Zaherrr commited on
Commit
6f4dba4
·
verified ·
1 Parent(s): 119afdb

Added the idefics3 model

Browse files
Files changed (1) hide show
  1. app.py +324 -118
app.py CHANGED
@@ -1,146 +1,352 @@
 
1
  import gradio as gr
2
- import numpy as np
3
- import random
4
- from diffusers import DiffusionPipeline
 
5
  import torch
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
 
7
- device = "cuda" if torch.cuda.is_available() else "cpu"
8
 
9
- if torch.cuda.is_available():
10
- torch.cuda.max_memory_allocated(device=device)
11
- pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
12
- pipe.enable_xformers_memory_efficient_attention()
13
- pipe = pipe.to(device)
14
- else:
15
- pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
16
- pipe = pipe.to(device)
17
 
18
- MAX_SEED = np.iinfo(np.int32).max
19
- MAX_IMAGE_SIZE = 1024
20
 
21
- def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
22
 
23
- if randomize_seed:
24
- seed = random.randint(0, MAX_SEED)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
 
26
- generator = torch.Generator().manual_seed(seed)
27
 
28
- image = pipe(
29
- prompt = prompt,
30
- negative_prompt = negative_prompt,
31
- guidance_scale = guidance_scale,
32
- num_inference_steps = num_inference_steps,
33
- width = width,
34
- height = height,
35
- generator = generator
36
- ).images[0]
37
 
38
- return image
39
-
40
- examples = [
41
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
42
- "An astronaut riding a green horse",
43
- "A delicious ceviche cheesecake slice",
44
- ]
45
-
46
- css="""
47
- #col-container {
48
- margin: 0 auto;
49
- max-width: 520px;
50
- }
51
- """
52
-
53
- if torch.cuda.is_available():
54
- power_device = "GPU"
55
- else:
56
- power_device = "CPU"
57
-
58
- with gr.Blocks(css=css) as demo:
59
 
60
- with gr.Column(elem_id="col-container"):
61
- gr.Markdown(f"""
62
- # Text-to-Image Gradio Template
63
- Currently running on {power_device}.
64
- """)
65
 
66
- with gr.Row():
67
 
68
- prompt = gr.Text(
69
- label="Prompt",
70
- show_label=False,
71
- max_lines=1,
72
- placeholder="Enter your prompt",
73
- container=False,
74
- )
75
 
76
- run_button = gr.Button("Run", scale=0)
77
 
78
- result = gr.Image(label="Result", show_label=False)
79
 
80
- with gr.Accordion("Advanced Settings", open=False):
81
 
82
- negative_prompt = gr.Text(
83
- label="Negative prompt",
84
- max_lines=1,
85
- placeholder="Enter a negative prompt",
86
- visible=False,
87
- )
88
 
89
- seed = gr.Slider(
90
- label="Seed",
91
- minimum=0,
92
- maximum=MAX_SEED,
93
- step=1,
94
- value=0,
95
- )
96
 
97
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
98
 
99
- with gr.Row():
100
 
101
- width = gr.Slider(
102
- label="Width",
103
- minimum=256,
104
- maximum=MAX_IMAGE_SIZE,
105
- step=32,
106
- value=512,
107
- )
108
 
109
- height = gr.Slider(
110
- label="Height",
111
- minimum=256,
112
- maximum=MAX_IMAGE_SIZE,
113
- step=32,
114
- value=512,
115
- )
116
 
117
- with gr.Row():
118
 
119
- guidance_scale = gr.Slider(
120
- label="Guidance scale",
121
- minimum=0.0,
122
- maximum=10.0,
123
- step=0.1,
124
- value=0.0,
125
- )
126
 
127
- num_inference_steps = gr.Slider(
128
- label="Number of inference steps",
129
- minimum=1,
130
- maximum=12,
131
- step=1,
132
- value=2,
133
- )
134
 
135
- gr.Examples(
136
- examples = examples,
137
- inputs = [prompt]
138
- )
139
 
140
- run_button.click(
141
- fn = infer,
142
- inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
143
- outputs = [result]
144
- )
145
 
146
- demo.queue().launch()
 
