
03e2f4a
 
 
 
 
 
 
029e8ff
 
 
 
 
 
 
 
 
03e2f4a
029e8ff
03e2f4a
 
 
43bbd45
cd7f231
 
 
 
 
 
 
43bbd45
 
03e2f4a
43bbd45
029e8ff
 
 
03e2f4a
 
 
 
 
 
 
 
029e8ff
 
03e2f4a
029e8ff
03e2f4a
8cf6e0e
 
 
 
 
 
 
 
03e2f4a
 
 
 
 
 
 
029e8ff
03e2f4a
 
 
 
 
 
 
029e8ff
03e2f4a
 
029e8ff
 
 
 
 
 
 
03e2f4a
029e8ff
 
 
 
 
 
 
 
 
 
 
 
03e2f4a
 
 
 
 
 
8cf6e0e
03e2f4a
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import gradio as gr
import numpy as np
import random

import spaces
from pipeline_flux import FluxPipeline
from transformer_flux import FluxTransformer2DModel
import torch

flux_model = "schnell"
bfl_repo = f"black-forest-labs/FLUX.1-{flux_model}"

device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.bfloat16

transformer = FluxTransformer2DModel.from_pretrained(
    bfl_repo, subfolder="transformer", torch_dtype=dtype
)
pipe = FluxPipeline.from_pretrained(bfl_repo, transformer=None, torch_dtype=dtype)
pipe.transformer = transformer
pipe.scheduler.config.use_dynamic_shifting = False
pipe.scheduler.config.time_shift = 10
# pipe.enable_model_cpu_offload()
pipe = pipe.to(device)

pipe.load_lora_weights(
    "Huage001/URAE",
    weight_name="urae_2k_adapter.safetensors",
    adapter_name="2k",
)
pipe.load_lora_weights(
    "Huage001/URAE",
    weight_name="urae_4k_adapter_lora_conversion_dev.safetensors",
    adapter_name="4k_dev",
)
pipe.load_lora_weights(
    "Huage001/URAE",
    weight_name="urae_4k_adapter_lora_conversion_schnell.safetensors",
    adapter_name="4k_schnell",
)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 4096
USE_ZERO_GPU = True


# @spaces.GPU #[uncomment to use ZeroGPU]
def infer(
    prompt,
    seed,
    randomize_seed,
    width,
    height,
    num_inference_steps,
    model='2k',
    progress=gr.Progress(track_tqdm=True),
):
    print("Using model:", model)
    if model == "2k":
        pipe.vae.enable_tiling(True)
        pipe.set_adapters("2k")
    elif model == "4k":
        pipe.vae.enable_tiling(True)
        pipe.set_adapters(f"4k_{flux_model}")

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator().manual_seed(seed)

    image = pipe(
        prompt=prompt,
        guidance_scale=0,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        max_sequence_length=256,
        ntk_factor=10,
        proportional_attention=True,
        generator=generator,
    ).images[0]

    return image, seed


if USE_ZERO_GPU:
    infer = spaces.GPU(infer, duration=360)

examples = [
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
    "An astronaut riding a green horse",
    "A delicious ceviche cheesecake slice",
]

css = """
#maincontainer {
    display: flex;
}

#col1 {
    margin: 0 auto;
    max-width: 50%;
}
#col2 {
    margin: 0 auto;
    # max-width: 40px;
}
"""

head = """> ***U*ltra-*R*esolution *A*daptation with *E*ase**

<div style="text-align: center; display: flex; justify-content: left; gap: 5px;">
<a href="https://arxiv.org/abs/2503.16322"><img src="https://img.shields.io/badge/arXiv-2503.16322-A42C25.svg" alt="arXiv"></a> 
<a href="https://huggingface.co/Huage001/URAE"><img src="https://img.shields.io/badge/🤗_HuggingFace-Model-ffbd45.svg" alt="HuggingFace"></a>
<a href="https://huggingface.co/spaces/Yuanshi/URAE"><img src="https://img.shields.io/badge/🤗_HuggingFace-Space-ffbd45.svg" alt="HuggingFace"></a>
<a href="https://huggingface.co/spaces/Yuanshi/URAE_dev"><img src="https://img.shields.io/badge/🤗_HuggingFace-Space-ffbd45.svg" alt="HuggingFace"></a>
</div>
"""

with gr.Blocks(css=css) as demo:
    gr.Markdown("# URAE (FLUX.1 schnell) \n" + head)
    with gr.Row(elem_id="maincontainer"):
        with gr.Column(elem_id="col1"):
            gr.Markdown("### Prompt:")
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )

            gr.Examples(examples=examples, inputs=[prompt])
            run_button = gr.Button("Generate", scale=1, variant="primary")

            gr.Markdown("### Setting:")

            # model = gr.Radio(
            #     label="Model",
            #     choices=[
            #         ("2K model", "2k"),
            #         ("4K model (beta)", "4k"),
            #     ],
            #     value="2k",
            # )

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=2048,  # Replace with defaults that work for your model
                )

                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=2048,  # Replace with defaults that work for your model
                )

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            num_inference_steps = gr.Slider(
                label="Number of inference steps",
                minimum=1,
                maximum=50,
                step=1,
                value=4,  # Replace with defaults that work for your model
            )

        with gr.Column(elem_id="col2"):
            result = gr.Image(label="Result", show_label=False)

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            prompt,
            # model,
            seed,
            randomize_seed,
            width,
            height,
            num_inference_steps,
        ],
        outputs=[result, seed],
    )

if __name__ == "__main__":
    demo.launch()