1
+
2
  import gradio as gr
3
+ from transformers import AutoProcessor, Idefics3ForConditionalGeneration
4
+ import re
5
+ import time
6
+ from PIL import Image
7
  import torch
8
+ import spaces
9
+ import subprocess
10
+ subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
11
+
12
+
13
+ processor = AutoProcessor.from_pretrained("HuggingFaceM4/Idefics3-8B-Llama3")
14
+
15
+ model = Idefics3ForConditionalGeneration.from_pretrained("HuggingFaceM4/Idefics3-8B-Llama3",
16
+ torch_dtype=torch.bfloat16,
17
+ #_attn_implementation="flash_attention_2",
18
+ trust_remote_code=True).to("cuda")
19
+
20
+ BAD_WORDS_IDS = processor.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids
21
+ EOS_WORDS_IDS = [processor.tokenizer.eos_token_id]
22
+
23
+ @spaces.GPU
24
+ def model_inference(
25
+ images, text, assistant_prefix, decoding_strategy, temperature, max_new_tokens,
26
+ repetition_penalty, top_p
27
+ ):
28
+ if text == "" and not images:
29
+ gr.Error("Please input a query and optionally image(s).")
30
+
31
+ if text == "" and images:
32
+ gr.Error("Please input a text query along the image(s).")
33
+
34
+ if isinstance(images, Image.Image):
35
+ images = [images]
36
+
37
+
38
+ resulting_messages = [
39
+ {
40
+ "role": "user",
41
+ "content": [{"type": "image"}] + [
42
+ {"type": "text", "text": text}
43
+ ]
44
+ }
45
+ ]
46
+
47
+ if assistant_prefix:
48
+ text = f"{assistant_prefix} {text}"
49
+
50
+
51
+ prompt = processor.apply_chat_template(resulting_messages, add_generation_prompt=True)
52
+ inputs = processor(text=prompt, images=[images], return_tensors="pt")
53
+ inputs = {k: v.to("cuda") for k, v in inputs.items()}
54
+
55
+ generation_args = {
56
+ "max_new_tokens": max_new_tokens,
57
+ "repetition_penalty": repetition_penalty,
58
+
59
+ }
60
+
61
+ assert decoding_strategy in [
62
+ "Greedy",
63
+ "Top P Sampling",
64
+ ]
65
+ if decoding_strategy == "Greedy":
66
+ generation_args["do_sample"] = False
67
+ elif decoding_strategy == "Top P Sampling":
68
+ generation_args["temperature"] = temperature
69
+ generation_args["do_sample"] = True
70
+ generation_args["top_p"] = top_p
71
+
72
+
73
+ generation_args.update(inputs)
74
+
75
+ # Generate
76
+ generated_ids = model.generate(**generation_args)
77
+
78
+ generated_texts = processor.batch_decode(generated_ids[:, generation_args["input_ids"].size(1):], skip_special_tokens=True)
79
+ return generated_texts[0]
80
+
81
+
82
+ with gr.Blocks(fill_height=True) as demo:
83
+ gr.Markdown("## IDEFICS3-Llama 🐶")
84
+ gr.Markdown("Play with [HuggingFaceM4/Idefics3-8B-Llama3](https://huggingface.co/HuggingFaceM4/Idefics3-8B-Llama3) in this demo. To get started, upload an image and text or try one of the examples.")
85
+ gr.Markdown("**Disclaimer:** Idefics3 does not include an RLHF alignment stage, so it may not consistently follow prompts or handle complex tasks. However, this doesn't mean it is incapable of doing so. Adding a prefix to the assistant's response, such as Let's think step for a reasoning question or `<html>` for HTML code generation, can significantly improve the output in practice. You could also play with the parameters such as the temperature in non-greedy mode.")
86
+ with gr.Column():
87
+ image_input = gr.Image(label="Upload your Image", type="pil", scale=1)
88
+ query_input = gr.Textbox(label="Prompt")
89
+ assistant_prefix = gr.Textbox(label="Assistant Prefix", placeholder="Let's think step by step.")
90
+
91
+ submit_btn = gr.Button("Submit")
92
+ output = gr.Textbox(label="Output")
93
+
94
+ with gr.Accordion(label="Example Inputs and Advanced Generation Parameters"):
95
+ examples=[
96
+ ["example_images/mmmu_example.jpeg", "Chase wants to buy 4 kilograms of oval beads and 5 kilograms of star-shaped beads. How much will he spend?", "Let's think step by step.", "Greedy", 0.4, 512, 1.2, 0.8],
97
+ ["example_images/rococo_1.jpg", "What art era is this?", None, "Greedy", 0.4, 512, 1.2, 0.8],
98
+ ["example_images/paper_with_text.png", "Read what's written on the paper", None, "Greedy", 0.4, 512, 1.2, 0.8],
99
+ ["example_images/dragons_playing.png","What's unusual about this image?",None, "Greedy", 0.4, 512, 1.2, 0.8],
100
+ ["example_images/example_images_ai2d_example_2.jpeg", "What happens to fish if pelicans increase?", None, "Greedy", 0.4, 512, 1.2, 0.8],
101
+ ["example_images/travel_tips.jpg", "I want to go somewhere similar to the one in the photo. Give me destinations and travel tips.", None, "Greedy", 0.4, 512, 1.2, 0.8],
102
+ ["example_images/dummy_pdf.png", "How much percent is the order status?", None, "Greedy", 0.4, 512, 1.2, 0.8],
103
+ ["example_images/art_critic.png", "As an art critic AI assistant, could you describe this painting in details and make a thorough critic?.",None, "Greedy", 0.4, 512, 1.2, 0.8],
104
+ ["example_images/s2w_example.png", "What is this UI about?", None,"Greedy", 0.4, 512, 1.2, 0.8]]
105
+
106
+ # Hyper-parameters for generation
107
+ max_new_tokens = gr.Slider(
108
+ minimum=8,
109
+ maximum=1024,
110
+ value=512,
111
+ step=1,
112
+ interactive=True,
113
+ label="Maximum number of new tokens to generate",
114
+ )
115
+ repetition_penalty = gr.Slider(
116
+ minimum=0.01,
117
+ maximum=5.0,
118
+ value=1.2,
119
+ step=0.01,
120
+ interactive=True,
121
+ label="Repetition penalty",
122
+ info="1.0 is equivalent to no penalty",
123
+ )
124
+ temperature = gr.Slider(
125
+ minimum=0.0,
126
+ maximum=5.0,
127
+ value=0.4,
128
+ step=0.1,
129
+ interactive=True,
130
+ label="Sampling temperature",
131
+ info="Higher values will produce more diverse outputs.",
132
+ )
133
+ top_p = gr.Slider(
134
+ minimum=0.01,
135
+ maximum=0.99,
136
+ value=0.8,
137
+ step=0.01,
138
+ interactive=True,
139
+ label="Top P",
140
+ info="Higher values is equivalent to sampling more low-probability tokens.",
141
+ )
142
+ decoding_strategy = gr.Radio(
143
+ [
144
+ "Greedy",
145
+ "Top P Sampling",
146
+ ],
147
+ value="Greedy",
148
+ label="Decoding strategy",
149
+ interactive=True,
150
+ info="Higher values is equivalent to sampling more low-probability tokens.",
151
+ )
152
+ decoding_strategy.change(
153
+ fn=lambda selection: gr.Slider(
154
+ visible=(
155
+ selection in ["contrastive_sampling", "beam_sampling", "Top P Sampling", "sampling_top_k"]
156
+ )
157
+ ),
158
+ inputs=decoding_strategy,
159
+ outputs=temperature,
160
+ )
161
+
162
+ decoding_strategy.change(
163
+ fn=lambda selection: gr.Slider(
164
+ visible=(
165
+ selection in ["contrastive_sampling", "beam_sampling", "Top P Sampling", "sampling_top_k"]
166
+ )
167
+ ),
168
+ inputs=decoding_strategy,
169
+ outputs=repetition_penalty,
170
+ )
171
+ decoding_strategy.change(
172
+ fn=lambda selection: gr.Slider(visible=(selection in ["Top P Sampling"])),
173
+ inputs=decoding_strategy,
174
+ outputs=top_p,
175
+ )
176
+ gr.Examples(
177
+ examples = examples,
178
+ inputs=[image_input, query_input, assistant_prefix, decoding_strategy, temperature,
179
+ max_new_tokens, repetition_penalty, top_p],
180
+ outputs=output,
181
+ fn=model_inference
182
+ )
183
+
184
+ submit_btn.click(model_inference, inputs = [image_input, query_input, assistant_prefix, decoding_strategy, temperature,
185
+ max_new_tokens, repetition_penalty, top_p], outputs=output)
186
+
187
+
188
+ demo.launch(debug=True)
189
+
190
+
191
+
192
+
193
+
194
+
195
+
196
+
197
+
198
 
 
199
 
 
 
 
 
 
 
 
 
200
 
 
 
201
 
 
202
 
203
+
204
+
205
+
206
+ # -----------------------------------------------------------------------------------------------------------------------------
207
+ # import gradio as gr
208
+ # import numpy as np
209
+ # import random
210
+ # from diffusers import DiffusionPipeline
211
+ # import torch
212
+
213
+ # device = "cuda" if torch.cuda.is_available() else "cpu"
214
+
215
+ # if torch.cuda.is_available():
216
+ # torch.cuda.max_memory_allocated(device=device)
217
+ # pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
218
+ # pipe.enable_xformers_memory_efficient_attention()
219
+ # pipe = pipe.to(device)
220
+ # else:
221
+ # pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
222
+ # pipe = pipe.to(device)
223
+
224
+ # MAX_SEED = np.iinfo(np.int32).max
225
+ # MAX_IMAGE_SIZE = 1024
226
+
227
+ # def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
228
+
229
+ # if randomize_seed:
230
+ # seed = random.randint(0, MAX_SEED)
231
 
232
+ # generator = torch.Generator().manual_seed(seed)
233
 
234
+ # image = pipe(
235
+ # prompt = prompt,
236
+ # negative_prompt = negative_prompt,
237
+ # guidance_scale = guidance_scale,
238
+ # num_inference_steps = num_inference_steps,
239
+ # width = width,
240
+ # height = height,
241
+ # generator = generator
242
+ # ).images[0]
243
 
244
+ # return image
245
+
246
+ # examples = [
247
+ # "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
248
+ # "An astronaut riding a green horse",
249
+ # "A delicious ceviche cheesecake slice",
250
+ # ]
251
+
252
+ # css="""
253
+ # #col-container {
254
+ # margin: 0 auto;
255
+ # max-width: 520px;
256
+ # }
257
+ # """
258
+
259
+ # if torch.cuda.is_available():
260
+ # power_device = "GPU"
261
+ # else:
262
+ # power_device = "CPU"
263
+
264
+ # with gr.Blocks(css=css) as demo:
265
 
266
+ # with gr.Column(elem_id="col-container"):
267
+ # gr.Markdown(f"""
268
+ # # Text-to-Image Gradio Template
269
+ # Currently running on {power_device}.
270
+ # """)
271
 
272
+ # with gr.Row():
273
 
274
+ # prompt = gr.Text(
275
+ # label="Prompt",
276
+ # show_label=False,
277
+ # max_lines=1,
278
+ # placeholder="Enter your prompt",
279
+ # container=False,
280
+ # )
281
 
282
+ # run_button = gr.Button("Run", scale=0)
283
 
284
+ # result = gr.Image(label="Result", show_label=False)
285
 
286
+ # with gr.Accordion("Advanced Settings", open=False):
287
 
288
+ # negative_prompt = gr.Text(
289
+ # label="Negative prompt",
290
+ # max_lines=1,
291
+ # placeholder="Enter a negative prompt",
292
+ # visible=False,
293
+ # )
294
 
295
+ # seed = gr.Slider(
296
+ # label="Seed",
297
+ # minimum=0,
298
+ # maximum=MAX_SEED,
299
+ # step=1,
300
+ # value=0,
301
+ # )
302
 
303
+ # randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
304
 
305
+ # with gr.Row():
306
 
307
+ # width = gr.Slider(
308
+ # label="Width",
309
+ # minimum=256,
310
+ # maximum=MAX_IMAGE_SIZE,
311
+ # step=32,
312
+ # value=512,
313
+ # )
314
 
315
+ # height = gr.Slider(
316
+ # label="Height",
317
+ # minimum=256,
318
+ # maximum=MAX_IMAGE_SIZE,
319
+ # step=32,
320
+ # value=512,
321
+ # )
322
 
323
+ # with gr.Row():
324
 
325
+ # guidance_scale = gr.Slider(
326
+ # label="Guidance scale",
327
+ # minimum=0.0,
328
+ # maximum=10.0,
329
+ # step=0.1,
330
+ # value=0.0,
331
+ # )
332
 
333
+ # num_inference_steps = gr.Slider(
334
+ # label="Number of inference steps",
335
+ # minimum=1,
336
+ # maximum=12,
337
+ # step=1,
338
+ # value=2,
339
+ # )
340
 
341
+ # gr.Examples(
342
+ # examples = examples,
343
+ # inputs = [prompt]
344
+ # )
345
 
346
+ # run_button.click(
347
+ # fn = infer,
348
+ # inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
349
+ # outputs = [result]
350
+ # )
351
 
352
+ # demo.queue().launch()